test_tokenization_utils.py 13.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2018 HuggingFace Inc..
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
15
16
17
"""
isort:skip_file
"""
Arthur's avatar
Arthur committed
18

19
import os
20
import pickle
21
import tempfile
22
import unittest
23
from typing import Callable, Optional
Aymeric Augustin's avatar
Aymeric Augustin committed
24

25
26
import numpy as np

27
28
29
30
31
from transformers import (
    BatchEncoding,
    BertTokenizer,
    BertTokenizerFast,
    PreTrainedTokenizer,
32
    PreTrainedTokenizerFast,
33
34
35
36
    TensorType,
    TokenSpan,
    is_tokenizers_available,
)
Sylvain Gugger's avatar
Sylvain Gugger committed
37
from transformers.models.gpt2.tokenization_gpt2 import GPT2Tokenizer
38
from transformers.testing_utils import CaptureStderr, require_flax, require_tf, require_tokenizers, require_torch, slow
39

40

41
42
43
44
45
if is_tokenizers_available():
    from tokenizers import Tokenizer
    from tokenizers.models import WordPiece


46
class TokenizerUtilsTest(unittest.TestCase):
47
48
49
50
51
    def check_tokenizer_from_pretrained(self, tokenizer_class):
        s3_models = list(tokenizer_class.max_model_input_sizes.keys())
        for model_name in s3_models[:1]:
            tokenizer = tokenizer_class.from_pretrained(model_name)
            self.assertIsNotNone(tokenizer)
52
            self.assertIsInstance(tokenizer, tokenizer_class)
53
54
            self.assertIsInstance(tokenizer, PreTrainedTokenizer)

55
            for special_tok in tokenizer.all_special_tokens:
Aymeric Augustin's avatar
Aymeric Augustin committed
56
                self.assertIsInstance(special_tok, str)
57
58
59
                special_tok_id = tokenizer.convert_tokens_to_ids(special_tok)
                self.assertIsInstance(special_tok_id, int)

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
    def assert_dump_and_restore(self, be_original: BatchEncoding, equal_op: Optional[Callable] = None):
        batch_encoding_str = pickle.dumps(be_original)
        self.assertIsNotNone(batch_encoding_str)

        be_restored = pickle.loads(batch_encoding_str)

        # Ensure is_fast is correctly restored
        self.assertEqual(be_restored.is_fast, be_original.is_fast)

        # Ensure encodings are potentially correctly restored
        if be_original.is_fast:
            self.assertIsNotNone(be_restored.encodings)
        else:
            self.assertIsNone(be_restored.encodings)

        # Ensure the keys are the same
        for original_v, restored_v in zip(be_original.values(), be_restored.values()):
            if equal_op:
                self.assertTrue(equal_op(restored_v, original_v))
            else:
                self.assertEqual(restored_v, original_v)

82
    @slow
83
84
    def test_pretrained_tokenizers(self):
        self.check_tokenizer_from_pretrained(GPT2Tokenizer)
85

86
    def test_tensor_type_from_str(self):
87
88
89
        self.assertEqual(TensorType("tf"), TensorType.TENSORFLOW)
        self.assertEqual(TensorType("pt"), TensorType.PYTORCH)
        self.assertEqual(TensorType("np"), TensorType.NUMPY)
90

91
    @require_tokenizers
92
93
94
    def test_batch_encoding_pickle(self):
        import numpy as np

95
96
        tokenizer_p = BertTokenizer.from_pretrained("google-bert/bert-base-cased")
        tokenizer_r = BertTokenizerFast.from_pretrained("google-bert/bert-base-cased")
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115

        # Python no tensor
        with self.subTest("BatchEncoding (Python, return_tensors=None)"):
            self.assert_dump_and_restore(tokenizer_p("Small example to encode"))

        with self.subTest("BatchEncoding (Python, return_tensors=NUMPY)"):
            self.assert_dump_and_restore(
                tokenizer_p("Small example to encode", return_tensors=TensorType.NUMPY), np.array_equal
            )

        with self.subTest("BatchEncoding (Rust, return_tensors=None)"):
            self.assert_dump_and_restore(tokenizer_r("Small example to encode"))

        with self.subTest("BatchEncoding (Rust, return_tensors=NUMPY)"):
            self.assert_dump_and_restore(
                tokenizer_r("Small example to encode", return_tensors=TensorType.NUMPY), np.array_equal
            )

    @require_tf
116
    @require_tokenizers
117
118
119
120
121
122
    def test_batch_encoding_pickle_tf(self):
        import tensorflow as tf

        def tf_array_equals(t1, t2):
            return tf.reduce_all(tf.equal(t1, t2))

123
124
        tokenizer_p = BertTokenizer.from_pretrained("google-bert/bert-base-cased")
        tokenizer_r = BertTokenizerFast.from_pretrained("google-bert/bert-base-cased")
125
126
127
128
129
130
131
132
133
134
135
136

        with self.subTest("BatchEncoding (Python, return_tensors=TENSORFLOW)"):
            self.assert_dump_and_restore(
                tokenizer_p("Small example to encode", return_tensors=TensorType.TENSORFLOW), tf_array_equals
            )

        with self.subTest("BatchEncoding (Rust, return_tensors=TENSORFLOW)"):
            self.assert_dump_and_restore(
                tokenizer_r("Small example to encode", return_tensors=TensorType.TENSORFLOW), tf_array_equals
            )

    @require_torch
137
    @require_tokenizers
138
139
140
    def test_batch_encoding_pickle_pt(self):
        import torch

141
142
        tokenizer_p = BertTokenizer.from_pretrained("google-bert/bert-base-cased")
        tokenizer_r = BertTokenizerFast.from_pretrained("google-bert/bert-base-cased")
143
144
145
146
147
148
149
150
151
152
153

        with self.subTest("BatchEncoding (Python, return_tensors=PYTORCH)"):
            self.assert_dump_and_restore(
                tokenizer_p("Small example to encode", return_tensors=TensorType.PYTORCH), torch.equal
            )

        with self.subTest("BatchEncoding (Rust, return_tensors=PYTORCH)"):
            self.assert_dump_and_restore(
                tokenizer_r("Small example to encode", return_tensors=TensorType.PYTORCH), torch.equal
            )

154
    @require_tokenizers
155
    def test_batch_encoding_is_fast(self):
156
157
        tokenizer_p = BertTokenizer.from_pretrained("google-bert/bert-base-cased")
        tokenizer_r = BertTokenizerFast.from_pretrained("google-bert/bert-base-cased")
158
159
160
161
162
163

        with self.subTest("Python Tokenizer"):
            self.assertFalse(tokenizer_p("Small example to_encode").is_fast)

        with self.subTest("Rust Tokenizer"):
            self.assertTrue(tokenizer_r("Small example to_encode").is_fast)
164

165
166
    @require_tokenizers
    def test_batch_encoding_word_to_tokens(self):
167
        tokenizer_r = BertTokenizerFast.from_pretrained("google-bert/bert-base-cased")
168
169
170
171
172
173
        encoded = tokenizer_r(["Test", "\xad", "test"], is_split_into_words=True)

        self.assertEqual(encoded.word_to_tokens(0), TokenSpan(start=1, end=2))
        self.assertEqual(encoded.word_to_tokens(1), None)
        self.assertEqual(encoded.word_to_tokens(2), TokenSpan(start=2, end=3))

174
175
176
177
178
    def test_batch_encoding_with_labels(self):
        batch = BatchEncoding({"inputs": [[1, 2, 3], [4, 5, 6]], "labels": [0, 1]})
        tensor_batch = batch.convert_to_tensors(tensor_type="np")
        self.assertEqual(tensor_batch["inputs"].shape, (2, 3))
        self.assertEqual(tensor_batch["labels"].shape, (2,))
179
180
181
182
        # test converting the converted
        with CaptureStderr() as cs:
            tensor_batch = batch.convert_to_tensors(tensor_type="np")
        self.assertFalse(len(cs.err), msg=f"should have no warning, but got {cs.err}")
183
184
185
186
187
188
189
190
191
192
193
194

        batch = BatchEncoding({"inputs": [1, 2, 3], "labels": 0})
        tensor_batch = batch.convert_to_tensors(tensor_type="np", prepend_batch_axis=True)
        self.assertEqual(tensor_batch["inputs"].shape, (1, 3))
        self.assertEqual(tensor_batch["labels"].shape, (1,))

    @require_torch
    def test_batch_encoding_with_labels_pt(self):
        batch = BatchEncoding({"inputs": [[1, 2, 3], [4, 5, 6]], "labels": [0, 1]})
        tensor_batch = batch.convert_to_tensors(tensor_type="pt")
        self.assertEqual(tensor_batch["inputs"].shape, (2, 3))
        self.assertEqual(tensor_batch["labels"].shape, (2,))
195
196
197
198
        # test converting the converted
        with CaptureStderr() as cs:
            tensor_batch = batch.convert_to_tensors(tensor_type="pt")
        self.assertFalse(len(cs.err), msg=f"should have no warning, but got {cs.err}")
199
200
201
202
203
204
205
206
207
208
209
210

        batch = BatchEncoding({"inputs": [1, 2, 3], "labels": 0})
        tensor_batch = batch.convert_to_tensors(tensor_type="pt", prepend_batch_axis=True)
        self.assertEqual(tensor_batch["inputs"].shape, (1, 3))
        self.assertEqual(tensor_batch["labels"].shape, (1,))

    @require_tf
    def test_batch_encoding_with_labels_tf(self):
        batch = BatchEncoding({"inputs": [[1, 2, 3], [4, 5, 6]], "labels": [0, 1]})
        tensor_batch = batch.convert_to_tensors(tensor_type="tf")
        self.assertEqual(tensor_batch["inputs"].shape, (2, 3))
        self.assertEqual(tensor_batch["labels"].shape, (2,))
211
212
213
214
        # test converting the converted
        with CaptureStderr() as cs:
            tensor_batch = batch.convert_to_tensors(tensor_type="tf")
        self.assertFalse(len(cs.err), msg=f"should have no warning, but got {cs.err}")
215
216
217
218
219
220

        batch = BatchEncoding({"inputs": [1, 2, 3], "labels": 0})
        tensor_batch = batch.convert_to_tensors(tensor_type="tf", prepend_batch_axis=True)
        self.assertEqual(tensor_batch["inputs"].shape, (1, 3))
        self.assertEqual(tensor_batch["labels"].shape, (1,))

221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
    @require_flax
    def test_batch_encoding_with_labels_jax(self):
        batch = BatchEncoding({"inputs": [[1, 2, 3], [4, 5, 6]], "labels": [0, 1]})
        tensor_batch = batch.convert_to_tensors(tensor_type="jax")
        self.assertEqual(tensor_batch["inputs"].shape, (2, 3))
        self.assertEqual(tensor_batch["labels"].shape, (2,))
        # test converting the converted
        with CaptureStderr() as cs:
            tensor_batch = batch.convert_to_tensors(tensor_type="jax")
        self.assertFalse(len(cs.err), msg=f"should have no warning, but got {cs.err}")

        batch = BatchEncoding({"inputs": [1, 2, 3], "labels": 0})
        tensor_batch = batch.convert_to_tensors(tensor_type="jax", prepend_batch_axis=True)
        self.assertEqual(tensor_batch["inputs"].shape, (1, 3))
        self.assertEqual(tensor_batch["labels"].shape, (1,))

237
238
    def test_padding_accepts_tensors(self):
        features = [{"input_ids": np.array([0, 1, 2])}, {"input_ids": np.array([0, 1, 2, 3])}]
239
        tokenizer = BertTokenizer.from_pretrained("google-bert/bert-base-cased")
240
241
242
243
244
245
246
247
248
249
250
251
252

        batch = tokenizer.pad(features, padding=True)
        self.assertTrue(isinstance(batch["input_ids"], np.ndarray))
        self.assertEqual(batch["input_ids"].tolist(), [[0, 1, 2, tokenizer.pad_token_id], [0, 1, 2, 3]])
        batch = tokenizer.pad(features, padding=True, return_tensors="np")
        self.assertTrue(isinstance(batch["input_ids"], np.ndarray))
        self.assertEqual(batch["input_ids"].tolist(), [[0, 1, 2, tokenizer.pad_token_id], [0, 1, 2, 3]])

    @require_torch
    def test_padding_accepts_tensors_pt(self):
        import torch

        features = [{"input_ids": torch.tensor([0, 1, 2])}, {"input_ids": torch.tensor([0, 1, 2, 3])}]
253
        tokenizer = BertTokenizer.from_pretrained("google-bert/bert-base-cased")
254
255
256
257
258
259
260
261
262
263
264
265
266

        batch = tokenizer.pad(features, padding=True)
        self.assertTrue(isinstance(batch["input_ids"], torch.Tensor))
        self.assertEqual(batch["input_ids"].tolist(), [[0, 1, 2, tokenizer.pad_token_id], [0, 1, 2, 3]])
        batch = tokenizer.pad(features, padding=True, return_tensors="pt")
        self.assertTrue(isinstance(batch["input_ids"], torch.Tensor))
        self.assertEqual(batch["input_ids"].tolist(), [[0, 1, 2, tokenizer.pad_token_id], [0, 1, 2, 3]])

    @require_tf
    def test_padding_accepts_tensors_tf(self):
        import tensorflow as tf

        features = [{"input_ids": tf.constant([0, 1, 2])}, {"input_ids": tf.constant([0, 1, 2, 3])}]
267
        tokenizer = BertTokenizer.from_pretrained("google-bert/bert-base-cased")
268
269
270
271
272
273
274

        batch = tokenizer.pad(features, padding=True)
        self.assertTrue(isinstance(batch["input_ids"], tf.Tensor))
        self.assertEqual(batch["input_ids"].numpy().tolist(), [[0, 1, 2, tokenizer.pad_token_id], [0, 1, 2, 3]])
        batch = tokenizer.pad(features, padding=True, return_tensors="tf")
        self.assertTrue(isinstance(batch["input_ids"], tf.Tensor))
        self.assertEqual(batch["input_ids"].numpy().tolist(), [[0, 1, 2, tokenizer.pad_token_id], [0, 1, 2, 3]])
275
276
277
278
279
280
281
282
283
284
285
286

    @require_tokenizers
    def test_instantiation_from_tokenizers(self):
        bert_tokenizer = Tokenizer(WordPiece(unk_token="[UNK]"))
        PreTrainedTokenizerFast(tokenizer_object=bert_tokenizer)

    @require_tokenizers
    def test_instantiation_from_tokenizers_json_file(self):
        bert_tokenizer = Tokenizer(WordPiece(unk_token="[UNK]"))
        with tempfile.TemporaryDirectory() as tmpdirname:
            bert_tokenizer.save(os.path.join(tmpdirname, "tokenizer.json"))
            PreTrainedTokenizerFast(tokenizer_file=os.path.join(tmpdirname, "tokenizer.json"))
287
288
289
290
291
292
293
294
295
296
297
298

    def test_len_tokenizer(self):
        for tokenizer_class in [BertTokenizer, BertTokenizerFast]:
            with self.subTest(f"{tokenizer_class}"):
                tokenizer = tokenizer_class.from_pretrained("bert-base-uncased")
                added_tokens_size = len(tokenizer.added_tokens_decoder)
                self.assertEqual(len(tokenizer), tokenizer.vocab_size)

                tokenizer.add_tokens(["<test_token>"])
                self.assertEqual(len(tokenizer), tokenizer.vocab_size + 1)
                self.assertEqual(len(tokenizer.added_tokens_decoder), added_tokens_size + 1)
                self.assertEqual(len(tokenizer.added_tokens_encoder), added_tokens_size + 1)