run_classifier.py 23.9 KB
Newer Older
1
# coding=utf-8
thomwolf's avatar
thomwolf committed
2
# Copyright 2018 The Google AI Language Team Authors and The HugginFace Inc. team.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""BERT finetuning runner."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

21
22
import csv
import os
23
24
import logging
import argparse
VictorSanh's avatar
VictorSanh committed
25
import random
thomwolf's avatar
thomwolf committed
26
from tqdm import tqdm, trange
thomwolf's avatar
thomwolf committed
27
28

import numpy as np
VictorSanh's avatar
VictorSanh committed
29
import torch
30
31
32
from torch.utils.data import TensorDataset, DataLoader, RandomSampler, SequentialSampler
from torch.utils.data.distributed import DistributedSampler

33
34
35
import tokenization
from modeling import BertConfig, BertForSequenceClassification
from optimization import BERTAdam
36
37
38
39
40

logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s -   %(message)s', 
                    datefmt = '%m/%d/%Y %H:%M:%S',
                    level = logging.INFO)
logger = logging.getLogger(__name__)
41

42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71

class InputExample(object):
    """A single training/test example for simple sequence classification."""

    def __init__(self, guid, text_a, text_b=None, label=None):
        """Constructs a InputExample.

        Args:
            guid: Unique id for the example.
            text_a: string. The untokenized text of the first sequence. For single
            sequence tasks, only this sequence must be specified.
            text_b: (Optional) string. The untokenized text of the second sequence.
            Only must be specified for sequence pair tasks.
            label: (Optional) string. The label of the example. This should be
            specified for train and dev examples, but not for test examples.
        """
        self.guid = guid
        self.text_a = text_a
        self.text_b = text_b
        self.label = label


class InputFeatures(object):
    """A single set of features of data."""

    def __init__(self, input_ids, input_mask, segment_ids, label_id):
        self.input_ids = input_ids
        self.input_mask = input_mask
        self.segment_ids = segment_ids
        self.label_id = label_id
thomwolf's avatar
thomwolf committed
72

73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97

class DataProcessor(object):
    """Base class for data converters for sequence classification data sets."""

    def get_train_examples(self, data_dir):
        """Gets a collection of `InputExample`s for the train set."""
        raise NotImplementedError()

    def get_dev_examples(self, data_dir):
        """Gets a collection of `InputExample`s for the dev set."""
        raise NotImplementedError()

    def get_labels(self):
        """Gets the list of labels for this data set."""
        raise NotImplementedError()

    @classmethod
    def _read_tsv(cls, input_file, quotechar=None):
        """Reads a tab separated value file."""
        with open(input_file, "r") as f:
            reader = csv.reader(f, delimiter="\t", quotechar=quotechar)
            lines = []
            for line in reader:
                lines.append(line)
            return lines
thomwolf's avatar
thomwolf committed
98
99


VictorSanh's avatar
wip  
VictorSanh committed
100
101
102
103
104
class MrpcProcessor(DataProcessor):
    """Processor for the MRPC data set (GLUE version)."""

    def get_train_examples(self, data_dir):
        """See base class."""
thomwolf's avatar
thomwolf committed
105
        logger.info("LOOKING AT {}".format(os.path.join(data_dir, "train.tsv")))
VictorSanh's avatar
wip  
VictorSanh committed
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
        return self._create_examples(
            self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")

    def get_dev_examples(self, data_dir):
        """See base class."""
        return self._create_examples(
            self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")

    def get_labels(self):
        """See base class."""
        return ["0", "1"]

    def _create_examples(self, lines, set_type):
        """Creates examples for the training and dev sets."""
        examples = []
        for (i, line) in enumerate(lines):
            if i == 0:
                continue
            guid = "%s-%s" % (set_type, i)
125
126
127
            text_a = tokenization.convert_to_unicode(line[3])
            text_b = tokenization.convert_to_unicode(line[4])
            label = tokenization.convert_to_unicode(line[0])
VictorSanh's avatar
wip  
VictorSanh committed
128
129
130
131
            examples.append(
                InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
        return examples

132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156

class MnliProcessor(DataProcessor):
    """Processor for the MultiNLI data set (GLUE version)."""

    def get_train_examples(self, data_dir):
        """See base class."""
        return self._create_examples(
            self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")

    def get_dev_examples(self, data_dir):
        """See base class."""
        return self._create_examples(
            self._read_tsv(os.path.join(data_dir, "dev_matched.tsv")),
            "dev_matched")

    def get_labels(self):
        """See base class."""
        return ["contradiction", "entailment", "neutral"]

    def _create_examples(self, lines, set_type):
        """Creates examples for the training and dev sets."""
        examples = []
        for (i, line) in enumerate(lines):
            if i == 0:
                continue
157
158
159
160
            guid = "%s-%s" % (set_type, tokenization.convert_to_unicode(line[0]))
            text_a = tokenization.convert_to_unicode(line[8])
            text_b = tokenization.convert_to_unicode(line[9])
            label = tokenization.convert_to_unicode(line[-1])
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
            examples.append(
                InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
        return examples
        

class ColaProcessor(DataProcessor):
    """Processor for the CoLA data set (GLUE version)."""

    def get_train_examples(self, data_dir):
        """See base class."""
        return self._create_examples(
            self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")

    def get_dev_examples(self, data_dir):
        """See base class."""
        return self._create_examples(
            self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")

    def get_labels(self):
        """See base class."""
        return ["0", "1"]

    def _create_examples(self, lines, set_type):
        """Creates examples for the training and dev sets."""
        examples = []
        for (i, line) in enumerate(lines):
            guid = "%s-%s" % (set_type, i)
188
189
            text_a = tokenization.convert_to_unicode(line[3])
            label = tokenization.convert_to_unicode(line[1])
190
191
192
            examples.append(
                InputExample(guid=guid, text_a=text_a, text_b=None, label=label))
        return examples
thomwolf's avatar
thomwolf committed
193
194
195


def convert_examples_to_features(examples, label_list, max_seq_length, tokenizer):
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
    """Loads a data file into a list of `InputBatch`s."""

    label_map = {}
    for (i, label) in enumerate(label_list):
        label_map[label] = i

    features = []
    for (ex_index, example) in enumerate(examples):
        tokens_a = tokenizer.tokenize(example.text_a)

        tokens_b = None
        if example.text_b:
            tokens_b = tokenizer.tokenize(example.text_b)

        if tokens_b:
            # Modifies `tokens_a` and `tokens_b` in place so that the total
            # length is less than the specified length.
            # Account for [CLS], [SEP], [SEP] with "- 3"
            _truncate_seq_pair(tokens_a, tokens_b, max_seq_length - 3)
        else:
            # Account for [CLS] and [SEP] with "- 2"
            if len(tokens_a) > max_seq_length - 2:
                tokens_a = tokens_a[0:(max_seq_length - 2)]

        # The convention in BERT is:
        # (a) For sequence pairs:
        #  tokens:   [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP]
        #  type_ids: 0   0  0    0    0     0       0 0    1  1  1  1   1 1
        # (b) For single sequences:
        #  tokens:   [CLS] the dog is hairy . [SEP]
        #  type_ids: 0   0   0   0  0     0 0
        #
        # Where "type_ids" are used to indicate whether this is the first
        # sequence or the second sequence. The embedding vectors for `type=0` and
        # `type=1` were learned during pre-training and are added to the wordpiece
        # embedding vector (and position vector). This is not *strictly* necessary
        # since the [SEP] token unambigiously separates the sequences, but it makes
        # it easier for the model to learn the concept of sequences.
        #
        # For classification tasks, the first vector (corresponding to [CLS]) is
        # used as as the "sentence vector". Note that this only makes sense because
        # the entire model is fine-tuned.
        tokens = []
        segment_ids = []
        tokens.append("[CLS]")
        segment_ids.append(0)
        for token in tokens_a:
            tokens.append(token)
            segment_ids.append(0)
        tokens.append("[SEP]")
        segment_ids.append(0)

        if tokens_b:
            for token in tokens_b:
                tokens.append(token)
                segment_ids.append(1)
            tokens.append("[SEP]")
            segment_ids.append(1)

        input_ids = tokenizer.convert_tokens_to_ids(tokens)

        # The mask has 1 for real tokens and 0 for padding tokens. Only real
        # tokens are attended to.
        input_mask = [1] * len(input_ids)

        # Zero-pad up to the sequence length.
        while len(input_ids) < max_seq_length:
            input_ids.append(0)
            input_mask.append(0)
            segment_ids.append(0)

        assert len(input_ids) == max_seq_length
        assert len(input_mask) == max_seq_length
        assert len(segment_ids) == max_seq_length

        label_id = label_map[example.label]
        if ex_index < 5:
            logger.info("*** Example ***")
            logger.info("guid: %s" % (example.guid))
            logger.info("tokens: %s" % " ".join(
276
                    [tokenization.printable_text(x) for x in tokens]))
277
278
279
280
281
282
283
284
285
286
287
288
289
            logger.info("input_ids: %s" % " ".join([str(x) for x in input_ids]))
            logger.info("input_mask: %s" % " ".join([str(x) for x in input_mask]))
            logger.info(
                    "segment_ids: %s" % " ".join([str(x) for x in segment_ids]))
            logger.info("label: %s (id = %d)" % (example.label, label_id))

        features.append(
                InputFeatures(
                        input_ids=input_ids,
                        input_mask=input_mask,
                        segment_ids=segment_ids,
                        label_id=label_id))
    return features
thomwolf's avatar
thomwolf committed
290
291


292
293
294
295
296
297
298
299
300
301
302
303
304
305
def _truncate_seq_pair(tokens_a, tokens_b, max_length):
    """Truncates a sequence pair in place to the maximum length."""

    # This is a simple heuristic which will always truncate the longer sequence
    # one token at a time. This makes more sense than truncating an equal percent
    # of tokens from each, since if one sequence is very short then each token
    # that's truncated likely contains more information than a longer sequence.
    while True:
        total_length = len(tokens_a) + len(tokens_b)
        if total_length <= max_length:
            break
        if len(tokens_a) > len(tokens_b):
            tokens_a.pop()
        else:
VictorSanh's avatar
VictorSanh committed
306
307
            tokens_b.pop()

308
309
def accuracy(out, labels):
    outputs = np.argmax(out, axis=1)
310
    return np.sum(outputs==labels)
VictorSanh's avatar
WIP  
VictorSanh committed
311

312
def main():
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
    parser = argparse.ArgumentParser()

    ## Required parameters
    parser.add_argument("--data_dir",
                        default=None,
                        type=str,
                        required=True,
                        help="The input data dir. Should contain the .tsv files (or other data files) for the task.")
    parser.add_argument("--bert_config_file",
                        default=None,
                        type=str,
                        required=True,
                        help="The config json file corresponding to the pre-trained BERT model. \n"
                             "This specifies the model architecture.")
    parser.add_argument("--task_name",
                        default=None,
                        type=str,
                        required=True,
                        help="The name of the task to train.")
    parser.add_argument("--vocab_file",
                        default=None,
                        type=str,
                        required=True,
                        help="The vocabulary file that the BERT model was trained on.")
    parser.add_argument("--output_dir",
                        default=None,
                        type=str,
                        required=True,
                        help="The output directory where the model checkpoints will be written.")

    ## Other parameters
    parser.add_argument("--init_checkpoint",
                        default=None,
                        type=str,
                        help="Initial checkpoint (usually from a pre-trained BERT model).")
    parser.add_argument("--do_lower_case",
                        default=False,
                        action='store_true',
thomwolf's avatar
thomwolf committed
351
                        help="Whether to lower case the input text. True for uncased models, False for cased models.")
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
    parser.add_argument("--max_seq_length",
                        default=128,
                        type=int,
                        help="The maximum total input sequence length after WordPiece tokenization. \n"
                             "Sequences longer than this will be truncated, and sequences shorter \n"
                             "than this will be padded.")
    parser.add_argument("--do_train",
                        default=False,
                        action='store_true',
                        help="Whether to run training.")
    parser.add_argument("--do_eval",
                        default=False,
                        action='store_true',
                        help="Whether to run eval on the dev set.")
    parser.add_argument("--train_batch_size",
                        default=32,
                        type=int,
                        help="Total batch size for training.")
    parser.add_argument("--eval_batch_size",
                        default=8,
                        type=int,
                        help="Total batch size for eval.")
    parser.add_argument("--learning_rate",
                        default=5e-5,
                        type=float,
                        help="The initial learning rate for Adam.")
    parser.add_argument("--num_train_epochs",
                        default=3.0,
                        type=float,
                        help="Total number of training epochs to perform.")
    parser.add_argument("--warmup_proportion",
                        default=0.1,
                        type=float,
                        help="Proportion of training to perform linear learning rate warmup for. "
                             "E.g., 0.1 = 10%% of training.")
    parser.add_argument("--save_checkpoints_steps",
                        default=1000,
                        type=int,
                        help="How often to save the model checkpoint.")
    parser.add_argument("--no_cuda",
                        default=False,
                        action='store_true',
                        help="Whether not to use CUDA when available")
thomwolf's avatar
thomwolf committed
395
396
397
    parser.add_argument("--accumulate_gradients",
                        type=int,
                        default=1,
thomwolf's avatar
thomwolf committed
398
                        help="Number of steps to accumulate gradient on (divide the batch_size and accumulate)")
399
400
401
402
    parser.add_argument("--local_rank",
                        type=int,
                        default=-1,
                        help="local_rank for distributed training on gpus")
VictorSanh's avatar
VictorSanh committed
403
404
405
406
    parser.add_argument('--seed', 
                        type=int, 
                        default=42,
                        help="random seed for initialization")
407
408
    args = parser.parse_args()

VictorSanh's avatar
WIP  
VictorSanh committed
409
410
411
412
413
    processors = {
        "cola": ColaProcessor,
        "mnli": MnliProcessor,
        "mrpc": MrpcProcessor,
    }
thomwolf's avatar
thomwolf committed
414
415
416
417
418
419
420

    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
        n_gpu = torch.cuda.device_count()
    else:
        device = torch.device("cuda", args.local_rank)
        n_gpu = 1
thomwolf's avatar
thomwolf committed
421
422
        # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.distributed.init_process_group(backend='nccl')
thomwolf's avatar
thomwolf committed
423
    logger.info("device", device, "n_gpu", n_gpu, "distributed training", bool(args.local_rank != -1))
thomwolf's avatar
thomwolf committed
424

thomwolf's avatar
thomwolf committed
425
426
427
428
    if args.accumulate_gradients < 1:
        raise ValueError("Invalid accumulate_gradients parameter: {}, should be >= 1".format(
                            args.accumulate_gradients))

thomwolf's avatar
thomwolf committed
429
    args.train_batch_size = args.train_batch_size / args.accumulate_gradients
thomwolf's avatar
thomwolf committed
430

VictorSanh's avatar
VictorSanh committed
431
432
433
    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
thomwolf's avatar
thomwolf committed
434
435
    if n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)
thomwolf's avatar
thomwolf committed
436

VictorSanh's avatar
WIP  
VictorSanh committed
437
438
    if not args.do_train and not args.do_eval:
        raise ValueError("At least one of `do_train` or `do_eval` must be True.")
thomwolf's avatar
thomwolf committed
439
440
441

    bert_config = BertConfig.from_json_file(args.bert_config_file)

VictorSanh's avatar
WIP  
VictorSanh committed
442
443
    if args.max_seq_length > bert_config.max_position_embeddings:
        raise ValueError(
thomwolf's avatar
thomwolf committed
444
445
            "Cannot use sequence length {} because the BERT model was only trained up to sequence length {}".format(
            args.max_seq_length, bert_config.max_position_embeddings))
446

VictorSanh's avatar
WIP  
VictorSanh committed
447
    if os.path.exists(args.output_dir) and os.listdir(args.output_dir):
thomwolf's avatar
thomwolf committed
448
        raise ValueError("Output directory ({}) already exists and is not empty.".format(args.output_dir))
VictorSanh's avatar
WIP  
VictorSanh committed
449
450
451
    os.makedirs(args.output_dir, exist_ok=True)

    task_name = args.task_name.lower()
thomwolf's avatar
thomwolf committed
452

VictorSanh's avatar
WIP  
VictorSanh committed
453
454
455
456
457
458
459
    if task_name not in processors:
        raise ValueError("Task not found: %s" % (task_name))

    processor = processors[task_name]()

    label_list = processor.get_labels()

460
    tokenizer = tokenization.FullTokenizer(
VictorSanh's avatar
WIP  
VictorSanh committed
461
        vocab_file=args.vocab_file, do_lower_case=args.do_lower_case)
thomwolf's avatar
thomwolf committed
462

VictorSanh's avatar
WIP  
VictorSanh committed
463
464
465
466
467
468
    train_examples = None
    num_train_steps = None
    if args.do_train:
        train_examples = processor.get_train_examples(args.data_dir)
        num_train_steps = int(
            len(train_examples) / args.train_batch_size * args.num_train_epochs)
thomwolf's avatar
thomwolf committed
469

470
    model = BertForSequenceClassification(bert_config, len(label_list))
thomwolf's avatar
thomwolf committed
471
    if args.init_checkpoint is not None:
thomwolf's avatar
thomwolf committed
472
        model.load_state_dict(torch.load(args.init_checkpoint, map_location='cpu'))
thomwolf's avatar
thomwolf committed
473
    model.to(device)
thomwolf's avatar
thomwolf committed
474

thomwolf's avatar
thomwolf committed
475
476
477
478
    if args.local_rank != -1:
        model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank],
                                                          output_device=args.local_rank)
    elif n_gpu > 1:
479
        model = torch.nn.DataParallel(model)
thomwolf's avatar
thomwolf committed
480

thomwolf's avatar
thomwolf committed
481
482
483
484
485
486
487
488
    no_decay = ['bias', 'gamma', 'beta']
    optimizer_parameters = [
        {'params': [p for n, p in model.named_parameters() if n not in no_decay], 'weight_decay_rate': 0.01},
        {'params': [p for n, p in model.named_parameters() if n in no_decay], 'weight_decay_rate': 0.0}
        ]

    optimizer = BERTAdam(optimizer_parameters,
                         lr=args.learning_rate,
thomwolf's avatar
thomwolf committed
489
490
491
                         warmup=args.warmup_proportion,
                         t_total=num_train_steps)

thomwolf's avatar
thomwolf committed
492
    global_step = 0
VictorSanh's avatar
WIP  
VictorSanh committed
493
494
495
496
497
498
499
    if args.do_train:
        train_features = convert_examples_to_features(
            train_examples, label_list, args.max_seq_length, tokenizer)
        logger.info("***** Running training *****")
        logger.info("  Num examples = %d", len(train_examples))
        logger.info("  Batch size = %d", args.train_batch_size)
        logger.info("  Num steps = %d", num_train_steps)
thomwolf's avatar
thomwolf committed
500

501
502
503
504
        all_input_ids = torch.tensor([f.input_ids for f in train_features], dtype=torch.long)
        all_input_mask = torch.tensor([f.input_mask for f in train_features], dtype=torch.long)
        all_segment_ids = torch.tensor([f.segment_ids for f in train_features], dtype=torch.long)
        all_label_ids = torch.tensor([f.label_id for f in train_features], dtype=torch.long)
thomwolf's avatar
thomwolf committed
505

506
507
508
509
510
511
512
513
        train_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label_ids)
        if args.local_rank == -1:
            train_sampler = RandomSampler(train_data)
        else:
            train_sampler = DistributedSampler(train_data)
        train_dataloader = DataLoader(train_data, sampler=train_sampler, batch_size=args.train_batch_size)

        model.train()
VictorSanh's avatar
VictorSanh committed
514
        for epoch in trange(int(args.num_train_epochs), desc="Epoch"):
515
516
            tr_loss = 0
            nb_tr_examples, nb_tr_steps = 0, 0
thomwolf's avatar
thomwolf committed
517
            for step, (input_ids, input_mask, segment_ids, label_ids) in enumerate(tqdm(train_dataloader, desc="Iteration")):
thomwolf's avatar
thomwolf committed
518
                input_ids = input_ids.to(device)
thomwolf's avatar
thomwolf committed
519
                input_mask = input_mask.to(device)
thomwolf's avatar
thomwolf committed
520
521
522
523
                segment_ids = segment_ids.to(device)
                label_ids = label_ids.to(device)

                loss, _ = model(input_ids, segment_ids, input_mask, label_ids)
thomwolf's avatar
thomwolf committed
524
525
                if n_gpu > 1:
                    loss = loss.mean() # mean() to average on multi-gpu.
526
                tr_loss += loss.item()
527
                nb_tr_examples += input_ids.size(0)
528
                nb_tr_steps += 1
thomwolf's avatar
thomwolf committed
529
530
531
532
533
534
                loss.backward()

                if (step + 1) % args.gradient_accumulation_steps == 0:
                    optimizer.step()    # We have accumulated enought gradients
                    model.zero_grad()
                    global_step += 1
thomwolf's avatar
thomwolf committed
535

VictorSanh's avatar
WIP  
VictorSanh committed
536
537
538
539
540
    if args.do_eval:
        eval_examples = processor.get_dev_examples(args.data_dir)
        eval_features = convert_examples_to_features(
            eval_examples, label_list, args.max_seq_length, tokenizer)

VictorSanh's avatar
wip  
VictorSanh committed
541
542
543
        logger.info("***** Running evaluation *****")
        logger.info("  Num examples = %d", len(eval_examples))
        logger.info("  Batch size = %d", args.eval_batch_size)
VictorSanh's avatar
WIP  
VictorSanh committed
544

545
546
547
548
        all_input_ids = torch.tensor([f.input_ids for f in eval_features], dtype=torch.long)
        all_input_mask = torch.tensor([f.input_mask for f in eval_features], dtype=torch.long)
        all_segment_ids = torch.tensor([f.segment_ids for f in eval_features], dtype=torch.long)
        all_label_ids = torch.tensor([f.label_id for f in eval_features], dtype=torch.long)
549
550
551
552
553
554
555
556
557

        eval_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label_ids)
        if args.local_rank == -1:
            eval_sampler = SequentialSampler(eval_data)
        else:
            eval_sampler = DistributedSampler(eval_data)
        eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.eval_batch_size)

        model.eval()
558
        eval_loss, eval_accuracy = 0, 0
VictorSanh's avatar
VictorSanh committed
559
        nb_eval_steps, nb_eval_examples = 0, 0
560
        for input_ids, input_mask, segment_ids, label_ids in eval_dataloader:
561
            input_ids = input_ids.to(device)
thomwolf's avatar
thomwolf committed
562
            input_mask = input_mask.to(device)
563
            segment_ids = segment_ids.to(device)
564
            label_ids = label_ids.to(device)
565
566

            tmp_eval_loss, logits = model(input_ids, segment_ids, input_mask, label_ids)
thomwolf's avatar
thomwolf committed
567
568
569

            logits = logits.detach().cpu().numpy()
            label_ids = label_ids.to('cpu').numpy()
570
571
            tmp_eval_accuracy = accuracy(logits, label_ids)

572
            eval_loss += tmp_eval_loss.mean().item()
573
            eval_accuracy += tmp_eval_accuracy
thomwolf's avatar
thomwolf committed
574

VictorSanh's avatar
VictorSanh committed
575
            nb_eval_examples += input_ids.size(0)
576
            nb_eval_steps += 1
VictorSanh's avatar
WIP  
VictorSanh committed
577

578
        eval_loss = eval_loss / nb_eval_steps #len(eval_dataloader)
VictorSanh's avatar
VictorSanh committed
579
        eval_accuracy = eval_accuracy / nb_eval_examples #len(eval_dataloader)
VictorSanh's avatar
WIP  
VictorSanh committed
580

581
582
583
        result = {'eval_loss': eval_loss,
                  'eval_accuracy': eval_accuracy,
                  'global_step': global_step,
584
                  'loss': tr_loss/nb_tr_steps}#'loss': loss.item()}
VictorSanh's avatar
WIP  
VictorSanh committed
585
586

        output_eval_file = os.path.join(args.output_dir, "eval_results.txt")
VictorSanh's avatar
wip  
VictorSanh committed
587
588
        with open(output_eval_file, "w") as writer:
            logger.info("***** Eval results *****")
VictorSanh's avatar
WIP  
VictorSanh committed
589
            for key in sorted(result.keys()):
VictorSanh's avatar
wip  
VictorSanh committed
590
                logger.info("  %s = %s", key, str(result[key]))
VictorSanh's avatar
WIP  
VictorSanh committed
591
                writer.write("%s = %s\n" % (key, str(result[key])))
592

VictorSanh's avatar
WIP  
VictorSanh committed
593
594
if __name__ == "__main__":
    main()