test_pipelines_image_classification.py 5.81 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest

17
18
19
20
21
22
from transformers import (
    MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING,
    PerceiverConfig,
    PreTrainedTokenizer,
    is_vision_available,
)
23
from transformers.pipelines import ImageClassificationPipeline, pipeline
24
25
26
27
28
29
30
31
32
33
from transformers.testing_utils import (
    is_pipeline_test,
    nested_simplify,
    require_datasets,
    require_tf,
    require_torch,
    require_vision,
)

from .test_pipelines_common import ANY, PipelineTestCaseMeta
34
35
36
37
38
39
40
41
42
43
44
45


if is_vision_available():
    from PIL import Image
else:

    class Image:
        @staticmethod
        def open(*args, **kwargs):
            pass


46
@is_pipeline_test
47
48
@require_vision
@require_torch
49
50
51
class ImageClassificationPipelineTests(unittest.TestCase, metaclass=PipelineTestCaseMeta):
    model_mapping = MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING

52
    def get_test_pipeline(self, model, tokenizer, feature_extractor):
53
54
55
56
        if isinstance(model.config, PerceiverConfig):
            self.skipTest(
                "Perceiver model tester is defined with a language one, which has no feature_extractor, so the automated test cannot work here"
            )
57

58
        image_classifier = ImageClassificationPipeline(model=model, feature_extractor=feature_extractor)
59
60
61
62
63
64
65
66
        examples = [
            Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png"),
            "http://images.cocodataset.org/val2017/000000039769.jpg",
        ]
        return image_classifier, examples

    @require_datasets
    def run_pipeline_test(self, image_classifier, examples):
67
68
69
70
71
72
73
74
75
76
77
78
        outputs = image_classifier("./tests/fixtures/tests_samples/COCO/000000039769.png")

        self.assertEqual(
            outputs,
            [
                {"score": ANY(float), "label": ANY(str)},
                {"score": ANY(float), "label": ANY(str)},
            ],
        )

        import datasets

79
        dataset = datasets.load_dataset("hf-internal-testing/fixtures_image_utils", "image", split="test")
80
81
82
83

        # Accepts URL + PIL.Image + lists
        outputs = image_classifier(
            [
NielsRogge's avatar
NielsRogge committed
84
                Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png"),
85
86
87
88
89
90
91
                "http://images.cocodataset.org/val2017/000000039769.jpg",
                # RGBA
                dataset[0]["file"],
                # LA
                dataset[1]["file"],
                # L
                dataset[2]["file"],
NielsRogge's avatar
NielsRogge committed
92
            ]
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
        )
        self.assertEqual(
            outputs,
            [
                [
                    {"score": ANY(float), "label": ANY(str)},
                    {"score": ANY(float), "label": ANY(str)},
                ],
                [
                    {"score": ANY(float), "label": ANY(str)},
                    {"score": ANY(float), "label": ANY(str)},
                ],
                [
                    {"score": ANY(float), "label": ANY(str)},
                    {"score": ANY(float), "label": ANY(str)},
                ],
                [
                    {"score": ANY(float), "label": ANY(str)},
                    {"score": ANY(float), "label": ANY(str)},
                ],
                [
                    {"score": ANY(float), "label": ANY(str)},
                    {"score": ANY(float), "label": ANY(str)},
                ],
            ],
        )

    @require_torch
    def test_small_model_pt(self):
        small_model = "lysandre/tiny-vit-random"
        image_classifier = pipeline("image-classification", model=small_model)

        outputs = image_classifier("http://images.cocodataset.org/val2017/000000039769.jpg")
        self.assertEqual(
            nested_simplify(outputs, decimals=4),
            [
                {"score": 0.0015, "label": "chambered nautilus, pearly nautilus, nautilus"},
                {"score": 0.0015, "label": "pajama, pyjama, pj's, jammies"},
                {"score": 0.0014, "label": "trench coat"},
                {"score": 0.0014, "label": "handkerchief, hankie, hanky, hankey"},
                {"score": 0.0014, "label": "baboon"},
            ],
        )

        outputs = image_classifier(
            [
                "http://images.cocodataset.org/val2017/000000039769.jpg",
                "http://images.cocodataset.org/val2017/000000039769.jpg",
            ],
            top_k=2,
        )
        self.assertEqual(
            nested_simplify(outputs, decimals=4),
            [
                [
                    {"score": 0.0015, "label": "chambered nautilus, pearly nautilus, nautilus"},
                    {"score": 0.0015, "label": "pajama, pyjama, pj's, jammies"},
                ],
                [
                    {"score": 0.0015, "label": "chambered nautilus, pearly nautilus, nautilus"},
                    {"score": 0.0015, "label": "pajama, pyjama, pj's, jammies"},
                ],
            ],
        )

    @require_tf
    @unittest.skip("Image classification is not implemented for TF")
    def test_small_model_tf(self):
        pass
162
163
164
165
166

    def test_custom_tokenizer(self):
        tokenizer = PreTrainedTokenizer()

        # Assert that the pipeline can be initialized with a feature extractor that is not in any mapping
167
        image_classifier = pipeline("image-classification", model="lysandre/tiny-vit-random", tokenizer=tokenizer)
168
169

        self.assertIs(image_classifier.tokenizer, tokenizer)