modeling_xlm.py 48.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
# coding=utf-8
# Copyright 2019-present, Facebook, Inc and the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch XLM model.
"""
from __future__ import (absolute_import, division, print_function,
                        unicode_literals)
from __future__ import absolute_import, division, print_function, unicode_literals

import json
import logging
import math
import os
import sys
from io import open

import math
import itertools
import numpy as np

import torch
from torch import nn
from torch.nn import functional as F
from torch.nn import CrossEntropyLoss, MSELoss

from .file_utils import cached_path
thomwolf's avatar
thomwolf committed
38
from .model_utils import CONFIG_NAME, WEIGHTS_NAME, PretrainedConfig, PreTrainedModel, prune_linear_layer
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

logger = logging.getLogger(__name__)

PRETRAINED_MODEL_ARCHIVE_MAP = {
    'xlm-mlm-en-2048': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-en-2048-pytorch_model.bin",
}
PRETRAINED_CONFIG_ARCHIVE_MAP = {
    'xlm-mlm-en-2048': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-en-2048-config.json",
}


class XLMConfig(PretrainedConfig):
    """Configuration class to store the configuration of a `XLMModel`.
    """
    pretrained_config_archive_map = PRETRAINED_CONFIG_ARCHIVE_MAP

    def __init__(self,
thomwolf's avatar
thomwolf committed
56
                 vocab_size_or_config_json_file=30145,
thomwolf's avatar
xlm  
thomwolf committed
57
58
59
60
61
62
63
64
                 n_special=0,
                 emb_dim=2048,
                 n_layers=12,
                 n_heads=16,
                 dropout=0.1,
                 attention_dropout=0.1,
                 gelu_activation=True,
                 sinusoidal_embeddings=False,
thomwolf's avatar
thomwolf committed
65
                 causal=False,
thomwolf's avatar
xlm  
thomwolf committed
66
67
                 asm=False,
                 n_langs=1,
68
                 max_position_embeddings=512,
thomwolf's avatar
thomwolf committed
69
70
71
72
73
74
75
76
77
78
                 embed_init_std=2048 ** -0.5,
                 init_std=0.02,
                 summary_type="last",
                 use_proj=True,
                 bos_index=0,
                 eos_index=1,
                 pad_index=2,
                 unk_index=3,
                 mask_index=5,
                 is_encoder=True,
thomwolf's avatar
xlm  
thomwolf committed
79
                 **kwargs):
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
        """Constructs XLMConfig.

        Args:
            vocab_size_or_config_json_file: Vocabulary size of `inputs_ids` in `XLMModel`.
            d_model: Size of the encoder layers and the pooler layer.
            n_layer: Number of hidden layers in the Transformer encoder.
            n_head: Number of attention heads for each attention layer in
                the Transformer encoder.
            d_inner: The size of the "intermediate" (i.e., feed-forward)
                layer in the Transformer encoder.
            ff_activation: The non-linear activation function (function or string) in the
                encoder and pooler. If string, "gelu", "relu" and "swish" are supported.
            untie_r: untie relative position biases
            attn_type: 'bi' for XLM, 'uni' for Transformer-XL

            dropout: The dropout probabilitiy for all fully connected
                layers in the embeddings, encoder, and pooler.
            dropatt: The dropout ratio for the attention
                probabilities.
            max_position_embeddings: The maximum sequence length that this model might
                ever be used with. Typically set this to something large just in case
                (e.g., 512 or 1024 or 2048).
            initializer_range: The sttdev of the truncated_normal_initializer for
                initializing all weight matrices.
            layer_norm_eps: The epsilon used by LayerNorm.

            dropout: float, dropout rate.
            dropatt: float, dropout rate on attention probabilities.
            init: str, the initialization scheme, either "normal" or "uniform".
            init_range: float, initialize the parameters with a uniform distribution
                in [-init_range, init_range]. Only effective when init="uniform".
            init_std: float, initialize the parameters with a normal distribution
                with mean 0 and stddev init_std. Only effective when init="normal".
            mem_len: int, the number of tokens to cache.
            reuse_len: int, the number of tokens in the currect batch to be cached
                and reused in the future.
            bi_data: bool, whether to use bidirectional input pipeline.
                Usually set to True during pretraining and False during finetuning.
            clamp_len: int, clamp all relative distances larger than clamp_len.
                -1 means no clamping.
            same_length: bool, whether to use the same attention length for each token.
        """
thomwolf's avatar
xlm  
thomwolf committed
122
123
        super(XLMConfig, self).__init__(**kwargs)

124
125
126
127
128
129
130
        if isinstance(vocab_size_or_config_json_file, str) or (sys.version_info[0] == 2
                        and isinstance(vocab_size_or_config_json_file, unicode)):
            with open(vocab_size_or_config_json_file, "r", encoding='utf-8') as reader:
                json_config = json.loads(reader.read())
            for key, value in json_config.items():
                self.__dict__[key] = value
        elif isinstance(vocab_size_or_config_json_file, int):
thomwolf's avatar
xlm  
thomwolf committed
131
132
133
134
135
136
137
138
139
            self.n_words = vocab_size_or_config_json_file
            self.n_special = n_special
            self.emb_dim = emb_dim
            self.n_layers = n_layers
            self.n_heads = n_heads
            self.dropout = dropout
            self.attention_dropout = attention_dropout
            self.gelu_activation = gelu_activation
            self.sinusoidal_embeddings = sinusoidal_embeddings
thomwolf's avatar
thomwolf committed
140
            self.causal = causal
thomwolf's avatar
xlm  
thomwolf committed
141
142
            self.asm = asm
            self.n_langs = n_langs
thomwolf's avatar
thomwolf committed
143
144
145
146
147
148
149
150
            self.summary_type = summary_type
            self.use_proj = use_proj
            self.bos_index = bos_index
            self.eos_index = eos_index
            self.pad_index = pad_index
            self.unk_index = unk_index
            self.mask_index = mask_index
            self.is_encoder = is_encoder
151
            self.max_position_embeddings = max_position_embeddings
thomwolf's avatar
thomwolf committed
152
153
            self.embed_init_std = embed_init_std
            self.init_std = init_std
154
155
156
157
        else:
            raise ValueError("First argument must be either a vocabulary size (int)"
                             "or the path to a pretrained model config file (str)")

thomwolf's avatar
xlm  
thomwolf committed
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
    @property
    def total_tokens_embeddings(self):
        return self.n_words + self.n_special

    @property
    def hidden_size(self):
        return self.emb_dim

    @property
    def num_attention_heads(self):
        return self.n_heads

    @property
    def num_hidden_layers(self):
        return self.n_layers

174

thomwolf's avatar
thomwolf committed
175
def Embedding(num_embeddings, embedding_dim, padding_idx=None, config=None):
176
    m = nn.Embedding(num_embeddings, embedding_dim, padding_idx=padding_idx)
thomwolf's avatar
thomwolf committed
177
178
    if config is not None and config.embed_init_std is not None:
        nn.init.normal_(m.weight, mean=0, std=config.embed_init_std)
179
180
181
182
183
    if padding_idx is not None:
        nn.init.constant_(m.weight[padding_idx], 0)
    return m


thomwolf's avatar
thomwolf committed
184
def Linear(in_features, out_features, bias=True, config=None):
185
    m = nn.Linear(in_features, out_features, bias)
thomwolf's avatar
thomwolf committed
186
187
188
189
    if config is not None and config.init_std is not None:
        nn.init.normal_(m.weight, mean=0, std=config.init_std)
        if bias:
            nn.init.constant_(m.bias, 0.)
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
    # nn.init.xavier_uniform_(m.weight)
    # nn.init.constant_(m.bias, 0.)
    return m


def create_sinusoidal_embeddings(n_pos, dim, out):
    position_enc = np.array([
        [pos / np.power(10000, 2 * (j // 2) / dim) for j in range(dim)]
        for pos in range(n_pos)
    ])
    out[:, 0::2] = torch.FloatTensor(np.sin(position_enc[:, 0::2]))
    out[:, 1::2] = torch.FloatTensor(np.cos(position_enc[:, 1::2]))
    out.detach_()
    out.requires_grad = False


def gelu(x):
    """
    GELU activation
    https://arxiv.org/abs/1606.08415
    https://github.com/huggingface/pytorch-openai-transformer-lm/blob/master/model_pytorch.py#L14
    https://github.com/huggingface/pytorch-pretrained-BERT/blob/master/modeling.py
    """
    # return 0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))
    return 0.5 * x * (1.0 + torch.erf(x / math.sqrt(2.0)))


thomwolf's avatar
thomwolf committed
217
def get_masks(slen, lengths, causal, padding_mask=None):
218
219
220
221
    """
    Generate hidden states mask, and optionally an attention mask.
    """
    bs = lengths.size(0)
thomwolf's avatar
thomwolf committed
222
223
224
225
226
227
    if padding_mask is not None:
        mask = padding_mask
    else:
        assert lengths.max().item() <= slen
        alen = torch.arange(slen, dtype=torch.long, device=lengths.device)
        mask = alen < lengths[:, None]
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245

    # attention mask is the same as mask, or triangular inferior attention (causal)
    if causal:
        attn_mask = alen[None, None, :].repeat(bs, slen, 1) <= alen[None, :, None]
    else:
        attn_mask = mask

    # sanity check
    assert mask.size() == (bs, slen)
    assert causal is False or attn_mask.size() == (bs, slen, slen)

    return mask, attn_mask


class MultiHeadAttention(nn.Module):

    NEW_ID = itertools.count()

thomwolf's avatar
thomwolf committed
246
    def __init__(self, n_heads, dim, config):
247
248
        super().__init__()
        self.layer_id = next(MultiHeadAttention.NEW_ID)
thomwolf's avatar
thomwolf committed
249
        self.output_attentions = config.output_attentions
250
251
        self.dim = dim
        self.n_heads = n_heads
thomwolf's avatar
thomwolf committed
252
        self.dropout = config.attention_dropout
253
254
        assert self.dim % self.n_heads == 0

thomwolf's avatar
thomwolf committed
255
256
257
258
        self.q_lin = Linear(dim, dim, config=config)
        self.k_lin = Linear(dim, dim, config=config)
        self.v_lin = Linear(dim, dim, config=config)
        self.out_lin = Linear(dim, dim, config=config)
259

thomwolf's avatar
thomwolf committed
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
    def prune_heads(self, heads):
        attention_head_size = self.dim // self.n_heads
        if len(heads) == 0:
            return
        mask = torch.ones(self.n_heads, attention_head_size)
        for head in heads:
            mask[head] = 0
        mask = mask.view(-1).contiguous().eq(1)
        index = torch.arange(len(mask))[mask].long()
        # Prune linear layers
        self.q_lin = prune_linear_layer(self.q_lin, index)
        self.k_lin = prune_linear_layer(self.k_lin, index)
        self.v_lin = prune_linear_layer(self.v_lin, index)
        self.out_lin = prune_linear_layer(self.out_lin, index, dim=1)
        # Update hyper params
        self.n_heads = self.n_heads - len(heads)
        self.dim = attention_head_size * self.n_heads

thomwolf's avatar
thomwolf committed
278
    def forward(self, input, mask, kv=None, cache=None, head_mask=None):
279
280
281
282
283
284
285
286
287
288
        """
        Self-attention (if kv is None) or attention over source sentence (provided by kv).
        """
        # Input is (bs, qlen, dim)
        # Mask is (bs, klen) (non-causal) or (bs, klen, klen)
        bs, qlen, dim = input.size()
        if kv is None:
            klen = qlen if cache is None else cache['slen'] + qlen
        else:
            klen = kv.size(1)
thomwolf's avatar
thomwolf committed
289
        # assert dim == self.dim, 'Dimensions do not match: %s input vs %s configured' % (dim, self.dim)
290
        n_heads = self.n_heads
thomwolf's avatar
thomwolf committed
291
        dim_per_head = self.dim // n_heads
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
        mask_reshape = (bs, 1, qlen, klen) if mask.dim() == 3 else (bs, 1, 1, klen)

        def shape(x):
            """  projection """
            return x.view(bs, -1, self.n_heads, dim_per_head).transpose(1, 2)

        def unshape(x):
            """  compute context """
            return x.transpose(1, 2).contiguous().view(bs, -1, self.n_heads * dim_per_head)

        q = shape(self.q_lin(input))                                          # (bs, n_heads, qlen, dim_per_head)
        if kv is None:
            k = shape(self.k_lin(input))                                      # (bs, n_heads, qlen, dim_per_head)
            v = shape(self.v_lin(input))                                      # (bs, n_heads, qlen, dim_per_head)
        elif cache is None or self.layer_id not in cache:
            k = v = kv
            k = shape(self.k_lin(k))                                          # (bs, n_heads, qlen, dim_per_head)
            v = shape(self.v_lin(v))                                          # (bs, n_heads, qlen, dim_per_head)

        if cache is not None:
            if self.layer_id in cache:
                if kv is None:
                    k_, v_ = cache[self.layer_id]
                    k = torch.cat([k_, k], dim=2)                             # (bs, n_heads, klen, dim_per_head)
                    v = torch.cat([v_, v], dim=2)                             # (bs, n_heads, klen, dim_per_head)
                else:
                    k, v = cache[self.layer_id]
            cache[self.layer_id] = (k, v)

        q = q / math.sqrt(dim_per_head)                                       # (bs, n_heads, qlen, dim_per_head)
        scores = torch.matmul(q, k.transpose(2, 3))                           # (bs, n_heads, qlen, klen)
        mask = (mask == 0).view(mask_reshape).expand_as(scores)               # (bs, n_heads, qlen, klen)
        scores.masked_fill_(mask, -float('inf'))                              # (bs, n_heads, qlen, klen)

        weights = F.softmax(scores.float(), dim=-1).type_as(scores)           # (bs, n_heads, qlen, klen)
        weights = F.dropout(weights, p=self.dropout, training=self.training)  # (bs, n_heads, qlen, klen)
thomwolf's avatar
thomwolf committed
328
329
330
331
332

        # Mask heads if we want to
        if head_mask is not None:
            weights = weights * head_mask

333
334
335
        context = torch.matmul(weights, v)                                    # (bs, n_heads, qlen, dim_per_head)
        context = unshape(context)                                            # (bs, qlen, dim)

thomwolf's avatar
xlm  
thomwolf committed
336
337
        outputs = (self.out_lin(context),)
        if self.output_attentions:
thomwolf's avatar
thomwolf committed
338
            outputs = outputs + (weights,)
thomwolf's avatar
xlm  
thomwolf committed
339
        return outputs
340
341
342
343


class TransformerFFN(nn.Module):

thomwolf's avatar
thomwolf committed
344
    def __init__(self, in_dim, dim_hidden, out_dim, config):
345
        super().__init__()
thomwolf's avatar
thomwolf committed
346
347
348
349
        self.dropout = config.dropout
        self.lin1 = Linear(in_dim, dim_hidden, config=config)
        self.lin2 = Linear(dim_hidden, out_dim, config=config)
        self.act = gelu if config.gelu_activation else F.relu
350
351
352
353
354
355
356
357
358

    def forward(self, input):
        x = self.lin1(input)
        x = self.act(x)
        x = self.lin2(x)
        x = F.dropout(x, p=self.dropout, training=self.training)
        return x


359
class XLMPreTrainedModel(PreTrainedModel):
360
361
362
    """ An abstract class to handle weights initialization and
        a simple interface for dowloading and loading pretrained models.
    """
363
364
365
366
367
368
369
    config_class = XLMConfig
    pretrained_model_archive_map = PRETRAINED_MODEL_ARCHIVE_MAP
    load_tf_weights = None
    base_model_prefix = "xlm"

    def __init__(self, *inputs, **kwargs):
        super(XLMPreTrainedModel, self).__init__(*inputs, **kwargs)
370
371
372
373
374

    def init_weights(self, module):
        """ Initialize the weights.
        """
        if isinstance(module, (nn.Linear, nn.Embedding)):
thomwolf's avatar
thomwolf committed
375
376
377
            # Weights are initialized in module instantiation (see above)
            pass
        if isinstance(module, nn.LayerNorm):
378
379
380
381
382
383
384
385
386
387
388
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)


class XLMModel(XLMPreTrainedModel):

    ATTRIBUTES = ['encoder', 'eos_index', 'pad_index',  # 'with_output', 
                  'n_langs', 'n_words', 'dim', 'n_layers', 'n_heads', 
                  'hidden_dim', 'dropout', 'attention_dropout', 'asm',
                  'asm_cutoffs', 'asm_div_value']

thomwolf's avatar
xlm  
thomwolf committed
389
    def __init__(self, config):  #, dico, is_encoder, with_output):
thomwolf's avatar
thomwolf committed
390
391
392
        """ XLM model from: "Cross-lingual Language Model Pretraining" by Guillaume Lample, Alexis Conneau
            Paper: https://arxiv.org/abs/1901.07291
            Original code: https://github.com/facebookresearch/XLM
thomwolf's avatar
thomwolf committed
393
394

        Params:
thomwolf's avatar
thomwolf committed
395
            `config`: a XLMConfig class instance with the configuration to build a new model
thomwolf's avatar
thomwolf committed
396
397
398
399
400
401
402
403
404
405
            `output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False
            `keep_multihead_output`: If True, saves output of the multi-head attention module with its gradient.
                This can be used to compute head importance metrics. Default: False

        Inputs:
            `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length]
                with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts
                `run_bert_extract_features.py`, `run_bert_classifier.py` and `run_bert_squad.py`)
            `token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token
                types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to
thomwolf's avatar
thomwolf committed
406
                a `sentence B` token (see XLM paper for more details).
thomwolf's avatar
thomwolf committed
407
408
409
410
411
412
413
414
415
416
417
418
            `attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices
                selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
                input sequence length in the current batch. It's the mask that we typically use for attention when
                a batch has varying length sentences.
            `output_all_encoded_layers`: boolean which controls the content of the `encoded_layers` output as described below. Default: `True`.
            `head_mask`: an optional torch.Tensor of shape [num_heads] or [num_layers, num_heads] with indices between 0 and 1.
                It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked, 0.0 => head is not masked.


        Outputs: Tuple of (encoded_layers, pooled_output)
            `encoded_layers`: controled by `output_all_encoded_layers` argument:
                - `output_all_encoded_layers=True`: outputs a list of the full sequences of encoded-hidden-states at the end
thomwolf's avatar
thomwolf committed
419
                    of each attention block (i.e. 12 full sequences for XLM-base, 24 for XLM-large), each
thomwolf's avatar
thomwolf committed
420
421
422
423
424
                    encoded-hidden-state is a torch.FloatTensor of size [batch_size, sequence_length, hidden_size],
                - `output_all_encoded_layers=False`: outputs only the full sequence of hidden-states corresponding
                    to the last attention block of shape [batch_size, sequence_length, hidden_size],
            `pooled_output`: a torch.FloatTensor of size [batch_size, hidden_size] which is the output of a
                classifier pretrained on top of the hidden state associated to the first character of the
thomwolf's avatar
thomwolf committed
425
                input (`CLS`) to train on the Next-Sentence task (see XLM's paper).
thomwolf's avatar
thomwolf committed
426
427
428
429
430
431
432
433

        Example usage:
        ```python
        # Already been converted into WordPiece token ids
        input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
        input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
        token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])

thomwolf's avatar
thomwolf committed
434
        config = modeling.XLMConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
thomwolf's avatar
thomwolf committed
435
436
            num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)

thomwolf's avatar
thomwolf committed
437
        model = modeling.XLMModel(config=config)
thomwolf's avatar
thomwolf committed
438
439
        all_encoder_layers, pooled_output = model(input_ids, token_type_ids, input_mask)
        ```
440
        """
thomwolf's avatar
xlm  
thomwolf committed
441
442
443
        super(XLMModel, self).__init__(config)
        self.output_attentions = config.output_attentions
        self.output_hidden_states = config.output_hidden_states
444
445

        # encoder / decoder, output layer
thomwolf's avatar
thomwolf committed
446
447
448
449
        self.is_encoder = config.is_encoder
        self.is_decoder = not config.is_encoder
        if self.is_decoder:
            raise NotImplementedError("Currently XLM can only be used as an encoder")
450
        # self.with_output = with_output
thomwolf's avatar
xlm  
thomwolf committed
451
        self.causal = config.causal
452
453

        # dictionary / languages
thomwolf's avatar
xlm  
thomwolf committed
454
455
456
457
        self.n_langs = config.n_langs
        self.n_words = config.n_words
        self.eos_index = config.eos_index
        self.pad_index = config.pad_index
458
        # self.dico = dico
thomwolf's avatar
thomwolf committed
459
460
        # self.id2lang = config.id2lang
        # self.lang2id = config.lang2id
461
        # assert len(self.dico) == self.n_words
thomwolf's avatar
thomwolf committed
462
        # assert len(self.id2lang) == len(self.lang2id) == self.n_langs
463
464

        # model parameters
thomwolf's avatar
xlm  
thomwolf committed
465
        self.dim = config.emb_dim       # 512 by default
466
        self.hidden_dim = self.dim * 4  # 2048 by default
thomwolf's avatar
xlm  
thomwolf committed
467
468
469
470
        self.n_heads = config.n_heads   # 8 by default
        self.n_layers = config.n_layers
        self.dropout = config.dropout
        self.attention_dropout = config.attention_dropout
471
472
473
        assert self.dim % self.n_heads == 0, 'transformer dim must be a multiple of n_heads'

        # embeddings
thomwolf's avatar
thomwolf committed
474
        self.position_embeddings = Embedding(config.max_position_embeddings, self.dim, config=config)
thomwolf's avatar
xlm  
thomwolf committed
475
476
477
        if config.sinusoidal_embeddings:
            create_sinusoidal_embeddings(config.max_position_embeddings, self.dim, out=self.position_embeddings.weight)
        if config.n_langs > 1:
thomwolf's avatar
thomwolf committed
478
479
            self.lang_embeddings = Embedding(self.n_langs, self.dim, config=config)
        self.embeddings = Embedding(self.n_words, self.dim, padding_idx=self.pad_index, config=config)
480
481
482
483
484
485
486
        self.layer_norm_emb = nn.LayerNorm(self.dim, eps=1e-12)

        # transformer layers
        self.attentions = nn.ModuleList()
        self.layer_norm1 = nn.ModuleList()
        self.ffns = nn.ModuleList()
        self.layer_norm2 = nn.ModuleList()
thomwolf's avatar
thomwolf committed
487
488
489
        # if self.is_decoder:
        #     self.layer_norm15 = nn.ModuleList()
        #     self.encoder_attn = nn.ModuleList()
490
491

        for _ in range(self.n_layers):
thomwolf's avatar
thomwolf committed
492
            self.attentions.append(MultiHeadAttention(self.n_heads, self.dim, config=config))
493
            self.layer_norm1.append(nn.LayerNorm(self.dim, eps=1e-12))
thomwolf's avatar
thomwolf committed
494
495
496
497
            # if self.is_decoder:
            #     self.layer_norm15.append(nn.LayerNorm(self.dim, eps=1e-12))
            #     self.encoder_attn.append(MultiHeadAttention(self.n_heads, self.dim, dropout=self.attention_dropout))
            self.ffns.append(TransformerFFN(self.dim, self.hidden_dim, self.dim, config=config))
498
499
            self.layer_norm2.append(nn.LayerNorm(self.dim, eps=1e-12))

thomwolf's avatar
thomwolf committed
500
501
502
503
504
505
506
507
    def _prune_heads(self, heads_to_prune):
        """ Prunes heads of the model.
            heads_to_prune: dict of {layer_num: list of heads to prune in this layer}
            See base class PreTrainedModel
        """
        for layer, heads in heads_to_prune.items():
            self.attentions[layer].prune_heads(heads)

thomwolf's avatar
thomwolf committed
508
509
    def forward(self, input_ids, lengths=None, positions=None, langs=None,
                token_type_ids=None, attention_mask=None, cache=None, head_mask=None):  # src_enc=None, src_len=None, 
510
511
        """
        Inputs:
thomwolf's avatar
xlm  
thomwolf committed
512
            `input_ids` LongTensor(bs, slen), containing word indices
513
            `lengths` LongTensor(bs), containing the length of each sentence
thomwolf's avatar
thomwolf committed
514
515
            `positions` LongTensor(bs, slen), containing word positions
            `langs` LongTensor(bs, slen), containing language IDs
thomwolf's avatar
thomwolf committed
516
            `token_type_ids` LongTensor (bs, slen) same as `langs` used for compatibility
517
        """
thomwolf's avatar
thomwolf committed
518
        if lengths is None:
thomwolf's avatar
thomwolf committed
519
            lengths = (input_ids != self.pad_index).sum(dim=1).long()
thomwolf's avatar
xlm  
thomwolf committed
520
        # mask = input_ids != self.pad_index
521
522

        # check inputs
thomwolf's avatar
xlm  
thomwolf committed
523
        bs, slen = input_ids.size()
524
525
        assert lengths.size(0) == bs
        assert lengths.max().item() <= slen
thomwolf's avatar
xlm  
thomwolf committed
526
        # input_ids = input_ids.transpose(0, 1)  # batch size as dimension 0
thomwolf's avatar
thomwolf committed
527
528
529
530
        # assert (src_enc is None) == (src_len is None)
        # if src_enc is not None:
        #     assert self.is_decoder
        #     assert src_enc.size(0) == bs
531
532

        # generate masks
thomwolf's avatar
thomwolf committed
533
        mask, attn_mask = get_masks(slen, lengths, self.causal, padding_mask=attention_mask)
thomwolf's avatar
thomwolf committed
534
535
        # if self.is_decoder and src_enc is not None:
        #     src_mask = torch.arange(src_len.max(), dtype=torch.long, device=lengths.device) < src_len[:, None]
536
537
538

        # positions
        if positions is None:
thomwolf's avatar
xlm  
thomwolf committed
539
            positions = input_ids.new(slen).long()
540
541
            positions = torch.arange(slen, out=positions).unsqueeze(0)
        else:
thomwolf's avatar
thomwolf committed
542
543
            assert positions.size() == (bs, slen)  # (slen, bs)
            # positions = positions.transpose(0, 1)
544
545

        # langs
thomwolf's avatar
thomwolf committed
546
547
548
        assert langs is None or token_type_ids is None, "You can only use one among langs and token_type_ids"
        if token_type_ids is not None:
            langs = token_type_ids
549
        if langs is not None:
thomwolf's avatar
thomwolf committed
550
551
            assert langs.size() == (bs, slen)  # (slen, bs)
            # langs = langs.transpose(0, 1)
552

thomwolf's avatar
thomwolf committed
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
        # Prepare head mask if needed
        # 1.0 in head_mask indicate we keep the head
        # attention_probs has shape bsz x n_heads x N x N
        # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
        # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x qlen x klen]
        if head_mask is not None:
            if head_mask.dim() == 1:
                head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1)
                head_mask = head_mask.expand(self.n_layers, -1, -1, -1, -1)
            elif head_mask.dim() == 2:
                head_mask = head_mask.unsqueeze(1).unsqueeze(-1).unsqueeze(-1)  # We can specify head_mask for each layer
            head_mask = head_mask.to(dtype=next(self.parameters()).dtype) # switch to fload if need + fp16 compatibility
        else:
            head_mask = [None] * self.n_layers

568
569
570
        # do not recompute cached elements
        if cache is not None:
            _slen = slen - cache['slen']
thomwolf's avatar
xlm  
thomwolf committed
571
            input_ids = input_ids[:, -_slen:]
572
573
574
575
576
577
578
            positions = positions[:, -_slen:]
            if langs is not None:
                langs = langs[:, -_slen:]
            mask = mask[:, -_slen:]
            attn_mask = attn_mask[:, -_slen:]

        # embeddings
thomwolf's avatar
xlm  
thomwolf committed
579
        tensor = self.embeddings(input_ids)
580
581
582
583
584
585
586
587
        tensor = tensor + self.position_embeddings(positions).expand_as(tensor)
        if langs is not None:
            tensor = tensor + self.lang_embeddings(langs)
        tensor = self.layer_norm_emb(tensor)
        tensor = F.dropout(tensor, p=self.dropout, training=self.training)
        tensor *= mask.unsqueeze(-1).to(tensor.dtype)

        # transformer layers
thomwolf's avatar
thomwolf committed
588
589
        hidden_states = []
        attentions = []
590
        for i in range(self.n_layers):
thomwolf's avatar
thomwolf committed
591
592
            if self.output_hidden_states:
                hidden_states.append(tensor)
593
594

            # self attention
thomwolf's avatar
thomwolf committed
595
596
597
598
            attn_outputs = self.attentions[i](tensor, attn_mask, cache=cache, head_mask=head_mask[i])
            attn = attn_outputs[0]
            if self.output_attentions:
                attentions.append(attn_outputs[1])
599
600
601
602
603
            attn = F.dropout(attn, p=self.dropout, training=self.training)
            tensor = tensor + attn
            tensor = self.layer_norm1[i](tensor)

            # encoder attention (for decoder only)
thomwolf's avatar
thomwolf committed
604
605
606
607
608
            # if self.is_decoder and src_enc is not None:
            #     attn = self.encoder_attn[i](tensor, src_mask, kv=src_enc, cache=cache)
            #     attn = F.dropout(attn, p=self.dropout, training=self.training)
            #     tensor = tensor + attn
            #     tensor = self.layer_norm15[i](tensor)
609
610
611
612
613
614

            # FFN
            tensor = tensor + self.ffns[i](tensor)
            tensor = self.layer_norm2[i](tensor)
            tensor *= mask.unsqueeze(-1).to(tensor.dtype)

thomwolf's avatar
thomwolf committed
615
616
617
618
        # Add last hidden state
        if self.output_hidden_states:
            hidden_states.append(tensor)

619
620
621
622
623
        # update cache length
        if cache is not None:
            cache['slen'] += tensor.size(1)

        # move back sequence length to dimension 0
thomwolf's avatar
thomwolf committed
624
        # tensor = tensor.transpose(0, 1)
625

thomwolf's avatar
thomwolf committed
626
        outputs = [tensor]
627
628
        if self.output_hidden_states:
            outputs.append(hidden_states)
thomwolf's avatar
thomwolf committed
629
630
631
        if self.output_attentions:
            outputs.append(attentions)
        return outputs  # outputs, (hidden_states), (attentions)
632
633
634
635
636
637


class XLMPredLayer(nn.Module):
    """
    Prediction layer (cross_entropy or adaptive_softmax).
    """
thomwolf's avatar
xlm  
thomwolf committed
638
    def __init__(self, config):
639
        super().__init__()
thomwolf's avatar
xlm  
thomwolf committed
640
641
642
643
        self.asm = config.asm
        self.n_words = config.n_words
        self.pad_index = config.pad_index
        dim = config.emb_dim
644

thomwolf's avatar
xlm  
thomwolf committed
645
646
        if config.asm is False:
            self.proj = Linear(dim, config.n_words, bias=True)
647
648
649
        else:
            self.proj = nn.AdaptiveLogSoftmaxWithLoss(
                in_features=dim,
thomwolf's avatar
xlm  
thomwolf committed
650
651
652
                n_classes=config.n_words,
                cutoffs=config.asm_cutoffs,
                div_value=config.asm_div_value,
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
                head_bias=True,  # default is False
            )

    def forward(self, x, y, get_scores=False):
        """
        Compute the loss, and optionally the scores.
        """
        assert (y == self.pad_index).sum().item() == 0

        if self.asm is False:
            scores = self.proj(x).view(-1, self.n_words)
            loss = F.cross_entropy(scores, y, reduction='elementwise_mean')
        else:
            _, loss = self.proj(x, y)
            scores = self.proj.log_prob(x) if get_scores else None

        return scores, loss

    def get_scores(self, x):
        """
        Compute scores.
        """
        assert x.dim() == 2
        return self.proj.log_prob(x) if self.asm else self.proj(x)


thomwolf's avatar
thomwolf committed
679
680

class XLMWithLMHeadModel(XLMPreTrainedModel):
thomwolf's avatar
xlm  
thomwolf committed
681
682
683
    """ XLM model from: "Cross-lingual Language Model Pretraining" by Guillaume Lample, Alexis Conneau
        Paper: https://arxiv.org/abs/1901.07291
        Original code: https://github.com/facebookresearch/XLM
thomwolf's avatar
thomwolf committed
684

thomwolf's avatar
xlm  
thomwolf committed
685
686
687
688
689
    Params:
        `config`: a XLMConfig class instance with the configuration to build a new model
        `output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False
        `keep_multihead_output`: If True, saves output of the multi-head attention module with its gradient.
            This can be used to compute head importance metrics. Default: False
thomwolf's avatar
thomwolf committed
690

thomwolf's avatar
xlm  
thomwolf committed
691
692
693
694
695
696
697
698
699
700
701
702
703
704
    Inputs:
        `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length]
            with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts
            `run_bert_extract_features.py`, `run_bert_classifier.py` and `run_bert_squad.py`)
        `token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token
            types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to
            a `sentence B` token (see XLM paper for more details).
        `attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices
            selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
            input sequence length in the current batch. It's the mask that we typically use for attention when
            a batch has varying length sentences.
        `output_all_encoded_layers`: boolean which controls the content of the `encoded_layers` output as described below. Default: `True`.
        `head_mask`: an optional torch.Tensor of shape [num_heads] or [num_layers, num_heads] with indices between 0 and 1.
            It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked, 0.0 => head is not masked.
thomwolf's avatar
thomwolf committed
705
706


thomwolf's avatar
xlm  
thomwolf committed
707
708
709
710
711
712
713
714
715
716
    Outputs: Tuple of (encoded_layers, pooled_output)
        `encoded_layers`: controled by `output_all_encoded_layers` argument:
            - `output_all_encoded_layers=True`: outputs a list of the full sequences of encoded-hidden-states at the end
                of each attention block (i.e. 12 full sequences for XLM-base, 24 for XLM-large), each
                encoded-hidden-state is a torch.FloatTensor of size [batch_size, sequence_length, hidden_size],
            - `output_all_encoded_layers=False`: outputs only the full sequence of hidden-states corresponding
                to the last attention block of shape [batch_size, sequence_length, hidden_size],
        `pooled_output`: a torch.FloatTensor of size [batch_size, hidden_size] which is the output of a
            classifier pretrained on top of the hidden state associated to the first character of the
            input (`CLS`) to train on the Next-Sentence task (see XLM's paper).
thomwolf's avatar
thomwolf committed
717

thomwolf's avatar
xlm  
thomwolf committed
718
719
720
721
722
723
    Example usage:
    ```python
    # Already been converted into WordPiece token ids
    input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
    input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
    token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])
thomwolf's avatar
thomwolf committed
724

thomwolf's avatar
xlm  
thomwolf committed
725
726
    config = modeling.XLMConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
        num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)
thomwolf's avatar
thomwolf committed
727

thomwolf's avatar
xlm  
thomwolf committed
728
729
730
731
732
    model = modeling.XLMModel(config=config)
    all_encoder_layers, pooled_output = model(input_ids, token_type_ids, input_mask)
    ```
    """
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
733
        super(XLMWithLMHeadModel, self).__init__(config)
734

thomwolf's avatar
xlm  
thomwolf committed
735
        self.transformer = XLMModel(config)
thomwolf's avatar
thomwolf committed
736
        self.pred_layer = XLMPredLayer(config)
737
738
739
740
741
742
743

        self.apply(self.init_weights)
        self.tie_weights()

    def tie_weights(self):
        """ Make sure we are sharing the embeddings
        """
thomwolf's avatar
thomwolf committed
744
        self.pred_layer.proj.weight = self.transformer.embeddings.weight
745

thomwolf's avatar
thomwolf committed
746
747
    def forward(self, input_ids, lengths=None, positions=None, langs=None, token_type_ids=None,
                attention_mask=None, cache=None, labels=None, head_mask=None):
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
        """
        Args:
            inp_k: int32 Tensor in shape [bsz, len], the input token IDs.
            token_type_ids: int32 Tensor in shape [bsz, len], the input segment IDs.
            input_mask: float32 Tensor in shape [bsz, len], the input mask.
                0 for real tokens and 1 for padding.
            mems: a list of float32 Tensors in shape [mem_len, bsz, d_model], memory
                from previous batches. The length of the list equals n_layer.
                If None, no memory is used.
            perm_mask: float32 Tensor in shape [bsz, len, len].
                If perm_mask[k, i, j] = 0, i attend to j in batch k;
                if perm_mask[k, i, j] = 1, i does not attend to j in batch k.
                If None, each position attends to all the others.
            target_mapping: float32 Tensor in shape [bsz, num_predict, len].
                If target_mapping[k, i, j] = 1, the i-th predict in batch k is
                on the j-th token.
                Only used during pretraining for partial prediction.
                Set to None during finetuning.
            inp_q: float32 Tensor in shape [bsz, len].
                1 for tokens with losses and 0 for tokens without losses.
                Only used during pretraining for two-stream attention.
                Set to None during finetuning.

            summary_type: str, "last", "first", "mean", or "attn". The method
                to pool the input to get a vector representation.
        """
thomwolf's avatar
thomwolf committed
774
775
        transformer_outputs = self.transformer(input_ids, lengths=lengths, positions=positions, token_type_ids=token_type_ids,
                                               langs=langs, attention_mask=attention_mask, cache=cache, head_mask=head_mask)
776

777
        output = transformer_outputs[0]
thomwolf's avatar
thomwolf committed
778
        logits = self.pred_layer(output, labels)
779

780
781
        outputs = transformer_outputs[1:]  # Keep new_mems and attention/hidden states if they are here

782
783
784
785
786
        if labels is not None:
            # Flatten the tokens
            loss_fct = CrossEntropyLoss(ignore_index=-1)
            loss = loss_fct(logits.view(-1, logits.size(-1)),
                            labels.view(-1))
787
788
789
            outputs = [loss] + outputs

        outputs = [logits] + outputs
790

791
        return outputs
792
793
794


class XLMSequenceSummary(nn.Module):
thomwolf's avatar
thomwolf committed
795
    def __init__(self, config):
796
        super(XLMSequenceSummary, self).__init__()
thomwolf's avatar
thomwolf committed
797
798
        self.summary_type = config.summary_type
        if config.use_proj:
799
800
801
            self.summary = nn.Linear(config.d_model, config.d_model)
        else:
            self.summary = None
thomwolf's avatar
thomwolf committed
802
        if config.summary_type == 'attn':
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
            # We should use a standard multi-head attention module with absolute positional embedding for that.
            # Cf. https://github.com/zihangdai/xlnet/blob/master/modeling.py#L253-L276
            # We can probably just use the multi-head attention module of PyTorch >=1.1.0
            raise NotImplementedError
        self.dropout = nn.Dropout(config.dropout)
        self.activation = nn.Tanh()

    def forward(self, hidden_states):
        """ hidden_states: float Tensor in shape [bsz, seq_len, d_model], the hidden-states of the last layer."""
        if self.summary_type == 'last':
            output = hidden_states[:, -1]
        elif self.summary_type == 'first':
            output = hidden_states[:, 0]
        elif self.summary_type == 'mean':
            output = hidden_states.mean(dim=1)
        elif summary_type == 'attn':
            raise NotImplementedError

        output = self.summary(output)
        output = self.activation(output)
        output = self.dropout(output)
        return output


class XLMForSequenceClassification(XLMPreTrainedModel):
    """XLM model ("XLM: Generalized Autoregressive Pretraining for Language Understanding").

    Params:
        `config`: a XLMConfig class instance with the configuration to build a new model
        `output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False
        `keep_multihead_output`: If True, saves output of the multi-head attention module with its gradient.
            This can be used to compute head importance metrics. Default: False
        `summary_type`: str, "last", "first", "mean", or "attn". The method
            to pool the input to get a vector representation. Default: last

    Inputs:
        inp_k: int32 Tensor in shape [bsz, len], the input token IDs.
        token_type_ids: int32 Tensor in shape [bsz, len], the input segment IDs.
        input_mask: float32 Tensor in shape [bsz, len], the input mask.
            0 for real tokens and 1 for padding.
        attention_mask: [optional] float32 Tensor, SAME FUNCTION as `input_mask`
            but with 1 for real tokens and 0 for padding.
thomwolf's avatar
thomwolf committed
845
            Added for easy compatibility with the XLM model (which uses this negative masking).
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
            You can only uses one among `input_mask` and `attention_mask`
        mems: a list of float32 Tensors in shape [mem_len, bsz, d_model], memory
            from previous batches. The length of the list equals n_layer.
            If None, no memory is used.
        perm_mask: float32 Tensor in shape [bsz, len, len].
            If perm_mask[k, i, j] = 0, i attend to j in batch k;
            if perm_mask[k, i, j] = 1, i does not attend to j in batch k.
            If None, each position attends to all the others.
        target_mapping: float32 Tensor in shape [bsz, num_predict, len].
            If target_mapping[k, i, j] = 1, the i-th predict in batch k is
            on the j-th token.
            Only used during pretraining for partial prediction.
            Set to None during finetuning.
        inp_q: float32 Tensor in shape [bsz, len].
            1 for tokens with losses and 0 for tokens without losses.
            Only used during pretraining for two-stream attention.
            Set to None during finetuning.
        `head_mask`: an optional torch.Tensor of shape [num_heads] or [num_layers, num_heads] with indices between 0 and 1.
            It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked, 0.0 => head is not masked.


    Outputs: Tuple of (logits or loss, mems)
        `logits or loss`:
            if labels is None:
                Token logits with shape [batch_size, sequence_length] 
            else:
                CrossEntropy loss with the targets
        `new_mems`: list (num layers) of updated mem states at the entry of each layer
            each mem state is a torch.FloatTensor of size [self.config.mem_len, batch_size, self.config.d_model]
            Note that the first two dimensions are transposed in `mems` with regards to `input_ids` and `labels`

    Example usage:
    ```python
    # Already been converted into WordPiece token ids
    input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
    input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
    token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])

    config = modeling.XLMConfig(vocab_size_or_config_json_file=32000, d_model=768,
        n_layer=12, num_attention_heads=12, intermediate_size=3072)

    model = modeling.XLMModel(config=config)
    all_encoder_layers, pooled_output = model(input_ids, token_type_ids, input_mask)
    ```
    """
thomwolf's avatar
xlm  
thomwolf committed
891
    def __init__(self, config):
892
        super(XLMForSequenceClassification, self).__init__(config)
893

thomwolf's avatar
xlm  
thomwolf committed
894
895
        self.transformer = XLMModel(config)
        self.sequence_summary = XLMSequenceSummary(config)
thomwolf's avatar
thomwolf committed
896
897
        self.logits_proj = nn.Linear(config.d_model, config.num_labels)

898
899
        self.apply(self.init_weights)

thomwolf's avatar
thomwolf committed
900
901
    def forward(self, input_ids, lengths=None, positions=None, langs=None, attention_mask=None,
                cache=None, labels=None, head_mask=None):
902
903
904
905
906
907
908
909
        """
        Args:
            inp_k: int32 Tensor in shape [bsz, len], the input token IDs.
            token_type_ids: int32 Tensor in shape [bsz, len], the input segment IDs.
            input_mask: float32 Tensor in shape [bsz, len], the input mask.
                0 for real tokens and 1 for padding.
            attention_mask: [optional] float32 Tensor, SAME FUNCTION as `input_mask`
                but with 1 for real tokens and 0 for padding.
thomwolf's avatar
thomwolf committed
910
                Added for easy compatibility with the XLM model (which uses this negative masking).
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
                You can only uses one among `input_mask` and `attention_mask`
            mems: a list of float32 Tensors in shape [mem_len, bsz, d_model], memory
                from previous batches. The length of the list equals n_layer.
                If None, no memory is used.
            perm_mask: float32 Tensor in shape [bsz, len, len].
                If perm_mask[k, i, j] = 0, i attend to j in batch k;
                if perm_mask[k, i, j] = 1, i does not attend to j in batch k.
                If None, each position attends to all the others.
            target_mapping: float32 Tensor in shape [bsz, num_predict, len].
                If target_mapping[k, i, j] = 1, the i-th predict in batch k is
                on the j-th token.
                Only used during pretraining for partial prediction.
                Set to None during finetuning.
            inp_q: float32 Tensor in shape [bsz, len].
                1 for tokens with losses and 0 for tokens without losses.
                Only used during pretraining for two-stream attention.
                Set to None during finetuning.
        """
thomwolf's avatar
thomwolf committed
929
930
        transformer_outputs = self.transformer(input_ids, lengths=lengths, positions=positions, token_type_ids=token_type_ids,
                                               langs=langs, attention_mask=attention_mask, cache=cache, head_mask=head_mask)
931

932
        output = transformer_outputs[0]
933
934
935
        output = self.sequence_summary(output)
        logits = self.logits_proj(output)

936
937
        outputs = transformer_outputs[1:]  # Keep new_mems and attention/hidden states if they are here

938
939
940
941
942
943
944
945
        if labels is not None:
            if self.num_labels == 1:
                #  We are doing regression
                loss_fct = MSELoss()
                loss = loss_fct(logits.view(-1), labels.view(-1))
            else:
                loss_fct = CrossEntropyLoss()
                loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
946
947
948
            outputs = [loss] + outputs

        outputs = [logits] + outputs
949

950
        return outputs
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972


class XLMForQuestionAnswering(XLMPreTrainedModel):
    """XLM model for Question Answering (span extraction).
    This module is composed of the XLM model with a linear layer on top of
    the sequence output that computes start_logits and end_logits

    Params:
        `config`: a XLMConfig class instance with the configuration to build a new model
        `output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False
        `keep_multihead_output`: If True, saves output of the multi-head attention module with its gradient.
            This can be used to compute head importance metrics. Default: False

    Inputs:
        `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length]
            with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts
            `run_bert_extract_features.py`, `run_bert_classifier.py` and `run_bert_squad.py`)
        `token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token
            types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to
            a `sentence B` token (see XLM paper for more details).
        `attention_mask`: [optional] float32 Tensor, SAME FUNCTION as `input_mask`
            but with 1 for real tokens and 0 for padding.
thomwolf's avatar
thomwolf committed
973
            Added for easy compatibility with the XLM model (which uses this negative masking).
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
            You can only uses one among `input_mask` and `attention_mask`
        `input_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices
            selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
            input sequence length in the current batch. It's the mask that we typically use for attention when
            a batch has varying length sentences.
        `start_positions`: position of the first token for the labeled span: torch.LongTensor of shape [batch_size].
            Positions are clamped to the length of the sequence and position outside of the sequence are not taken
            into account for computing the loss.
        `end_positions`: position of the last token for the labeled span: torch.LongTensor of shape [batch_size].
            Positions are clamped to the length of the sequence and position outside of the sequence are not taken
            into account for computing the loss.
        `head_mask`: an optional torch.Tensor of shape [num_heads] or [num_layers, num_heads] with indices between 0 and 1.
            It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked, 0.0 => head is not masked.

    Outputs:
        if `start_positions` and `end_positions` are not `None`:
            Outputs the total_loss which is the sum of the CrossEntropy loss for the start and end token positions.
        if `start_positions` or `end_positions` is `None`:
            Outputs a tuple of start_logits, end_logits which are the logits respectively for the start and end
            position tokens of shape [batch_size, sequence_length].

    Example usage:
    ```python
    # Already been converted into WordPiece token ids
    input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
    input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
    token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])

    config = XLMConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
        num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)

    model = XLMForQuestionAnswering(config)
    start_logits, end_logits = model(input_ids, token_type_ids, input_mask)
    ```
    """
thomwolf's avatar
thomwolf committed
1009
    def __init__(self, config):
1010
        super(XLMForQuestionAnswering, self).__init__(config)
1011

thomwolf's avatar
xlm  
thomwolf committed
1012
1013
1014
        self.transformer = XLMModel(config)
        self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)

1015
1016
        self.apply(self.init_weights)

thomwolf's avatar
thomwolf committed
1017
1018
    def forward(self, input_ids, lengths=None, positions=None, langs=None, attention_mask=None, cache=None,
                labels=None, head_mask=None):
1019

thomwolf's avatar
thomwolf committed
1020
1021
        transformer_outputs = self.transformer(input_ids, lengths=lengths, positions=positions, token_type_ids=token_type_ids,
                                               langs=langs, attention_mask=attention_mask, cache=cache, head_mask=head_mask)
1022

1023
        output = transformer_outputs[0]
1024
1025
1026
1027
1028
        logits = self.qa_outputs(output)
        start_logits, end_logits = logits.split(1, dim=-1)
        start_logits = start_logits.squeeze(-1)
        end_logits = end_logits.squeeze(-1)

1029
1030
        outputs = transformer_outputs[1:]  # Keep new_mems and attention/hidden states if they are here

1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
        if start_positions is not None and end_positions is not None:
            # If we are on multi-GPU, split add a dimension
            if len(start_positions.size()) > 1:
                start_positions = start_positions.squeeze(-1)
            if len(end_positions.size()) > 1:
                end_positions = end_positions.squeeze(-1)
            # sometimes the start/end positions are outside our model inputs, we ignore these terms
            ignored_index = start_logits.size(1)
            start_positions.clamp_(0, ignored_index)
            end_positions.clamp_(0, ignored_index)

            loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
            start_loss = loss_fct(start_logits, start_positions)
            end_loss = loss_fct(end_logits, end_positions)
            total_loss = (start_loss + end_loss) / 2
1046
1047
1048
1049
1050
            outputs = [total_loss] + outputs

        outputs = [start_logits, end_logits] + outputs

        return outputs