run_qa.py 30.8 KB
Newer Older
1
#!/usr/bin/env python
Sylvain Gugger's avatar
Sylvain Gugger committed
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# coding=utf-8
# Copyright 2020 The HuggingFace Team All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
17
Fine-tuning the library models for question answering using a slightly adapted version of the 馃 Trainer.
Sylvain Gugger's avatar
Sylvain Gugger committed
18
19
20
21
22
23
24
25
26
"""
# You can also adapt this script on your own question answering task. Pointers for this are left as comments.

import logging
import os
import sys
from dataclasses import dataclass, field
from typing import Optional

27
import datasets
Sylvain Gugger's avatar
Sylvain Gugger committed
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
from datasets import load_dataset, load_metric

import transformers
from trainer_qa import QuestionAnsweringTrainer
from transformers import (
    AutoConfig,
    AutoModelForQuestionAnswering,
    AutoTokenizer,
    DataCollatorWithPadding,
    EvalPrediction,
    HfArgumentParser,
    PreTrainedTokenizerFast,
    TrainingArguments,
    default_data_collator,
    set_seed,
)
44
from transformers.trainer_utils import get_last_checkpoint
45
from transformers.utils import check_min_version, send_example_telemetry
46
from transformers.utils.versions import require_version
Sylvain Gugger's avatar
Sylvain Gugger committed
47
48
49
from utils_qa import postprocess_qa_predictions


50
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
Lysandre Debut's avatar
Lysandre Debut committed
51
check_min_version("4.20.0.dev0")
Sylvain Gugger's avatar
Sylvain Gugger committed
52

53
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/question-answering/requirements.txt")
54

Sylvain Gugger's avatar
Sylvain Gugger committed
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
logger = logging.getLogger(__name__)


@dataclass
class ModelArguments:
    """
    Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
    """

    model_name_or_path: str = field(
        metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
    )
    config_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
    )
    tokenizer_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
    )
    cache_dir: Optional[str] = field(
        default=None,
        metadata={"help": "Path to directory to store the pretrained models downloaded from huggingface.co"},
    )
77
78
79
80
81
82
83
    model_revision: str = field(
        default="main",
        metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
    )
    use_auth_token: bool = field(
        default=False,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
84
85
86
87
            "help": (
                "Will use the token generated when running `transformers-cli login` (necessary to use this script "
                "with private models)."
            )
88
89
        },
    )
Sylvain Gugger's avatar
Sylvain Gugger committed
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108


@dataclass
class DataTrainingArguments:
    """
    Arguments pertaining to what data we are going to input our model for training and eval.
    """

    dataset_name: Optional[str] = field(
        default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
    )
    dataset_config_name: Optional[str] = field(
        default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
    )
    train_file: Optional[str] = field(default=None, metadata={"help": "The input training data file (a text file)."})
    validation_file: Optional[str] = field(
        default=None,
        metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."},
    )
109
110
111
112
    test_file: Optional[str] = field(
        default=None,
        metadata={"help": "An optional input test data file to evaluate the perplexity on (a text file)."},
    )
Sylvain Gugger's avatar
Sylvain Gugger committed
113
114
115
116
117
118
119
120
121
122
    overwrite_cache: bool = field(
        default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
    )
    preprocessing_num_workers: Optional[int] = field(
        default=None,
        metadata={"help": "The number of processes to use for the preprocessing."},
    )
    max_seq_length: int = field(
        default=384,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
123
124
125
126
            "help": (
                "The maximum total input sequence length after tokenization. Sequences longer "
                "than this will be truncated, sequences shorter will be padded."
            )
Sylvain Gugger's avatar
Sylvain Gugger committed
127
128
129
130
131
        },
    )
    pad_to_max_length: bool = field(
        default=True,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
132
133
134
135
            "help": (
                "Whether to pad all samples to `max_seq_length`. If False, will pad the samples dynamically when"
                " batching to the maximum length in the batch (which can be faster on GPU but will be slower on TPU)."
            )
Sylvain Gugger's avatar
Sylvain Gugger committed
136
137
        },
    )
138
139
140
    max_train_samples: Optional[int] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
141
142
143
144
            "help": (
                "For debugging purposes or quicker training, truncate the number of training examples to this "
                "value if set."
            )
145
146
        },
    )
147
    max_eval_samples: Optional[int] = field(
148
149
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
150
151
152
153
            "help": (
                "For debugging purposes or quicker training, truncate the number of evaluation examples to this "
                "value if set."
            )
154
155
        },
    )
156
    max_predict_samples: Optional[int] = field(
157
158
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
159
160
161
162
            "help": (
                "For debugging purposes or quicker training, truncate the number of prediction examples to this "
                "value if set."
            )
163
164
        },
    )
Sylvain Gugger's avatar
Sylvain Gugger committed
165
166
167
168
169
170
    version_2_with_negative: bool = field(
        default=False, metadata={"help": "If true, some of the examples do not have an answer."}
    )
    null_score_diff_threshold: float = field(
        default=0.0,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
171
172
173
174
175
            "help": (
                "The threshold used to select the null answer: if the best answer has a score that is less than "
                "the score of the null answer minus this threshold, the null answer is selected for this example. "
                "Only useful when `version_2_with_negative=True`."
            )
Sylvain Gugger's avatar
Sylvain Gugger committed
176
177
178
179
180
181
182
183
184
185
186
187
188
        },
    )
    doc_stride: int = field(
        default=128,
        metadata={"help": "When splitting up a long document into chunks, how much stride to take between chunks."},
    )
    n_best_size: int = field(
        default=20,
        metadata={"help": "The total number of n-best predictions to generate when looking for an answer."},
    )
    max_answer_length: int = field(
        default=30,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
189
190
191
192
            "help": (
                "The maximum length of an answer that can be generated. This is needed because the start "
                "and end predictions are not conditioned on one another."
            )
Sylvain Gugger's avatar
Sylvain Gugger committed
193
194
195
196
        },
    )

    def __post_init__(self):
197
198
199
200
201
202
203
        if (
            self.dataset_name is None
            and self.train_file is None
            and self.validation_file is None
            and self.test_file is None
        ):
            raise ValueError("Need either a dataset name or a training/validation file/test_file.")
Sylvain Gugger's avatar
Sylvain Gugger committed
204
205
206
207
208
209
210
        else:
            if self.train_file is not None:
                extension = self.train_file.split(".")[-1]
                assert extension in ["csv", "json"], "`train_file` should be a csv or a json file."
            if self.validation_file is not None:
                extension = self.validation_file.split(".")[-1]
                assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file."
211
212
213
            if self.test_file is not None:
                extension = self.test_file.split(".")[-1]
                assert extension in ["csv", "json"], "`test_file` should be a csv or a json file."
Sylvain Gugger's avatar
Sylvain Gugger committed
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228


def main():
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

    parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args = parser.parse_args_into_dataclasses()

229
230
231
232
    # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
    # information sent is the one passed as arguments along with your Python/PyTorch versions.
    send_example_telemetry("run_qa", model_args, data_args)

Sylvain Gugger's avatar
Sylvain Gugger committed
233
234
    # Setup logging
    logging.basicConfig(
235
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
Sylvain Gugger's avatar
Sylvain Gugger committed
236
        datefmt="%m/%d/%Y %H:%M:%S",
237
        handlers=[logging.StreamHandler(sys.stdout)],
Sylvain Gugger's avatar
Sylvain Gugger committed
238
    )
239
240
241
242
243
244
245

    log_level = training_args.get_process_log_level()
    logger.setLevel(log_level)
    datasets.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.enable_default_handler()
    transformers.utils.logging.enable_explicit_format()
Sylvain Gugger's avatar
Sylvain Gugger committed
246
247
248
249
250
251

    # Log on each process the small summary:
    logger.warning(
        f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
        + f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
    )
252
    logger.info(f"Training/evaluation parameters {training_args}")
Sylvain Gugger's avatar
Sylvain Gugger committed
253

254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
    # Detecting last checkpoint.
    last_checkpoint = None
    if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
        last_checkpoint = get_last_checkpoint(training_args.output_dir)
        if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
            raise ValueError(
                f"Output directory ({training_args.output_dir}) already exists and is not empty. "
                "Use --overwrite_output_dir to overcome."
            )
        elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
            logger.info(
                f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
                "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
            )

Sylvain Gugger's avatar
Sylvain Gugger committed
269
270
271
272
273
274
275
276
277
278
279
280
281
282
    # Set seed before initializing model.
    set_seed(training_args.seed)

    # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
    # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
    # (the dataset will be downloaded automatically from the datasets Hub).
    #
    # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
    # 'text' is found. You can easily tweak this behavior (see below).
    #
    # In distributed training, the load_dataset function guarantee that only one local process can concurrently
    # download the dataset.
    if data_args.dataset_name is not None:
        # Downloading and loading a dataset from the hub.
283
        raw_datasets = load_dataset(
284
285
286
287
            data_args.dataset_name,
            data_args.dataset_config_name,
            cache_dir=model_args.cache_dir,
            use_auth_token=True if model_args.use_auth_token else None,
288
        )
Sylvain Gugger's avatar
Sylvain Gugger committed
289
290
291
292
    else:
        data_files = {}
        if data_args.train_file is not None:
            data_files["train"] = data_args.train_file
293
294
            extension = data_args.train_file.split(".")[-1]

Sylvain Gugger's avatar
Sylvain Gugger committed
295
296
        if data_args.validation_file is not None:
            data_files["validation"] = data_args.validation_file
297
            extension = data_args.validation_file.split(".")[-1]
298
299
300
        if data_args.test_file is not None:
            data_files["test"] = data_args.test_file
            extension = data_args.test_file.split(".")[-1]
301
302
303
304
305
306
307
        raw_datasets = load_dataset(
            extension,
            data_files=data_files,
            field="data",
            cache_dir=model_args.cache_dir,
            use_auth_token=True if model_args.use_auth_token else None,
        )
Sylvain Gugger's avatar
Sylvain Gugger committed
308
309
310
311
312
313
314
315
316
317
318
    # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
    # https://huggingface.co/docs/datasets/loading_datasets.html.

    # Load pretrained model and tokenizer
    #
    # Distributed training:
    # The .from_pretrained methods guarantee that only one local process can concurrently
    # download model & vocab.
    config = AutoConfig.from_pretrained(
        model_args.config_name if model_args.config_name else model_args.model_name_or_path,
        cache_dir=model_args.cache_dir,
319
320
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
Sylvain Gugger's avatar
Sylvain Gugger committed
321
322
323
324
325
    )
    tokenizer = AutoTokenizer.from_pretrained(
        model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
        cache_dir=model_args.cache_dir,
        use_fast=True,
326
327
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
Sylvain Gugger's avatar
Sylvain Gugger committed
328
329
330
331
332
333
    )
    model = AutoModelForQuestionAnswering.from_pretrained(
        model_args.model_name_or_path,
        from_tf=bool(".ckpt" in model_args.model_name_or_path),
        config=config,
        cache_dir=model_args.cache_dir,
334
335
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
Sylvain Gugger's avatar
Sylvain Gugger committed
336
337
338
339
340
    )

    # Tokenizer check: this script requires a fast tokenizer.
    if not isinstance(tokenizer, PreTrainedTokenizerFast):
        raise ValueError(
Sylvain Gugger's avatar
Sylvain Gugger committed
341
342
343
            "This example script only works for models that have a fast tokenizer. Checkout the big table of models at"
            " https://huggingface.co/transformers/index.html#supported-frameworks to find the model types that meet"
            " this requirement"
Sylvain Gugger's avatar
Sylvain Gugger committed
344
345
346
347
348
        )

    # Preprocessing the datasets.
    # Preprocessing is slighlty different for training and evaluation.
    if training_args.do_train:
349
        column_names = raw_datasets["train"].column_names
350
    elif training_args.do_eval:
351
        column_names = raw_datasets["validation"].column_names
352
    else:
353
        column_names = raw_datasets["test"].column_names
Sylvain Gugger's avatar
Sylvain Gugger committed
354
355
356
357
358
359
360
    question_column_name = "question" if "question" in column_names else column_names[0]
    context_column_name = "context" if "context" in column_names else column_names[1]
    answer_column_name = "answers" if "answers" in column_names else column_names[2]

    # Padding side determines if we do (question|context) or (context|question).
    pad_on_right = tokenizer.padding_side == "right"

361
    if data_args.max_seq_length > tokenizer.model_max_length:
362
        logger.warning(
363
364
365
366
367
            f"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the"
            f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}."
        )
    max_seq_length = min(data_args.max_seq_length, tokenizer.model_max_length)

Sylvain Gugger's avatar
Sylvain Gugger committed
368
369
    # Training preprocessing
    def prepare_train_features(examples):
370
371
372
373
374
        # Some of the questions have lots of whitespace on the left, which is not useful and will make the
        # truncation of the context fail (the tokenized question will take a lots of space). So we remove that
        # left whitespace
        examples[question_column_name] = [q.lstrip() for q in examples[question_column_name]]

Sylvain Gugger's avatar
Sylvain Gugger committed
375
376
377
378
379
380
381
        # Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results
        # in one example possible giving several features when a context is long, each of those features having a
        # context that overlaps a bit the context of the previous feature.
        tokenized_examples = tokenizer(
            examples[question_column_name if pad_on_right else context_column_name],
            examples[context_column_name if pad_on_right else question_column_name],
            truncation="only_second" if pad_on_right else "only_first",
382
            max_length=max_seq_length,
Sylvain Gugger's avatar
Sylvain Gugger committed
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
            stride=data_args.doc_stride,
            return_overflowing_tokens=True,
            return_offsets_mapping=True,
            padding="max_length" if data_args.pad_to_max_length else False,
        )

        # Since one example might give us several features if it has a long context, we need a map from a feature to
        # its corresponding example. This key gives us just that.
        sample_mapping = tokenized_examples.pop("overflow_to_sample_mapping")
        # The offset mappings will give us a map from token to character position in the original context. This will
        # help us compute the start_positions and end_positions.
        offset_mapping = tokenized_examples.pop("offset_mapping")

        # Let's label those examples!
        tokenized_examples["start_positions"] = []
        tokenized_examples["end_positions"] = []

        for i, offsets in enumerate(offset_mapping):
            # We will label impossible answers with the index of the CLS token.
            input_ids = tokenized_examples["input_ids"][i]
            cls_index = input_ids.index(tokenizer.cls_token_id)

            # Grab the sequence corresponding to that example (to know what is the context and what is the question).
            sequence_ids = tokenized_examples.sequence_ids(i)

            # One example can give several spans, this is the index of the example containing this span of text.
            sample_index = sample_mapping[i]
            answers = examples[answer_column_name][sample_index]
            # If no answers are given, set the cls_index as answer.
            if len(answers["answer_start"]) == 0:
                tokenized_examples["start_positions"].append(cls_index)
                tokenized_examples["end_positions"].append(cls_index)
            else:
                # Start/end character index of the answer in the text.
                start_char = answers["answer_start"][0]
                end_char = start_char + len(answers["text"][0])

                # Start token index of the current span in the text.
                token_start_index = 0
                while sequence_ids[token_start_index] != (1 if pad_on_right else 0):
                    token_start_index += 1

                # End token index of the current span in the text.
                token_end_index = len(input_ids) - 1
                while sequence_ids[token_end_index] != (1 if pad_on_right else 0):
                    token_end_index -= 1

                # Detect if the answer is out of the span (in which case this feature is labeled with the CLS index).
                if not (offsets[token_start_index][0] <= start_char and offsets[token_end_index][1] >= end_char):
                    tokenized_examples["start_positions"].append(cls_index)
                    tokenized_examples["end_positions"].append(cls_index)
                else:
                    # Otherwise move the token_start_index and token_end_index to the two ends of the answer.
                    # Note: we could go after the last offset if the answer is the last word (edge case).
                    while token_start_index < len(offsets) and offsets[token_start_index][0] <= start_char:
                        token_start_index += 1
                    tokenized_examples["start_positions"].append(token_start_index - 1)
                    while offsets[token_end_index][1] >= end_char:
                        token_end_index -= 1
                    tokenized_examples["end_positions"].append(token_end_index + 1)

        return tokenized_examples

    if training_args.do_train:
447
        if "train" not in raw_datasets:
448
            raise ValueError("--do_train requires a train dataset")
449
        train_dataset = raw_datasets["train"]
450
        if data_args.max_train_samples is not None:
Akul Agrawal's avatar
Akul Agrawal committed
451
            # We will select sample from whole data if argument is specified
452
453
            max_train_samples = min(len(train_dataset), data_args.max_train_samples)
            train_dataset = train_dataset.select(range(max_train_samples))
454
        # Create train feature from dataset
455
456
457
458
459
460
461
462
463
        with training_args.main_process_first(desc="train dataset map pre-processing"):
            train_dataset = train_dataset.map(
                prepare_train_features,
                batched=True,
                num_proc=data_args.preprocessing_num_workers,
                remove_columns=column_names,
                load_from_cache_file=not data_args.overwrite_cache,
                desc="Running tokenizer on train dataset",
            )
464
465
        if data_args.max_train_samples is not None:
            # Number of samples might increase during Feature Creation, We select only specified max samples
466
467
            max_train_samples = min(len(train_dataset), data_args.max_train_samples)
            train_dataset = train_dataset.select(range(max_train_samples))
Sylvain Gugger's avatar
Sylvain Gugger committed
468
469
470

    # Validation preprocessing
    def prepare_validation_features(examples):
471
472
473
474
475
        # Some of the questions have lots of whitespace on the left, which is not useful and will make the
        # truncation of the context fail (the tokenized question will take a lots of space). So we remove that
        # left whitespace
        examples[question_column_name] = [q.lstrip() for q in examples[question_column_name]]

Sylvain Gugger's avatar
Sylvain Gugger committed
476
477
478
479
480
481
482
        # Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results
        # in one example possible giving several features when a context is long, each of those features having a
        # context that overlaps a bit the context of the previous feature.
        tokenized_examples = tokenizer(
            examples[question_column_name if pad_on_right else context_column_name],
            examples[context_column_name if pad_on_right else question_column_name],
            truncation="only_second" if pad_on_right else "only_first",
483
            max_length=max_seq_length,
Sylvain Gugger's avatar
Sylvain Gugger committed
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
            stride=data_args.doc_stride,
            return_overflowing_tokens=True,
            return_offsets_mapping=True,
            padding="max_length" if data_args.pad_to_max_length else False,
        )

        # Since one example might give us several features if it has a long context, we need a map from a feature to
        # its corresponding example. This key gives us just that.
        sample_mapping = tokenized_examples.pop("overflow_to_sample_mapping")

        # For evaluation, we will need to convert our predictions to substrings of the context, so we keep the
        # corresponding example_id and we will store the offset mappings.
        tokenized_examples["example_id"] = []

        for i in range(len(tokenized_examples["input_ids"])):
            # Grab the sequence corresponding to that example (to know what is the context and what is the question).
            sequence_ids = tokenized_examples.sequence_ids(i)
            context_index = 1 if pad_on_right else 0

            # One example can give several spans, this is the index of the example containing this span of text.
            sample_index = sample_mapping[i]
            tokenized_examples["example_id"].append(examples["id"][sample_index])

            # Set to None the offset_mapping that are not part of the context so it's easy to determine if a token
            # position is part of the context or not.
            tokenized_examples["offset_mapping"][i] = [
                (o if sequence_ids[k] == context_index else None)
                for k, o in enumerate(tokenized_examples["offset_mapping"][i])
            ]

        return tokenized_examples

    if training_args.do_eval:
517
        if "validation" not in raw_datasets:
518
            raise ValueError("--do_eval requires a validation dataset")
519
        eval_examples = raw_datasets["validation"]
520
        if data_args.max_eval_samples is not None:
521
            # We will select sample from whole data
522
523
            max_eval_samples = min(len(eval_examples), data_args.max_eval_samples)
            eval_examples = eval_examples.select(range(max_eval_samples))
524
        # Validation Feature Creation
525
526
527
528
529
530
531
532
533
        with training_args.main_process_first(desc="validation dataset map pre-processing"):
            eval_dataset = eval_examples.map(
                prepare_validation_features,
                batched=True,
                num_proc=data_args.preprocessing_num_workers,
                remove_columns=column_names,
                load_from_cache_file=not data_args.overwrite_cache,
                desc="Running tokenizer on validation dataset",
            )
534
        if data_args.max_eval_samples is not None:
535
            # During Feature creation dataset samples might increase, we will select required samples again
536
537
            max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples)
            eval_dataset = eval_dataset.select(range(max_eval_samples))
Sylvain Gugger's avatar
Sylvain Gugger committed
538

539
    if training_args.do_predict:
540
        if "test" not in raw_datasets:
541
            raise ValueError("--do_predict requires a test dataset")
542
        predict_examples = raw_datasets["test"]
543
        if data_args.max_predict_samples is not None:
544
            # We will select sample from whole data
545
546
            predict_examples = predict_examples.select(range(data_args.max_predict_samples))
        # Predict Feature Creation
547
548
549
550
551
552
553
554
555
        with training_args.main_process_first(desc="prediction dataset map pre-processing"):
            predict_dataset = predict_examples.map(
                prepare_validation_features,
                batched=True,
                num_proc=data_args.preprocessing_num_workers,
                remove_columns=column_names,
                load_from_cache_file=not data_args.overwrite_cache,
                desc="Running tokenizer on prediction dataset",
            )
556
        if data_args.max_predict_samples is not None:
557
            # During Feature creation dataset samples might increase, we will select required samples again
558
559
            max_predict_samples = min(len(predict_dataset), data_args.max_predict_samples)
            predict_dataset = predict_dataset.select(range(max_predict_samples))
560

Sylvain Gugger's avatar
Sylvain Gugger committed
561
562
563
    # Data collator
    # We have already padded to max length if the corresponding flag is True, otherwise we need to pad in the data
    # collator.
564
565
566
567
568
    data_collator = (
        default_data_collator
        if data_args.pad_to_max_length
        else DataCollatorWithPadding(tokenizer, pad_to_multiple_of=8 if training_args.fp16 else None)
    )
Sylvain Gugger's avatar
Sylvain Gugger committed
569
570

    # Post-processing:
571
    def post_processing_function(examples, features, predictions, stage="eval"):
Sylvain Gugger's avatar
Sylvain Gugger committed
572
573
574
575
576
577
578
579
580
581
        # Post-processing: we match the start logits and end logits to answers in the original context.
        predictions = postprocess_qa_predictions(
            examples=examples,
            features=features,
            predictions=predictions,
            version_2_with_negative=data_args.version_2_with_negative,
            n_best_size=data_args.n_best_size,
            max_answer_length=data_args.max_answer_length,
            null_score_diff_threshold=data_args.null_score_diff_threshold,
            output_dir=training_args.output_dir,
582
            log_level=log_level,
583
            prefix=stage,
Sylvain Gugger's avatar
Sylvain Gugger committed
584
585
586
587
588
589
590
591
        )
        # Format the result to the format the metric expects.
        if data_args.version_2_with_negative:
            formatted_predictions = [
                {"id": k, "prediction_text": v, "no_answer_probability": 0.0} for k, v in predictions.items()
            ]
        else:
            formatted_predictions = [{"id": k, "prediction_text": v} for k, v in predictions.items()]
592
593

        references = [{"id": ex["id"], "answers": ex[answer_column_name]} for ex in examples]
Sylvain Gugger's avatar
Sylvain Gugger committed
594
595
        return EvalPrediction(predictions=formatted_predictions, label_ids=references)

596
    metric = load_metric("squad_v2" if data_args.version_2_with_negative else "squad")
Sylvain Gugger's avatar
Sylvain Gugger committed
597
598
599
600
601
602
603
604
605

    def compute_metrics(p: EvalPrediction):
        return metric.compute(predictions=p.predictions, references=p.label_ids)

    # Initialize our Trainer
    trainer = QuestionAnsweringTrainer(
        model=model,
        args=training_args,
        train_dataset=train_dataset if training_args.do_train else None,
606
        eval_dataset=eval_dataset if training_args.do_eval else None,
607
        eval_examples=eval_examples if training_args.do_eval else None,
Sylvain Gugger's avatar
Sylvain Gugger committed
608
609
610
611
612
613
614
615
        tokenizer=tokenizer,
        data_collator=data_collator,
        post_process_function=post_processing_function,
        compute_metrics=compute_metrics,
    )

    # Training
    if training_args.do_train:
616
617
618
619
        checkpoint = None
        if training_args.resume_from_checkpoint is not None:
            checkpoint = training_args.resume_from_checkpoint
        elif last_checkpoint is not None:
620
621
            checkpoint = last_checkpoint
        train_result = trainer.train(resume_from_checkpoint=checkpoint)
Sylvain Gugger's avatar
Sylvain Gugger committed
622
623
        trainer.save_model()  # Saves the tokenizer too for easy upload

624
        metrics = train_result.metrics
625
626
627
628
629
        max_train_samples = (
            data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset)
        )
        metrics["train_samples"] = min(max_train_samples, len(train_dataset))

630
631
632
        trainer.log_metrics("train", metrics)
        trainer.save_metrics("train", metrics)
        trainer.save_state()
633

Sylvain Gugger's avatar
Sylvain Gugger committed
634
635
636
    # Evaluation
    if training_args.do_eval:
        logger.info("*** Evaluate ***")
637
        metrics = trainer.evaluate()
Sylvain Gugger's avatar
Sylvain Gugger committed
638

639
640
        max_eval_samples = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(eval_dataset)
        metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset))
Sylvain Gugger's avatar
Sylvain Gugger committed
641

642
643
        trainer.log_metrics("eval", metrics)
        trainer.save_metrics("eval", metrics)
Sylvain Gugger's avatar
Sylvain Gugger committed
644

645
646
647
    # Prediction
    if training_args.do_predict:
        logger.info("*** Predict ***")
648
        results = trainer.predict(predict_dataset, predict_examples)
649
650
        metrics = results.metrics

651
652
653
654
        max_predict_samples = (
            data_args.max_predict_samples if data_args.max_predict_samples is not None else len(predict_dataset)
        )
        metrics["predict_samples"] = min(max_predict_samples, len(predict_dataset))
655

656
657
        trainer.log_metrics("predict", metrics)
        trainer.save_metrics("predict", metrics)
658

659
660
661
662
663
664
665
666
    kwargs = {"finetuned_from": model_args.model_name_or_path, "tasks": "question-answering"}
    if data_args.dataset_name is not None:
        kwargs["dataset_tags"] = data_args.dataset_name
        if data_args.dataset_config_name is not None:
            kwargs["dataset_args"] = data_args.dataset_config_name
            kwargs["dataset"] = f"{data_args.dataset_name} {data_args.dataset_config_name}"
        else:
            kwargs["dataset"] = data_args.dataset_name
Sylvain Gugger's avatar
Sylvain Gugger committed
667

668
    if training_args.push_to_hub:
Sylvain Gugger's avatar
Sylvain Gugger committed
669
        trainer.push_to_hub(**kwargs)
670
671
    else:
        trainer.create_model_card(**kwargs)
Sylvain Gugger's avatar
Sylvain Gugger committed
672

Sylvain Gugger's avatar
Sylvain Gugger committed
673
674
675
676
677
678
679
680

def _mp_fn(index):
    # For xla_spawn (TPUs)
    main()


if __name__ == "__main__":
    main()