"git@developer.sourcefind.cn:sugon_wxj/megatron-lm.git" did not exist on "f94f5a0db8fb7873ea559b1d2f93d24e6b5f937b"
run_squad.py 48.6 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
# coding=utf-8
thomwolf's avatar
thomwolf committed
2
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
3
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
thomwolf's avatar
thomwolf committed
4
5
6
7
8
9
10
11
12
13
14
15
16
17
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Run BERT on SQuAD."""

thomwolf's avatar
thomwolf committed
18
from __future__ import absolute_import, division, print_function
thomwolf's avatar
thomwolf committed
19

20
import argparse
thomwolf's avatar
thomwolf committed
21
22
import collections
import json
thomwolf's avatar
thomwolf committed
23
import logging
thomwolf's avatar
thomwolf committed
24
25
import math
import os
26
import random
thomwolf's avatar
thomwolf committed
27
28
import sys
from io import open
thomwolf's avatar
thomwolf committed
29

thomwolf's avatar
thomwolf committed
30
import numpy as np
31
import torch
thomwolf's avatar
thomwolf committed
32
33
from torch.utils.data import (DataLoader, RandomSampler, SequentialSampler,
                              TensorDataset)
34
from torch.utils.data.distributed import DistributedSampler
thomwolf's avatar
thomwolf committed
35
from tqdm import tqdm, trange
thomwolf's avatar
thomwolf committed
36

thomwolf's avatar
thomwolf committed
37
from pytorch_pretrained_bert.file_utils import PYTORCH_PRETRAINED_BERT_CACHE
38
from pytorch_pretrained_bert.modeling import BertForQuestionAnswering, BertConfig, WEIGHTS_NAME, CONFIG_NAME
39
from pytorch_pretrained_bert.optimization import BertAdam, warmup_linear
thomwolf's avatar
thomwolf committed
40
41
42
43
44
45
46
47
from pytorch_pretrained_bert.tokenization import (BasicTokenizer,
                                                  BertTokenizer,
                                                  whitespace_tokenize)

if sys.version_info[0] == 2:
    import cPickle as pickle
else:
    import pickle
thomwolf's avatar
thomwolf committed
48

49
logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s -   %(message)s',
50
51
52
                    datefmt = '%m/%d/%Y %H:%M:%S',
                    level = logging.INFO)
logger = logging.getLogger(__name__)
thomwolf's avatar
thomwolf committed
53
54
55


class SquadExample(object):
thomwolf's avatar
thomwolf committed
56
57
58
59
    """
    A single training/test example for the Squad dataset.
    For examples without an answer, the start and end position are -1.
    """
60
61
62
63
64
65
66

    def __init__(self,
                 qas_id,
                 question_text,
                 doc_tokens,
                 orig_answer_text=None,
                 start_position=None,
thomwolf's avatar
thomwolf committed
67
68
                 end_position=None,
                 is_impossible=None):
69
70
71
72
73
74
        self.qas_id = qas_id
        self.question_text = question_text
        self.doc_tokens = doc_tokens
        self.orig_answer_text = orig_answer_text
        self.start_position = start_position
        self.end_position = end_position
thomwolf's avatar
thomwolf committed
75
        self.is_impossible = is_impossible
76
77
78
79
80
81

    def __str__(self):
        return self.__repr__()

    def __repr__(self):
        s = ""
82
        s += "qas_id: %s" % (self.qas_id)
83
        s += ", question_text: %s" % (
84
            self.question_text)
85
86
87
88
89
        s += ", doc_tokens: [%s]" % (" ".join(self.doc_tokens))
        if self.start_position:
            s += ", start_position: %d" % (self.start_position)
        if self.start_position:
            s += ", end_position: %d" % (self.end_position)
thomwolf's avatar
thomwolf committed
90
91
        if self.start_position:
            s += ", is_impossible: %r" % (self.is_impossible)
92
        return s
thomwolf's avatar
thomwolf committed
93
94
95


class InputFeatures(object):
96
97
98
99
100
101
102
103
104
105
106
107
108
    """A single set of features of data."""

    def __init__(self,
                 unique_id,
                 example_index,
                 doc_span_index,
                 tokens,
                 token_to_orig_map,
                 token_is_max_context,
                 input_ids,
                 input_mask,
                 segment_ids,
                 start_position=None,
thomwolf's avatar
thomwolf committed
109
110
                 end_position=None,
                 is_impossible=None):
111
112
113
114
115
116
117
118
119
120
121
        self.unique_id = unique_id
        self.example_index = example_index
        self.doc_span_index = doc_span_index
        self.tokens = tokens
        self.token_to_orig_map = token_to_orig_map
        self.token_is_max_context = token_is_max_context
        self.input_ids = input_ids
        self.input_mask = input_mask
        self.segment_ids = segment_ids
        self.start_position = start_position
        self.end_position = end_position
thomwolf's avatar
thomwolf committed
122
        self.is_impossible = is_impossible
thomwolf's avatar
thomwolf committed
123
124


thomwolf's avatar
thomwolf committed
125
def read_squad_examples(input_file, is_training, version_2_with_negative):
126
    """Read a SQuAD json file into a list of SquadExample."""
127
    with open(input_file, "r", encoding='utf-8') as reader:
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
        input_data = json.load(reader)["data"]

    def is_whitespace(c):
        if c == " " or c == "\t" or c == "\r" or c == "\n" or ord(c) == 0x202F:
            return True
        return False

    examples = []
    for entry in input_data:
        for paragraph in entry["paragraphs"]:
            paragraph_text = paragraph["context"]
            doc_tokens = []
            char_to_word_offset = []
            prev_is_whitespace = True
            for c in paragraph_text:
                if is_whitespace(c):
                    prev_is_whitespace = True
                else:
                    if prev_is_whitespace:
                        doc_tokens.append(c)
                    else:
                        doc_tokens[-1] += c
                    prev_is_whitespace = False
                char_to_word_offset.append(len(doc_tokens) - 1)

            for qa in paragraph["qas"]:
                qas_id = qa["id"]
                question_text = qa["question"]
                start_position = None
                end_position = None
                orig_answer_text = None
thomwolf's avatar
thomwolf committed
159
                is_impossible = False
160
                if is_training:
thomwolf's avatar
thomwolf committed
161
162
163
                    if version_2_with_negative:
                        is_impossible = qa["is_impossible"]
                    if (len(qa["answers"]) != 1) and (not is_impossible):
164
165
                        raise ValueError(
                            "For training, each question should have exactly 1 answer.")
thomwolf's avatar
thomwolf committed
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
                    if not is_impossible:
                        answer = qa["answers"][0]
                        orig_answer_text = answer["text"]
                        answer_offset = answer["answer_start"]
                        answer_length = len(orig_answer_text)
                        start_position = char_to_word_offset[answer_offset]
                        end_position = char_to_word_offset[answer_offset + answer_length - 1]
                        # Only add answers where the text can be exactly recovered from the
                        # document. If this CAN'T happen it's likely due to weird Unicode
                        # stuff so we will just skip the example.
                        #
                        # Note that this means for training mode, every example is NOT
                        # guaranteed to be preserved.
                        actual_text = " ".join(doc_tokens[start_position:(end_position + 1)])
                        cleaned_answer_text = " ".join(
                            whitespace_tokenize(orig_answer_text))
                        if actual_text.find(cleaned_answer_text) == -1:
                            logger.warning("Could not find answer: '%s' vs. '%s'",
184
                                           actual_text, cleaned_answer_text)
thomwolf's avatar
thomwolf committed
185
186
187
188
189
                            continue
                    else:
                        start_position = -1
                        end_position = -1
                        orig_answer_text = ""
190
191
192
193
194
195
196

                example = SquadExample(
                    qas_id=qas_id,
                    question_text=question_text,
                    doc_tokens=doc_tokens,
                    orig_answer_text=orig_answer_text,
                    start_position=start_position,
thomwolf's avatar
thomwolf committed
197
198
                    end_position=end_position,
                    is_impossible=is_impossible)
199
200
                examples.append(example)
    return examples
thomwolf's avatar
thomwolf committed
201
202
203
204


def convert_examples_to_features(examples, tokenizer, max_seq_length,
                                 doc_stride, max_query_length, is_training):
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
    """Loads a data file into a list of `InputBatch`s."""

    unique_id = 1000000000

    features = []
    for (example_index, example) in enumerate(examples):
        query_tokens = tokenizer.tokenize(example.question_text)

        if len(query_tokens) > max_query_length:
            query_tokens = query_tokens[0:max_query_length]

        tok_to_orig_index = []
        orig_to_tok_index = []
        all_doc_tokens = []
        for (i, token) in enumerate(example.doc_tokens):
            orig_to_tok_index.append(len(all_doc_tokens))
            sub_tokens = tokenizer.tokenize(token)
            for sub_token in sub_tokens:
                tok_to_orig_index.append(i)
                all_doc_tokens.append(sub_token)

        tok_start_position = None
        tok_end_position = None
thomwolf's avatar
thomwolf committed
228
229
230
231
        if is_training and example.is_impossible:
            tok_start_position = -1
            tok_end_position = -1
        if is_training and not example.is_impossible:
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
            tok_start_position = orig_to_tok_index[example.start_position]
            if example.end_position < len(example.doc_tokens) - 1:
                tok_end_position = orig_to_tok_index[example.end_position + 1] - 1
            else:
                tok_end_position = len(all_doc_tokens) - 1
            (tok_start_position, tok_end_position) = _improve_answer_span(
                all_doc_tokens, tok_start_position, tok_end_position, tokenizer,
                example.orig_answer_text)

        # The -3 accounts for [CLS], [SEP] and [SEP]
        max_tokens_for_doc = max_seq_length - len(query_tokens) - 3

        # We can have documents that are longer than the maximum sequence length.
        # To deal with this we do a sliding window approach, where we take chunks
        # of the up to our max length with a stride of `doc_stride`.
        _DocSpan = collections.namedtuple(  # pylint: disable=invalid-name
            "DocSpan", ["start", "length"])
        doc_spans = []
        start_offset = 0
        while start_offset < len(all_doc_tokens):
            length = len(all_doc_tokens) - start_offset
            if length > max_tokens_for_doc:
                length = max_tokens_for_doc
            doc_spans.append(_DocSpan(start=start_offset, length=length))
            if start_offset + length == len(all_doc_tokens):
                break
            start_offset += min(length, doc_stride)

        for (doc_span_index, doc_span) in enumerate(doc_spans):
            tokens = []
            token_to_orig_map = {}
            token_is_max_context = {}
            segment_ids = []
            tokens.append("[CLS]")
            segment_ids.append(0)
            for token in query_tokens:
                tokens.append(token)
                segment_ids.append(0)
            tokens.append("[SEP]")
            segment_ids.append(0)

            for i in range(doc_span.length):
                split_token_index = doc_span.start + i
                token_to_orig_map[len(tokens)] = tok_to_orig_index[split_token_index]

                is_max_context = _check_is_max_context(doc_spans, doc_span_index,
                                                       split_token_index)
                token_is_max_context[len(tokens)] = is_max_context
                tokens.append(all_doc_tokens[split_token_index])
                segment_ids.append(1)
            tokens.append("[SEP]")
            segment_ids.append(1)

            input_ids = tokenizer.convert_tokens_to_ids(tokens)

            # The mask has 1 for real tokens and 0 for padding tokens. Only real
            # tokens are attended to.
            input_mask = [1] * len(input_ids)

            # Zero-pad up to the sequence length.
            while len(input_ids) < max_seq_length:
                input_ids.append(0)
                input_mask.append(0)
                segment_ids.append(0)

            assert len(input_ids) == max_seq_length
            assert len(input_mask) == max_seq_length
            assert len(segment_ids) == max_seq_length

            start_position = None
            end_position = None
thomwolf's avatar
thomwolf committed
303
            if is_training and not example.is_impossible:
304
305
306
307
                # For training, if our document chunk does not contain an annotation
                # we throw it out, since there is nothing to predict.
                doc_start = doc_span.start
                doc_end = doc_span.start + doc_span.length - 1
thomwolf's avatar
thomwolf committed
308
309
310
311
312
313
314
315
316
317
318
319
320
321
                out_of_span = False
                if not (tok_start_position >= doc_start and
                        tok_end_position <= doc_end):
                    out_of_span = True
                if out_of_span:
                    start_position = 0
                    end_position = 0
                else:
                    doc_offset = len(query_tokens) + 2
                    start_position = tok_start_position - doc_start + doc_offset
                    end_position = tok_end_position - doc_start + doc_offset
            if is_training and example.is_impossible:
                start_position = 0
                end_position = 0
322
            if example_index < 20:
323
324
325
326
                logger.info("*** Example ***")
                logger.info("unique_id: %s" % (unique_id))
                logger.info("example_index: %s" % (example_index))
                logger.info("doc_span_index: %s" % (doc_span_index))
327
                logger.info("tokens: %s" % " ".join(tokens))
thomwolf's avatar
thomwolf committed
328
329
                logger.info("token_to_orig_map: %s" % " ".join([
                    "%d:%d" % (x, y) for (x, y) in token_to_orig_map.items()]))
330
                logger.info("token_is_max_context: %s" % " ".join([
thomwolf's avatar
thomwolf committed
331
                    "%d:%s" % (x, y) for (x, y) in token_is_max_context.items()
332
                ]))
333
334
                logger.info("input_ids: %s" % " ".join([str(x) for x in input_ids]))
                logger.info(
335
                    "input_mask: %s" % " ".join([str(x) for x in input_mask]))
336
                logger.info(
337
                    "segment_ids: %s" % " ".join([str(x) for x in segment_ids]))
thomwolf's avatar
thomwolf committed
338
339
340
                if is_training and example.is_impossible:
                    logger.info("impossible example")
                if is_training and not example.is_impossible:
341
                    answer_text = " ".join(tokens[start_position:(end_position + 1)])
342
343
344
                    logger.info("start_position: %d" % (start_position))
                    logger.info("end_position: %d" % (end_position))
                    logger.info(
345
                        "answer: %s" % (answer_text))
346
347
348
349
350
351
352
353
354
355
356
357
358

            features.append(
                InputFeatures(
                    unique_id=unique_id,
                    example_index=example_index,
                    doc_span_index=doc_span_index,
                    tokens=tokens,
                    token_to_orig_map=token_to_orig_map,
                    token_is_max_context=token_is_max_context,
                    input_ids=input_ids,
                    input_mask=input_mask,
                    segment_ids=segment_ids,
                    start_position=start_position,
thomwolf's avatar
thomwolf committed
359
360
                    end_position=end_position,
                    is_impossible=example.is_impossible))
361
362
363
            unique_id += 1

    return features
thomwolf's avatar
thomwolf committed
364
365
366
367


def _improve_answer_span(doc_tokens, input_start, input_end, tokenizer,
                         orig_answer_text):
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
    """Returns tokenized answer spans that better match the annotated answer."""

    # The SQuAD annotations are character based. We first project them to
    # whitespace-tokenized words. But then after WordPiece tokenization, we can
    # often find a "better match". For example:
    #
    #   Question: What year was John Smith born?
    #   Context: The leader was John Smith (1895-1943).
    #   Answer: 1895
    #
    # The original whitespace-tokenized answer will be "(1895-1943).". However
    # after tokenization, our tokens will be "( 1895 - 1943 ) .". So we can match
    # the exact answer, 1895.
    #
    # However, this is not always possible. Consider the following:
    #
    #   Question: What country is the top exporter of electornics?
    #   Context: The Japanese electronics industry is the lagest in the world.
    #   Answer: Japan
    #
    # In this case, the annotator chose "Japan" as a character sub-span of
    # the word "Japanese". Since our WordPiece tokenizer does not split
    # "Japanese", we just use "Japanese" as the annotation. This is fairly rare
    # in SQuAD, but does happen.
    tok_answer_text = " ".join(tokenizer.tokenize(orig_answer_text))

    for new_start in range(input_start, input_end + 1):
        for new_end in range(input_end, new_start - 1, -1):
            text_span = " ".join(doc_tokens[new_start:(new_end + 1)])
            if text_span == tok_answer_text:
                return (new_start, new_end)

    return (input_start, input_end)
thomwolf's avatar
thomwolf committed
401
402
403


def _check_is_max_context(doc_spans, cur_span_index, position):
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
    """Check if this is the 'max context' doc span for the token."""

    # Because of the sliding window approach taken to scoring documents, a single
    # token can appear in multiple documents. E.g.
    #  Doc: the man went to the store and bought a gallon of milk
    #  Span A: the man went to the
    #  Span B: to the store and bought
    #  Span C: and bought a gallon of
    #  ...
    #
    # Now the word 'bought' will have two scores from spans B and C. We only
    # want to consider the score with "maximum context", which we define as
    # the *minimum* of its left and right context (the *sum* of left and
    # right context will always be the same, of course).
    #
    # In the example the maximum context for 'bought' would be span C since
    # it has 1 left context and 3 right context, while span B has 4 left context
    # and 0 right context.
    best_score = None
    best_span_index = None
    for (span_index, doc_span) in enumerate(doc_spans):
        end = doc_span.start + doc_span.length - 1
        if position < doc_span.start:
            continue
        if position > end:
            continue
        num_left_context = position - doc_span.start
        num_right_context = end - position
        score = min(num_left_context, num_right_context) + 0.01 * doc_span.length
        if best_score is None or score > best_score:
            best_score = score
            best_span_index = span_index

    return cur_span_index == best_span_index
thomwolf's avatar
thomwolf committed
438
439
440
441
442
443
444
445


RawResult = collections.namedtuple("RawResult",
                                   ["unique_id", "start_logits", "end_logits"])


def write_predictions(all_examples, all_features, all_results, n_best_size,
                      max_answer_length, do_lower_case, output_prediction_file,
thomwolf's avatar
thomwolf committed
446
447
448
                      output_nbest_file, output_null_log_odds_file, verbose_logging,
                      version_2_with_negative, null_score_diff_threshold):
    """Write final predictions to the json file and log-odds of null if needed."""
449
450
    logger.info("Writing predictions to: %s" % (output_prediction_file))
    logger.info("Writing nbest to: %s" % (output_nbest_file))
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465

    example_index_to_features = collections.defaultdict(list)
    for feature in all_features:
        example_index_to_features[feature.example_index].append(feature)

    unique_id_to_result = {}
    for result in all_results:
        unique_id_to_result[result.unique_id] = result

    _PrelimPrediction = collections.namedtuple(  # pylint: disable=invalid-name
        "PrelimPrediction",
        ["feature_index", "start_index", "end_index", "start_logit", "end_logit"])

    all_predictions = collections.OrderedDict()
    all_nbest_json = collections.OrderedDict()
thomwolf's avatar
thomwolf committed
466
467
    scores_diff_json = collections.OrderedDict()

468
469
470
471
    for (example_index, example) in enumerate(all_examples):
        features = example_index_to_features[example_index]

        prelim_predictions = []
thomwolf's avatar
thomwolf committed
472
473
        # keep track of the minimum score of null start+end of position 0
        score_null = 1000000  # large and positive
Yongbo Wang's avatar
typo  
Yongbo Wang committed
474
        min_null_feature_index = 0  # the paragraph slice with min null score
thomwolf's avatar
thomwolf committed
475
476
        null_start_logit = 0  # the start logit at the slice with min null score
        null_end_logit = 0  # the end logit at the slice with min null score
477
478
479
480
        for (feature_index, feature) in enumerate(features):
            result = unique_id_to_result[feature.unique_id]
            start_indexes = _get_best_indexes(result.start_logits, n_best_size)
            end_indexes = _get_best_indexes(result.end_logits, n_best_size)
thomwolf's avatar
thomwolf committed
481
482
483
484
485
486
487
488
            # if we could have irrelevant answers, get the min score of irrelevant
            if version_2_with_negative:
                feature_null_score = result.start_logits[0] + result.end_logits[0]
                if feature_null_score < score_null:
                    score_null = feature_null_score
                    min_null_feature_index = feature_index
                    null_start_logit = result.start_logits[0]
                    null_end_logit = result.end_logits[0]
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
            for start_index in start_indexes:
                for end_index in end_indexes:
                    # We could hypothetically create invalid predictions, e.g., predict
                    # that the start of the span is in the question. We throw out all
                    # invalid predictions.
                    if start_index >= len(feature.tokens):
                        continue
                    if end_index >= len(feature.tokens):
                        continue
                    if start_index not in feature.token_to_orig_map:
                        continue
                    if end_index not in feature.token_to_orig_map:
                        continue
                    if not feature.token_is_max_context.get(start_index, False):
                        continue
                    if end_index < start_index:
                        continue
                    length = end_index - start_index + 1
                    if length > max_answer_length:
                        continue
                    prelim_predictions.append(
                        _PrelimPrediction(
                            feature_index=feature_index,
                            start_index=start_index,
                            end_index=end_index,
                            start_logit=result.start_logits[start_index],
                            end_logit=result.end_logits[end_index]))
thomwolf's avatar
thomwolf committed
516
517
518
519
520
521
522
523
        if version_2_with_negative:
            prelim_predictions.append(
                _PrelimPrediction(
                    feature_index=min_null_feature_index,
                    start_index=0,
                    end_index=0,
                    start_logit=null_start_logit,
                    end_logit=null_end_logit))
524
525
526
527
528
529
530
531
532
533
534
535
536
537
        prelim_predictions = sorted(
            prelim_predictions,
            key=lambda x: (x.start_logit + x.end_logit),
            reverse=True)

        _NbestPrediction = collections.namedtuple(  # pylint: disable=invalid-name
            "NbestPrediction", ["text", "start_logit", "end_logit"])

        seen_predictions = {}
        nbest = []
        for pred in prelim_predictions:
            if len(nbest) >= n_best_size:
                break
            feature = features[pred.feature_index]
thomwolf's avatar
thomwolf committed
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
            if pred.start_index > 0:  # this is a non-null prediction
                tok_tokens = feature.tokens[pred.start_index:(pred.end_index + 1)]
                orig_doc_start = feature.token_to_orig_map[pred.start_index]
                orig_doc_end = feature.token_to_orig_map[pred.end_index]
                orig_tokens = example.doc_tokens[orig_doc_start:(orig_doc_end + 1)]
                tok_text = " ".join(tok_tokens)

                # De-tokenize WordPieces that have been split off.
                tok_text = tok_text.replace(" ##", "")
                tok_text = tok_text.replace("##", "")

                # Clean whitespace
                tok_text = tok_text.strip()
                tok_text = " ".join(tok_text.split())
                orig_text = " ".join(orig_tokens)

                final_text = get_final_text(tok_text, orig_text, do_lower_case, verbose_logging)
                if final_text in seen_predictions:
                    continue
557

thomwolf's avatar
thomwolf committed
558
559
560
561
                seen_predictions[final_text] = True
            else:
                final_text = ""
                seen_predictions[final_text] = True
562
563
564
565
566
567

            nbest.append(
                _NbestPrediction(
                    text=final_text,
                    start_logit=pred.start_logit,
                    end_logit=pred.end_logit))
thomwolf's avatar
thomwolf committed
568
569
570
571
572
573
574
575
        # if we didn't include the empty option in the n-best, include it
        if version_2_with_negative:
            if "" not in seen_predictions:
                nbest.append(
                    _NbestPrediction(
                        text="",
                        start_logit=null_start_logit,
                        end_logit=null_end_logit))
576
577
578
579
580
581
582
                
            # In very rare edge cases we could only have single null prediction.
            # So we just create a nonce prediction in this case to avoid failure.
            if len(nbest)==1:
                nbest.insert(0,
                    _NbestPrediction(text="empty", start_logit=0.0, end_logit=0.0))
                
583
584
585
586
587
588
589
590
591
        # In very rare edge cases we could have no valid predictions. So we
        # just create a nonce prediction in this case to avoid failure.
        if not nbest:
            nbest.append(
                _NbestPrediction(text="empty", start_logit=0.0, end_logit=0.0))

        assert len(nbest) >= 1

        total_scores = []
thomwolf's avatar
thomwolf committed
592
        best_non_null_entry = None
593
594
        for entry in nbest:
            total_scores.append(entry.start_logit + entry.end_logit)
thomwolf's avatar
thomwolf committed
595
596
597
            if not best_non_null_entry:
                if entry.text:
                    best_non_null_entry = entry
598
599
600
601
602
603
604
605
606
607
608
609
610
611

        probs = _compute_softmax(total_scores)

        nbest_json = []
        for (i, entry) in enumerate(nbest):
            output = collections.OrderedDict()
            output["text"] = entry.text
            output["probability"] = probs[i]
            output["start_logit"] = entry.start_logit
            output["end_logit"] = entry.end_logit
            nbest_json.append(output)

        assert len(nbest_json) >= 1

thomwolf's avatar
thomwolf committed
612
613
614
615
616
617
618
619
620
621
622
        if not version_2_with_negative:
            all_predictions[example.qas_id] = nbest_json[0]["text"]
        else:
            # predict "" iff the null score - the score of best non-null > threshold
            score_diff = score_null - best_non_null_entry.start_logit - (
                best_non_null_entry.end_logit)
            scores_diff_json[example.qas_id] = score_diff
            if score_diff > null_score_diff_threshold:
                all_predictions[example.qas_id] = ""
            else:
                all_predictions[example.qas_id] = best_non_null_entry.text
623
            all_nbest_json[example.qas_id] = nbest_json
624

625
    with open(output_prediction_file, "w") as writer:
626
627
        writer.write(json.dumps(all_predictions, indent=4) + "\n")

628
    with open(output_nbest_file, "w") as writer:
629
        writer.write(json.dumps(all_nbest_json, indent=4) + "\n")
thomwolf's avatar
thomwolf committed
630

thomwolf's avatar
thomwolf committed
631
632
633
634
    if version_2_with_negative:
        with open(output_null_log_odds_file, "w") as writer:
            writer.write(json.dumps(scores_diff_json, indent=4) + "\n")

thomwolf's avatar
thomwolf committed
635

thomwolf's avatar
thomwolf committed
636
def get_final_text(pred_text, orig_text, do_lower_case, verbose_logging=False):
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
    """Project the tokenized prediction back to the original text."""

    # When we created the data, we kept track of the alignment between original
    # (whitespace tokenized) tokens and our WordPiece tokenized tokens. So
    # now `orig_text` contains the span of our original text corresponding to the
    # span that we predicted.
    #
    # However, `orig_text` may contain extra characters that we don't want in
    # our prediction.
    #
    # For example, let's say:
    #   pred_text = steve smith
    #   orig_text = Steve Smith's
    #
    # We don't want to return `orig_text` because it contains the extra "'s".
    #
    # We don't want to return `pred_text` because it's already been normalized
    # (the SQuAD eval script also does punctuation stripping/lower casing but
    # our tokenizer does additional normalization like stripping accent
    # characters).
    #
    # What we really want to return is "Steve Smith".
    #
    # Therefore, we have to apply a semi-complicated alignment heruistic between
    # `pred_text` and `orig_text` to get a character-to-charcter alignment. This
    # can fail in certain cases in which case we just return `orig_text`.

    def _strip_spaces(text):
        ns_chars = []
        ns_to_s_map = collections.OrderedDict()
        for (i, c) in enumerate(text):
            if c == " ":
                continue
            ns_to_s_map[len(ns_chars)] = i
            ns_chars.append(c)
        ns_text = "".join(ns_chars)
        return (ns_text, ns_to_s_map)

    # We first tokenize `orig_text`, strip whitespace from the result
    # and `pred_text`, and check if they are the same length. If they are
    # NOT the same length, the heuristic has failed. If they are the same
    # length, we assume the characters are one-to-one aligned.
thomwolf's avatar
thomwolf committed
679
    tokenizer = BasicTokenizer(do_lower_case=do_lower_case)
680
681
682
683
684

    tok_text = " ".join(tokenizer.tokenize(orig_text))

    start_position = tok_text.find(pred_text)
    if start_position == -1:
thomwolf's avatar
thomwolf committed
685
        if verbose_logging:
686
            logger.info(
687
688
689
690
691
692
693
694
                "Unable to find text: '%s' in '%s'" % (pred_text, orig_text))
        return orig_text
    end_position = start_position + len(pred_text) - 1

    (orig_ns_text, orig_ns_to_s_map) = _strip_spaces(orig_text)
    (tok_ns_text, tok_ns_to_s_map) = _strip_spaces(tok_text)

    if len(orig_ns_text) != len(tok_ns_text):
thomwolf's avatar
thomwolf committed
695
        if verbose_logging:
696
            logger.info("Length not equal after stripping spaces: '%s' vs '%s'",
thomwolf's avatar
thomwolf committed
697
                        orig_ns_text, tok_ns_text)
698
699
700
701
702
        return orig_text

    # We then project the characters in `pred_text` back to `orig_text` using
    # the character-to-character alignment.
    tok_s_to_ns_map = {}
thomwolf's avatar
thomwolf committed
703
    for (i, tok_index) in tok_ns_to_s_map.items():
704
705
706
707
708
709
710
711
712
        tok_s_to_ns_map[tok_index] = i

    orig_start_position = None
    if start_position in tok_s_to_ns_map:
        ns_start_position = tok_s_to_ns_map[start_position]
        if ns_start_position in orig_ns_to_s_map:
            orig_start_position = orig_ns_to_s_map[ns_start_position]

    if orig_start_position is None:
thomwolf's avatar
thomwolf committed
713
        if verbose_logging:
714
            logger.info("Couldn't map start position")
715
716
717
718
719
720
721
722
723
        return orig_text

    orig_end_position = None
    if end_position in tok_s_to_ns_map:
        ns_end_position = tok_s_to_ns_map[end_position]
        if ns_end_position in orig_ns_to_s_map:
            orig_end_position = orig_ns_to_s_map[ns_end_position]

    if orig_end_position is None:
thomwolf's avatar
thomwolf committed
724
        if verbose_logging:
725
            logger.info("Couldn't map end position")
726
727
728
729
        return orig_text

    output_text = orig_text[orig_start_position:(orig_end_position + 1)]
    return output_text
thomwolf's avatar
thomwolf committed
730
731
732


def _get_best_indexes(logits, n_best_size):
733
734
    """Get the n-best logits from a list."""
    index_and_score = sorted(enumerate(logits), key=lambda x: x[1], reverse=True)
thomwolf's avatar
thomwolf committed
735

736
737
738
739
740
741
    best_indexes = []
    for i in range(len(index_and_score)):
        if i >= n_best_size:
            break
        best_indexes.append(index_and_score[i][0])
    return best_indexes
thomwolf's avatar
thomwolf committed
742
743
744


def _compute_softmax(scores):
745
746
747
    """Compute softmax probability over raw logits."""
    if not scores:
        return []
thomwolf's avatar
thomwolf committed
748

749
750
751
752
    max_score = None
    for score in scores:
        if max_score is None or score > max_score:
            max_score = score
thomwolf's avatar
thomwolf committed
753

754
755
756
757
758
759
    exp_scores = []
    total_sum = 0.0
    for score in scores:
        x = math.exp(score - max_score)
        exp_scores.append(x)
        total_sum += x
thomwolf's avatar
thomwolf committed
760

761
762
763
764
    probs = []
    for score in exp_scores:
        probs.append(score / total_sum)
    return probs
thomwolf's avatar
thomwolf committed
765

766
767
768
769
def main():
    parser = argparse.ArgumentParser()

    ## Required parameters
thomwolf's avatar
thomwolf committed
770
771
    parser.add_argument("--bert_model", default=None, type=str, required=True,
                        help="Bert pre-trained model selected in the list: bert-base-uncased, "
772
773
                        "bert-large-uncased, bert-base-cased, bert-large-cased, bert-base-multilingual-uncased, "
                        "bert-base-multilingual-cased, bert-base-chinese.")
774
    parser.add_argument("--output_dir", default=None, type=str, required=True,
775
                        help="The output directory where the model checkpoints and predictions will be written.")
776
777
778
779
780
781
782
783
784
785
786
787
788

    ## Other parameters
    parser.add_argument("--train_file", default=None, type=str, help="SQuAD json for training. E.g., train-v1.1.json")
    parser.add_argument("--predict_file", default=None, type=str,
                        help="SQuAD json for predictions. E.g., dev-v1.1.json or test-v1.1.json")
    parser.add_argument("--max_seq_length", default=384, type=int,
                        help="The maximum total input sequence length after WordPiece tokenization. Sequences "
                             "longer than this will be truncated, and sequences shorter than this will be padded.")
    parser.add_argument("--doc_stride", default=128, type=int,
                        help="When splitting up a long document into chunks, how much stride to take between chunks.")
    parser.add_argument("--max_query_length", default=64, type=int,
                        help="The maximum number of tokens for the question. Questions longer than this will "
                             "be truncated to this length.")
789
790
    parser.add_argument("--do_train", action='store_true', help="Whether to run training.")
    parser.add_argument("--do_predict", action='store_true', help="Whether to run eval on the dev set.")
791
792
793
794
795
796
    parser.add_argument("--train_batch_size", default=32, type=int, help="Total batch size for training.")
    parser.add_argument("--predict_batch_size", default=8, type=int, help="Total batch size for predictions.")
    parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.")
    parser.add_argument("--num_train_epochs", default=3.0, type=float,
                        help="Total number of training epochs to perform.")
    parser.add_argument("--warmup_proportion", default=0.1, type=float,
thomwolf's avatar
thomwolf committed
797
                        help="Proportion of training to perform linear learning rate warmup for. E.g., 0.1 = 10%% "
798
799
800
801
802
803
804
                             "of training.")
    parser.add_argument("--n_best_size", default=20, type=int,
                        help="The total number of n-best predictions to generate in the nbest_predictions.json "
                             "output file.")
    parser.add_argument("--max_answer_length", default=30, type=int,
                        help="The maximum length of an answer that can be generated. This is needed because the start "
                             "and end predictions are not conditioned on one another.")
805
    parser.add_argument("--verbose_logging", action='store_true',
806
807
808
809
810
                        help="If true, all of the warnings related to data processing will be printed. "
                             "A number of warnings are expected for a normal SQuAD evaluation.")
    parser.add_argument("--no_cuda",
                        action='store_true',
                        help="Whether not to use CUDA when available")
811
812
    parser.add_argument('--seed',
                        type=int,
thomwolf's avatar
thomwolf committed
813
814
                        default=42,
                        help="random seed for initialization")
815
816
817
    parser.add_argument('--gradient_accumulation_steps',
                        type=int,
                        default=1,
818
                        help="Number of updates steps to accumulate before performing a backward/update pass.")
819
820
821
    parser.add_argument("--do_lower_case",
                        action='store_true',
                        help="Whether to lower case the input text. True for uncased models, False for cased models.")
822
823
824
825
    parser.add_argument("--local_rank",
                        type=int,
                        default=-1,
                        help="local_rank for distributed training on gpus")
826
827
828
    parser.add_argument('--fp16',
                        action='store_true',
                        help="Whether to use 16-bit float precision instead of 32-bit")
thomwolf's avatar
thomwolf committed
829
    parser.add_argument('--loss_scale',
830
831
832
833
                        type=float, default=0,
                        help="Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n"
                             "0 (default value): dynamic loss scaling.\n"
                             "Positive power of 2: static loss scaling value.\n")
thomwolf's avatar
thomwolf committed
834
835
836
837
838
839
    parser.add_argument('--version_2_with_negative',
                        action='store_true',
                        help='If true, the SQuAD examples contain some that do not have an answer.')
    parser.add_argument('--null_score_diff_threshold',
                        type=float, default=0.0,
                        help="If null_score - best_non_null is greater than the threshold predict null.")
840
841
842
843
844
845
    args = parser.parse_args()

    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
        n_gpu = torch.cuda.device_count()
    else:
846
        torch.cuda.set_device(args.local_rank)
847
848
        device = torch.device("cuda", args.local_rank)
        n_gpu = 1
thomwolf's avatar
thomwolf committed
849
850
        # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.distributed.init_process_group(backend='nccl')
851
    logger.info("device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}".format(
thomwolf's avatar
thomwolf committed
852
        device, n_gpu, bool(args.local_rank != -1), args.fp16))
thomwolf's avatar
thomwolf committed
853

854
855
856
    if args.gradient_accumulation_steps < 1:
        raise ValueError("Invalid gradient_accumulation_steps parameter: {}, should be >= 1".format(
                            args.gradient_accumulation_steps))
thomwolf's avatar
thomwolf committed
857

858
    args.train_batch_size = args.train_batch_size // args.gradient_accumulation_steps
859
860
861
862

    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
thomwolf's avatar
thomwolf committed
863
864
    if n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)
865
866

    if not args.do_train and not args.do_predict:
867
868
        raise ValueError("At least one of `do_train` or `do_predict` must be True.")

869
870
    if args.do_train:
        if not args.train_file:
871
872
            raise ValueError(
                "If `do_train` is True, then `train_file` must be specified.")
873
874
    if args.do_predict:
        if not args.predict_file:
875
876
877
            raise ValueError(
                "If `do_predict` is True, then `predict_file` must be specified.")

878
    if os.path.exists(args.output_dir) and os.listdir(args.output_dir) and args.do_train:
879
        raise ValueError("Output directory () already exists and is not empty.")
thomwolf's avatar
thomwolf committed
880
881
    if not os.path.exists(args.output_dir):
        os.makedirs(args.output_dir)
882

883
    tokenizer = BertTokenizer.from_pretrained(args.bert_model, do_lower_case=args.do_lower_case)
884
885

    train_examples = None
886
    num_train_optimization_steps = None
887
    if args.do_train:
888
        train_examples = read_squad_examples(
thomwolf's avatar
thomwolf committed
889
            input_file=args.train_file, is_training=True, version_2_with_negative=args.version_2_with_negative)
890
        num_train_optimization_steps = int(
thomwolf's avatar
thomwolf committed
891
            len(train_examples) / args.train_batch_size / args.gradient_accumulation_steps) * args.num_train_epochs
892
893
        if args.local_rank != -1:
            num_train_optimization_steps = num_train_optimization_steps // torch.distributed.get_world_size()
894

thomwolf's avatar
thomwolf committed
895
    # Prepare model
896
    model = BertForQuestionAnswering.from_pretrained(args.bert_model,
897
                cache_dir=os.path.join(str(PYTORCH_PRETRAINED_BERT_CACHE), 'distributed_{}'.format(args.local_rank)))
898

899
900
    if args.fp16:
        model.half()
901
902
    model.to(device)
    if args.local_rank != -1:
thomwolf's avatar
thomwolf committed
903
904
905
906
907
        try:
            from apex.parallel import DistributedDataParallel as DDP
        except ImportError:
            raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training.")

908
        model = DDP(model)
909
910
911
    elif n_gpu > 1:
        model = torch.nn.DataParallel(model)

thomwolf's avatar
thomwolf committed
912
    # Prepare optimizer
913
914
915
916
917
918
919
    param_optimizer = list(model.named_parameters())

    # hack to remove pooler, which is not used
    # thus it produce None grad that break apex
    param_optimizer = [n for n in param_optimizer if 'pooler' not in n[0]]

    no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
thomwolf's avatar
thomwolf committed
920
    optimizer_grouped_parameters = [
921
922
        {'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01},
        {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
thomwolf's avatar
thomwolf committed
923
        ]
924
925

    if args.fp16:
thomwolf's avatar
thomwolf committed
926
        try:
thomwolf's avatar
thomwolf committed
927
            from apex.optimizers import FP16_Optimizer
thomwolf's avatar
thomwolf committed
928
929
930
931
            from apex.optimizers import FusedAdam
        except ImportError:
            raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training.")

932
933
934
935
936
937
938
939
940
941
942
943
        optimizer = FusedAdam(optimizer_grouped_parameters,
                              lr=args.learning_rate,
                              bias_correction=False,
                              max_grad_norm=1.0)
        if args.loss_scale == 0:
            optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True)
        else:
            optimizer = FP16_Optimizer(optimizer, static_loss_scale=args.loss_scale)
    else:
        optimizer = BertAdam(optimizer_grouped_parameters,
                             lr=args.learning_rate,
                             warmup=args.warmup_proportion,
944
                             t_total=num_train_optimization_steps)
thomwolf's avatar
thomwolf committed
945

946
947
    global_step = 0
    if args.do_train:
948
        cached_train_features_file = args.train_file+'_{0}_{1}_{2}_{3}'.format(
949
            list(filter(None, args.bert_model.split('/'))).pop(), str(args.max_seq_length), str(args.doc_stride), str(args.max_query_length))
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
        train_features = None
        try:
            with open(cached_train_features_file, "rb") as reader:
                train_features = pickle.load(reader)
        except:
            train_features = convert_examples_to_features(
                examples=train_examples,
                tokenizer=tokenizer,
                max_seq_length=args.max_seq_length,
                doc_stride=args.doc_stride,
                max_query_length=args.max_query_length,
                is_training=True)
            if args.local_rank == -1 or torch.distributed.get_rank() == 0:
                logger.info("  Saving train features into cached file %s", cached_train_features_file)
                with open(cached_train_features_file, "wb") as writer:
965
                    pickle.dump(train_features, writer)
966
967
968
969
        logger.info("***** Running training *****")
        logger.info("  Num orig examples = %d", len(train_examples))
        logger.info("  Num split examples = %d", len(train_features))
        logger.info("  Batch size = %d", args.train_batch_size)
970
        logger.info("  Num steps = %d", num_train_optimization_steps)
971
972
973
974
975
        all_input_ids = torch.tensor([f.input_ids for f in train_features], dtype=torch.long)
        all_input_mask = torch.tensor([f.input_mask for f in train_features], dtype=torch.long)
        all_segment_ids = torch.tensor([f.segment_ids for f in train_features], dtype=torch.long)
        all_start_positions = torch.tensor([f.start_position for f in train_features], dtype=torch.long)
        all_end_positions = torch.tensor([f.end_position for f in train_features], dtype=torch.long)
thomwolf's avatar
thomwolf committed
976
977
        train_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids,
                                   all_start_positions, all_end_positions)
978
979
980
981
982
983
984
        if args.local_rank == -1:
            train_sampler = RandomSampler(train_data)
        else:
            train_sampler = DistributedSampler(train_data)
        train_dataloader = DataLoader(train_data, sampler=train_sampler, batch_size=args.train_batch_size)

        model.train()
985
        for _ in trange(int(args.num_train_epochs), desc="Epoch"):
thomwolf's avatar
thomwolf committed
986
            for step, batch in enumerate(tqdm(train_dataloader, desc="Iteration")):
thomwolf's avatar
thomwolf committed
987
988
                if n_gpu == 1:
                    batch = tuple(t.to(device) for t in batch) # multi-gpu does scattering it-self
thomwolf's avatar
thomwolf committed
989
                input_ids, input_mask, segment_ids, start_positions, end_positions = batch
990
                loss = model(input_ids, segment_ids, input_mask, start_positions, end_positions)
thomwolf's avatar
thomwolf committed
991
992
                if n_gpu > 1:
                    loss = loss.mean() # mean() to average on multi-gpu.
993
994
                if args.gradient_accumulation_steps > 1:
                    loss = loss / args.gradient_accumulation_steps
995
996
997
998
999

                if args.fp16:
                    optimizer.backward(loss)
                else:
                    loss.backward()
thomwolf's avatar
thomwolf committed
1000
                if (step + 1) % args.gradient_accumulation_steps == 0:
1001
1002
                    if args.fp16:
                        # modify learning rate with special warm up BERT uses
thomwolf's avatar
thomwolf committed
1003
                        # if args.fp16 is False, BertAdam is used and handles this automatically
1004
                        lr_this_step = args.learning_rate * warmup_linear(global_step/num_train_optimization_steps, args.warmup_proportion)
1005
1006
                        for param_group in optimizer.param_groups:
                            param_group['lr'] = lr_this_step
1007
1008
                    optimizer.step()
                    optimizer.zero_grad()
thomwolf's avatar
thomwolf committed
1009
                    global_step += 1
1010

1011
    if args.do_train:
1012
1013
1014
        # Save a trained model and the associated configuration
        model_to_save = model.module if hasattr(model, 'module') else model  # Only save the model it-self
        output_model_file = os.path.join(args.output_dir, WEIGHTS_NAME)
1015
        torch.save(model_to_save.state_dict(), output_model_file)
1016
1017
1018
1019
1020
1021
1022
1023
        output_config_file = os.path.join(args.output_dir, CONFIG_NAME)
        with open(output_config_file, 'w') as f:
            f.write(model_to_save.config.to_json_string())

        # Load a trained model and config that you have fine-tuned
        config = BertConfig(output_config_file)
        model = BertForQuestionAnswering(config)
        model.load_state_dict(torch.load(output_model_file))
1024
1025
    else:
        model = BertForQuestionAnswering.from_pretrained(args.bert_model)
1026

1027
    model.to(device)
1028

1029
    if args.do_predict and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
1030
        eval_examples = read_squad_examples(
thomwolf's avatar
thomwolf committed
1031
            input_file=args.predict_file, is_training=False, version_2_with_negative=args.version_2_with_negative)
1032
1033
1034
        eval_features = convert_examples_to_features(
            examples=eval_examples,
            tokenizer=tokenizer,
1035
1036
1037
            max_seq_length=args.max_seq_length,
            doc_stride=args.doc_stride,
            max_query_length=args.max_query_length,
1038
1039
            is_training=False)

1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
        logger.info("***** Running predictions *****")
        logger.info("  Num orig examples = %d", len(eval_examples))
        logger.info("  Num split examples = %d", len(eval_features))
        logger.info("  Batch size = %d", args.predict_batch_size)

        all_input_ids = torch.tensor([f.input_ids for f in eval_features], dtype=torch.long)
        all_input_mask = torch.tensor([f.input_mask for f in eval_features], dtype=torch.long)
        all_segment_ids = torch.tensor([f.segment_ids for f in eval_features], dtype=torch.long)
        all_example_index = torch.arange(all_input_ids.size(0), dtype=torch.long)
        eval_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_example_index)
1050
1051
        # Run prediction for full data
        eval_sampler = SequentialSampler(eval_data)
1052
        eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.predict_batch_size)
1053

1054
        model.eval()
1055
        all_results = []
thomwolf's avatar
thomwolf committed
1056
        logger.info("Start evaluating")
1057
        for input_ids, input_mask, segment_ids, example_indices in tqdm(eval_dataloader, desc="Evaluating"):
1058
            if len(all_results) % 1000 == 0:
1059
1060
                logger.info("Processing example: %d" % (len(all_results)))
            input_ids = input_ids.to(device)
thomwolf's avatar
thomwolf committed
1061
            input_mask = input_mask.to(device)
1062
            segment_ids = segment_ids.to(device)
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
            with torch.no_grad():
                batch_start_logits, batch_end_logits = model(input_ids, segment_ids, input_mask)
            for i, example_index in enumerate(example_indices):
                start_logits = batch_start_logits[i].detach().cpu().tolist()
                end_logits = batch_end_logits[i].detach().cpu().tolist()
                eval_feature = eval_features[example_index.item()]
                unique_id = int(eval_feature.unique_id)
                all_results.append(RawResult(unique_id=unique_id,
                                             start_logits=start_logits,
                                             end_logits=end_logits))
1073
1074
        output_prediction_file = os.path.join(args.output_dir, "predictions.json")
        output_nbest_file = os.path.join(args.output_dir, "nbest_predictions.json")
thomwolf's avatar
thomwolf committed
1075
        output_null_log_odds_file = os.path.join(args.output_dir, "null_odds.json")
1076
        write_predictions(eval_examples, eval_features, all_results,
1077
1078
                          args.n_best_size, args.max_answer_length,
                          args.do_lower_case, output_prediction_file,
thomwolf's avatar
thomwolf committed
1079
1080
                          output_nbest_file, output_null_log_odds_file, args.verbose_logging,
                          args.version_2_with_negative, args.null_score_diff_threshold)
thomwolf's avatar
thomwolf committed
1081
1082
1083


if __name__ == "__main__":
1084
    main()