test_pipelines_image_classification.py 6.84 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest

from transformers import (
18
    AutoConfig,
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
    AutoFeatureExtractor,
    AutoModelForImageClassification,
    PreTrainedTokenizer,
    is_vision_available,
)
from transformers.pipelines import ImageClassificationPipeline, pipeline
from transformers.testing_utils import require_torch, require_vision


if is_vision_available():
    from PIL import Image
else:

    class Image:
        @staticmethod
        def open(*args, **kwargs):
            pass


@require_vision
@require_torch
class ImageClassificationPipelineTests(unittest.TestCase):
    pipeline_task = "image-classification"
    small_models = ["lysandre/tiny-vit-random"]  # Models tested without the @slow decorator
    valid_inputs = [
        {"images": "http://images.cocodataset.org/val2017/000000039769.jpg"},
        {
            "images": [
                "http://images.cocodataset.org/val2017/000000039769.jpg",
                "http://images.cocodataset.org/val2017/000000039769.jpg",
            ]
        },
NielsRogge's avatar
NielsRogge committed
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
        {"images": "./tests/fixtures/tests_samples/COCO/000000039769.png"},
        {
            "images": [
                "./tests/fixtures/tests_samples/COCO/000000039769.png",
                "./tests/fixtures/tests_samples/COCO/000000039769.png",
            ]
        },
        {"images": Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")},
        {
            "images": [
                Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png"),
                Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png"),
            ]
        },
        {
            "images": [
                Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png"),
                "./tests/fixtures/tests_samples/COCO/000000039769.png",
            ]
        },
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
    ]

    def test_small_model_from_factory(self):
        for small_model in self.small_models:

            image_classifier = pipeline("image-classification", model=small_model)

            for valid_input in self.valid_inputs:
                output = image_classifier(**valid_input)
                top_k = valid_input.get("top_k", 5)

                def assert_valid_pipeline_output(pipeline_output):
                    self.assertTrue(isinstance(pipeline_output, list))
                    self.assertEqual(len(pipeline_output), top_k)
                    for label_result in pipeline_output:
                        self.assertTrue(isinstance(label_result, dict))
                        self.assertIn("label", label_result)
                        self.assertIn("score", label_result)

                if isinstance(valid_input["images"], list):
                    self.assertEqual(len(valid_input["images"]), len(output))
                    for individual_output in output:
                        assert_valid_pipeline_output(individual_output)
                else:
                    assert_valid_pipeline_output(output)

    def test_small_model_from_pipeline(self):
        for small_model in self.small_models:

            model = AutoModelForImageClassification.from_pretrained(small_model)
            feature_extractor = AutoFeatureExtractor.from_pretrained(small_model)
            image_classifier = ImageClassificationPipeline(model=model, feature_extractor=feature_extractor)

            for valid_input in self.valid_inputs:
                output = image_classifier(**valid_input)
                top_k = valid_input.get("top_k", 5)

                def assert_valid_pipeline_output(pipeline_output):
                    self.assertTrue(isinstance(pipeline_output, list))
                    self.assertEqual(len(pipeline_output), top_k)
                    for label_result in pipeline_output:
                        self.assertTrue(isinstance(label_result, dict))
                        self.assertIn("label", label_result)
                        self.assertIn("score", label_result)

                if isinstance(valid_input["images"], list):
                    # When images are batched, pipeline output is a list of lists of dictionaries
                    self.assertEqual(len(valid_input["images"]), len(output))
                    for individual_output in output:
                        assert_valid_pipeline_output(individual_output)
                else:
                    # When images are batched, pipeline output is a list of dictionaries
                    assert_valid_pipeline_output(output)

    def test_custom_tokenizer(self):
        tokenizer = PreTrainedTokenizer()

        # Assert that the pipeline can be initialized with a feature extractor that is not in any mapping
        image_classifier = pipeline("image-classification", model=self.small_models[0], tokenizer=tokenizer)

        self.assertIs(image_classifier.tokenizer, tokenizer)
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

    def test_num_labels_inferior_to_topk(self):
        for small_model in self.small_models:

            num_labels = 2
            model = AutoModelForImageClassification.from_config(
                AutoConfig.from_pretrained(small_model, num_labels=num_labels)
            )
            feature_extractor = AutoFeatureExtractor.from_pretrained(small_model)
            image_classifier = ImageClassificationPipeline(model=model, feature_extractor=feature_extractor)

            for valid_input in self.valid_inputs:
                output = image_classifier(**valid_input)

                def assert_valid_pipeline_output(pipeline_output):
                    self.assertTrue(isinstance(pipeline_output, list))
                    self.assertEqual(len(pipeline_output), num_labels)
                    for label_result in pipeline_output:
                        self.assertTrue(isinstance(label_result, dict))
                        self.assertIn("label", label_result)
                        self.assertIn("score", label_result)

                if isinstance(valid_input["images"], list):
                    # When images are batched, pipeline output is a list of lists of dictionaries
                    self.assertEqual(len(valid_input["images"]), len(output))
                    for individual_output in output:
                        assert_valid_pipeline_output(individual_output)
                else:
                    # When images are batched, pipeline output is a list of dictionaries
                    assert_valid_pipeline_output(output)