"vscode:/vscode.git/clone" did not exist on "51f264a6a98c186ab2c1ba365f58383910f5110e"
test_modeling_tf_gpt2.py 11 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

thomwolf's avatar
thomwolf committed
16

17
18
import unittest

Aymeric Augustin's avatar
Aymeric Augustin committed
19
from transformers import GPT2Config, is_tf_available
thomwolf's avatar
thomwolf committed
20

21
from .test_configuration_common import ConfigTester
22
from .test_modeling_tf_common import TFModelTesterMixin, ids_tensor
23
from .utils import CACHE_DIR, require_tf, slow
thomwolf's avatar
thomwolf committed
24
25


26
if is_tf_available():
thomwolf's avatar
thomwolf committed
27
    import tensorflow as tf
28
29
30
31
32
33
    from transformers.modeling_tf_gpt2 import (
        TFGPT2Model,
        TFGPT2LMHeadModel,
        TFGPT2DoubleHeadsModel,
        TF_GPT2_PRETRAINED_MODEL_ARCHIVE_MAP,
    )
thomwolf's avatar
thomwolf committed
34
35


36
@require_tf
37
class TFGPT2ModelTest(TFModelTesterMixin, unittest.TestCase):
thomwolf's avatar
thomwolf committed
38

39
    all_model_classes = (TFGPT2Model, TFGPT2LMHeadModel, TFGPT2DoubleHeadsModel) if is_tf_available() else ()
40
    all_generative_model_classes = (TFGPT2LMHeadModel,) if is_tf_available() else ()
thomwolf's avatar
thomwolf committed
41
42

    class TFGPT2ModelTester(object):
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
        def __init__(
            self,
            parent,
            batch_size=13,
            seq_length=7,
            is_training=True,
            use_token_type_ids=True,
            use_input_mask=True,
            use_labels=True,
            use_mc_token_ids=True,
            vocab_size=99,
            hidden_size=32,
            num_hidden_layers=5,
            num_attention_heads=4,
            intermediate_size=37,
            hidden_act="gelu",
            hidden_dropout_prob=0.1,
            attention_probs_dropout_prob=0.1,
            max_position_embeddings=512,
            type_vocab_size=16,
            type_sequence_label_size=2,
            initializer_range=0.02,
            num_labels=3,
            num_choices=4,
            scope=None,
        ):
thomwolf's avatar
thomwolf committed
69
70
71
72
73
74
75
            self.parent = parent
            self.batch_size = batch_size
            self.seq_length = seq_length
            self.is_training = is_training
            self.use_token_type_ids = use_token_type_ids
            self.use_input_mask = use_input_mask
            self.use_labels = use_labels
76
            self.use_mc_token_ids = use_mc_token_ids
thomwolf's avatar
thomwolf committed
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
            self.vocab_size = vocab_size
            self.hidden_size = hidden_size
            self.num_hidden_layers = num_hidden_layers
            self.num_attention_heads = num_attention_heads
            self.intermediate_size = intermediate_size
            self.hidden_act = hidden_act
            self.hidden_dropout_prob = hidden_dropout_prob
            self.attention_probs_dropout_prob = attention_probs_dropout_prob
            self.max_position_embeddings = max_position_embeddings
            self.type_vocab_size = type_vocab_size
            self.type_sequence_label_size = type_sequence_label_size
            self.initializer_range = initializer_range
            self.num_labels = num_labels
            self.num_choices = num_choices
            self.scope = scope
92
93
            self.bos_token_id = vocab_size - 1
            self.eos_token_id = vocab_size - 1
thomwolf's avatar
thomwolf committed
94
95
96
97
98
99
100
101
102
103
104
105

        def prepare_config_and_inputs(self):
            input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

            input_mask = None
            if self.use_input_mask:
                input_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)

            token_type_ids = None
            if self.use_token_type_ids:
                token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)

106
107
108
109
            mc_token_ids = None
            if self.use_mc_token_ids:
                mc_token_ids = ids_tensor([self.batch_size, self.num_choices], self.seq_length)

thomwolf's avatar
thomwolf committed
110
111
112
113
114
115
116
117
118
            sequence_labels = None
            token_labels = None
            choice_labels = None
            if self.use_labels:
                sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
                token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
                choice_labels = ids_tensor([self.batch_size], self.num_choices)

            config = GPT2Config(
thomwolf's avatar
thomwolf committed
119
                vocab_size=self.vocab_size,
thomwolf's avatar
thomwolf committed
120
121
122
123
124
125
126
127
                n_embd=self.hidden_size,
                n_layer=self.num_hidden_layers,
                n_head=self.num_attention_heads,
                # intermediate_size=self.intermediate_size,
                # hidden_act=self.hidden_act,
                # hidden_dropout_prob=self.hidden_dropout_prob,
                # attention_probs_dropout_prob=self.attention_probs_dropout_prob,
                n_positions=self.max_position_embeddings,
128
                n_ctx=self.max_position_embeddings,
thomwolf's avatar
thomwolf committed
129
130
                # type_vocab_size=self.type_vocab_size,
                # initializer_range=self.initializer_range
131
132
                bos_token_id=self.bos_token_id,
                eos_token_ids=self.eos_token_id,
thomwolf's avatar
thomwolf committed
133
134
135
136
            )

            head_mask = ids_tensor([self.num_hidden_layers, self.num_attention_heads], 2)

137
138
139
140
141
142
143
144
145
146
147
            return (
                config,
                input_ids,
                input_mask,
                head_mask,
                token_type_ids,
                mc_token_ids,
                sequence_labels,
                token_labels,
                choice_labels,
            )
thomwolf's avatar
thomwolf committed
148
149
150

        def create_and_check_gpt2_model(self, config, input_ids, input_mask, head_mask, token_type_ids, *args):
            model = TFGPT2Model(config=config)
151
152
153
154
155
            inputs = {
                "input_ids": input_ids,
                "attention_mask": input_mask,
                "token_type_ids": token_type_ids,
            }
thomwolf's avatar
thomwolf committed
156
157
158
159
160
161
162
163
164
165
166
            sequence_output = model(inputs)[0]

            inputs = [input_ids, None, input_mask]  # None is the input for 'past'
            sequence_output = model(inputs)[0]

            sequence_output = model(input_ids)[0]

            result = {
                "sequence_output": sequence_output.numpy(),
            }
            self.parent.assertListEqual(
167
                list(result["sequence_output"].shape), [self.batch_size, self.seq_length, self.hidden_size],
168
            )
thomwolf's avatar
thomwolf committed
169
170
171

        def create_and_check_gpt2_lm_head(self, config, input_ids, input_mask, head_mask, token_type_ids, *args):
            model = TFGPT2LMHeadModel(config=config)
172
173
174
175
176
            inputs = {
                "input_ids": input_ids,
                "attention_mask": input_mask,
                "token_type_ids": token_type_ids,
            }
thomwolf's avatar
thomwolf committed
177
178
179
180
181
            prediction_scores = model(inputs)[0]
            result = {
                "prediction_scores": prediction_scores.numpy(),
            }
            self.parent.assertListEqual(
182
                list(result["prediction_scores"].shape), [self.batch_size, self.seq_length, self.vocab_size],
183
            )
thomwolf's avatar
thomwolf committed
184

185
186
187
        def create_and_check_gpt2_double_head(
            self, config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, *args
        ):
188
189
190
191
192
193
            model = TFGPT2DoubleHeadsModel(config=config)

            multiple_choice_inputs_ids = tf.tile(tf.expand_dims(input_ids, 1), (1, self.num_choices, 1))
            multiple_choice_input_mask = tf.tile(tf.expand_dims(input_mask, 1), (1, self.num_choices, 1))
            multiple_choice_token_type_ids = tf.tile(tf.expand_dims(token_type_ids, 1), (1, self.num_choices, 1))

194
195
196
197
198
            inputs = {
                "input_ids": multiple_choice_inputs_ids,
                "mc_token_ids": mc_token_ids,
                "attention_mask": multiple_choice_input_mask,
                "token_type_ids": multiple_choice_token_type_ids,
199
            }
200
201
            lm_logits, mc_logits = model(inputs)[:2]
            result = {"lm_logits": lm_logits.numpy(), "mc_logits": mc_logits.numpy()}
202
            self.parent.assertListEqual(
203
                list(result["lm_logits"].shape), [self.batch_size, self.num_choices, self.seq_length, self.vocab_size],
204
205
            )
            self.parent.assertListEqual(list(result["mc_logits"].shape), [self.batch_size, self.num_choices])
thomwolf's avatar
thomwolf committed
206
207
208
209

        def prepare_config_and_inputs_for_common(self):
            config_and_inputs = self.prepare_config_and_inputs()

210
211
212
213
214
215
216
217
218
219
220
221
            (
                config,
                input_ids,
                input_mask,
                head_mask,
                token_type_ids,
                mc_token_ids,
                sequence_labels,
                token_labels,
                choice_labels,
            ) = config_and_inputs

222
223
224
225
226
            inputs_dict = {
                "input_ids": input_ids,
                "token_type_ids": token_type_ids,
                "attention_mask": input_mask,
            }
thomwolf's avatar
thomwolf committed
227
228
229
230
            return config, inputs_dict

    def setUp(self):
        self.model_tester = TFGPT2ModelTest.TFGPT2ModelTester(self)
231
        self.config_tester = ConfigTester(self, config_class=GPT2Config, n_embd=37)
thomwolf's avatar
thomwolf committed
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_gpt2_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_gpt2_model(*config_and_inputs)

    def test_gpt2_lm_head(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_gpt2_lm_head(*config_and_inputs)

    def test_gpt2_double_head(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_gpt2_double_head(*config_and_inputs)

248
    @slow
thomwolf's avatar
thomwolf committed
249
    def test_model_from_pretrained(self):
thomwolf's avatar
thomwolf committed
250
        for model_name in list(TF_GPT2_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]:
251
            model = TFGPT2Model.from_pretrained(model_name, cache_dir=CACHE_DIR)
thomwolf's avatar
thomwolf committed
252
            self.assertIsNotNone(model)
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297


def prepare_generation_special_tokens():
    return {"bos_token_id": 50256, "eos_token_id": 50256}


class TFGPT2ModelLanguageGenerationTest(unittest.TestCase):

    special_tokens = prepare_generation_special_tokens()

    @slow
    def test_lm_generate_distilgpt2(self):
        model = TFGPT2LMHeadModel.from_pretrained("distilgpt2")
        input_ids = tf.convert_to_tensor([[464, 1893]], dtype=tf.int32)  # The president
        expected_output_ids = [
            464,
            1893,
            286,
            262,
            1578,
            1829,
            11,
            290,
            262,
            1893,
            286,
            262,
            1578,
            7526,
            11,
            423,
            587,
            287,
            262,
            2635,
        ]  # The president of the United States, and the president of the United Kingdom, have been in the White

        output_ids = model.generate(
            input_ids,
            do_sample=False,
            bos_token_id=self.special_tokens["bos_token_id"],
            eos_token_ids=self.special_tokens["eos_token_id"],
        )

        self.assertListEqual(output_ids[0].numpy().tolist(), expected_output_ids)