modeling_xlm.py 75.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
# coding=utf-8
# Copyright 2019-present, Facebook, Inc and the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch XLM model.
"""
from __future__ import (absolute_import, division, print_function,
                        unicode_literals)
from __future__ import absolute_import, division, print_function, unicode_literals

import copy
import json
import logging
import math
import os
import sys
from io import open

import math
import itertools
import numpy as np

import torch
from torch import nn
from torch.nn import functional as F
from torch.nn import CrossEntropyLoss, MSELoss

from .file_utils import cached_path
39
from .model_utils import CONFIG_NAME, WEIGHTS_NAME, PretrainedConfig, PreTrainedModel
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392

logger = logging.getLogger(__name__)

PRETRAINED_MODEL_ARCHIVE_MAP = {
    'xlm-mlm-en-2048': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-en-2048-pytorch_model.bin",
}
PRETRAINED_CONFIG_ARCHIVE_MAP = {
    'xlm-mlm-en-2048': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-en-2048-config.json",
}

DECODER_ONLY_PARAMS = [
    'layer_norm15.%i.weight', 'layer_norm15.%i.bias',
    'encoder_attn.%i.q_lin.weight', 'encoder_attn.%i.q_lin.bias',
    'encoder_attn.%i.k_lin.weight', 'encoder_attn.%i.k_lin.bias',
    'encoder_attn.%i.v_lin.weight', 'encoder_attn.%i.v_lin.bias',
    'encoder_attn.%i.out_lin.weight', 'encoder_attn.%i.out_lin.bias'
]

TRANSFORMER_LAYER_PARAMS = [
    'attentions.%i.q_lin.weight', 'attentions.%i.q_lin.bias',
    'attentions.%i.k_lin.weight', 'attentions.%i.k_lin.bias',
    'attentions.%i.v_lin.weight', 'attentions.%i.v_lin.bias',
    'attentions.%i.out_lin.weight', 'attentions.%i.out_lin.bias',
    'layer_norm1.%i.weight', 'layer_norm1.%i.bias',
    'ffns.%i.lin1.weight', 'ffns.%i.lin1.bias',
    'ffns.%i.lin2.weight', 'ffns.%i.lin2.bias',
    'layer_norm2.%i.weight', 'layer_norm2.%i.bias'
]

class XLMConfig(PretrainedConfig):
    """Configuration class to store the configuration of a `XLMModel`.
    """
    pretrained_config_archive_map = PRETRAINED_CONFIG_ARCHIVE_MAP

    def __init__(self,
                 vocab_size_or_config_json_file,
                 d_model=1024,
                 n_layer=24,
                 n_head=16,
                 d_inner=4096,
                 ff_activation="gelu",
                 untie_r=True,
                 attn_type="bi",

                 max_position_embeddings=512,
                 initializer_range=0.02,
                 layer_norm_eps=1e-12,

                 dropout=0.1,
                 dropatt=0.1,
                 init="normal",
                 init_range=0.1,
                 init_std=0.02,
                 mem_len=None,
                 reuse_len=None,
                 bi_data=False,
                 clamp_len=-1,
                 same_length=False):
        """Constructs XLMConfig.

        Args:
            vocab_size_or_config_json_file: Vocabulary size of `inputs_ids` in `XLMModel`.
            d_model: Size of the encoder layers and the pooler layer.
            n_layer: Number of hidden layers in the Transformer encoder.
            n_head: Number of attention heads for each attention layer in
                the Transformer encoder.
            d_inner: The size of the "intermediate" (i.e., feed-forward)
                layer in the Transformer encoder.
            ff_activation: The non-linear activation function (function or string) in the
                encoder and pooler. If string, "gelu", "relu" and "swish" are supported.
            untie_r: untie relative position biases
            attn_type: 'bi' for XLM, 'uni' for Transformer-XL

            dropout: The dropout probabilitiy for all fully connected
                layers in the embeddings, encoder, and pooler.
            dropatt: The dropout ratio for the attention
                probabilities.
            max_position_embeddings: The maximum sequence length that this model might
                ever be used with. Typically set this to something large just in case
                (e.g., 512 or 1024 or 2048).
            initializer_range: The sttdev of the truncated_normal_initializer for
                initializing all weight matrices.
            layer_norm_eps: The epsilon used by LayerNorm.

            dropout: float, dropout rate.
            dropatt: float, dropout rate on attention probabilities.
            init: str, the initialization scheme, either "normal" or "uniform".
            init_range: float, initialize the parameters with a uniform distribution
                in [-init_range, init_range]. Only effective when init="uniform".
            init_std: float, initialize the parameters with a normal distribution
                with mean 0 and stddev init_std. Only effective when init="normal".
            mem_len: int, the number of tokens to cache.
            reuse_len: int, the number of tokens in the currect batch to be cached
                and reused in the future.
            bi_data: bool, whether to use bidirectional input pipeline.
                Usually set to True during pretraining and False during finetuning.
            clamp_len: int, clamp all relative distances larger than clamp_len.
                -1 means no clamping.
            same_length: bool, whether to use the same attention length for each token.
        """
        if isinstance(vocab_size_or_config_json_file, str) or (sys.version_info[0] == 2
                        and isinstance(vocab_size_or_config_json_file, unicode)):
            with open(vocab_size_or_config_json_file, "r", encoding='utf-8') as reader:
                json_config = json.loads(reader.read())
            for key, value in json_config.items():
                self.__dict__[key] = value
        elif isinstance(vocab_size_or_config_json_file, int):
            self.n_token = vocab_size_or_config_json_file
            self.d_model = d_model
            self.n_layer = n_layer
            self.n_head = n_head
            assert d_model % n_head == 0
            self.d_head = d_model // n_head
            self.ff_activation = ff_activation
            self.d_inner = d_inner
            self.untie_r = untie_r
            self.attn_type = attn_type

            self.max_position_embeddings = max_position_embeddings
            self.initializer_range = initializer_range
            self.layer_norm_eps = layer_norm_eps

            self.init = init
            self.init_range = init_range
            self.init_std = init_std
            self.dropout = dropout
            self.dropatt = dropatt
            self.mem_len = mem_len
            self.reuse_len = reuse_len
            self.bi_data = bi_data
            self.clamp_len = clamp_len
            self.same_length = same_length
        else:
            raise ValueError("First argument must be either a vocabulary size (int)"
                             "or the path to a pretrained model config file (str)")


try:
    from apex.normalization.fused_layer_norm import FusedLayerNorm as XLMLayerNorm
except ImportError:
    logger.info("Better speed can be achieved with apex installed from https://www.github.com/nvidia/apex .")
    class XLMLayerNorm(nn.Module):
        def __init__(self, d_model, eps=1e-12):
            """Construct a layernorm module in the TF style (epsilon inside the square root).
            """
            super(XLMLayerNorm, self).__init__()
            self.weight = nn.Parameter(torch.ones(d_model))
            self.bias = nn.Parameter(torch.zeros(d_model))
            self.variance_epsilon = eps

        def forward(self, x):
            u = x.mean(-1, keepdim=True)
            s = (x - u).pow(2).mean(-1, keepdim=True)
            x = (x - u) / torch.sqrt(s + self.variance_epsilon)
            return self.weight * x + self.bias


def Embedding(num_embeddings, embedding_dim, padding_idx=None):
    m = nn.Embedding(num_embeddings, embedding_dim, padding_idx=padding_idx)
    nn.init.normal_(m.weight, mean=0, std=embedding_dim ** -0.5)
    if padding_idx is not None:
        nn.init.constant_(m.weight[padding_idx], 0)
    return m


def Linear(in_features, out_features, bias=True):
    m = nn.Linear(in_features, out_features, bias)
    # nn.init.normal_(m.weight, mean=0, std=1)
    # nn.init.xavier_uniform_(m.weight)
    # nn.init.constant_(m.bias, 0.)
    return m


def create_sinusoidal_embeddings(n_pos, dim, out):
    position_enc = np.array([
        [pos / np.power(10000, 2 * (j // 2) / dim) for j in range(dim)]
        for pos in range(n_pos)
    ])
    out[:, 0::2] = torch.FloatTensor(np.sin(position_enc[:, 0::2]))
    out[:, 1::2] = torch.FloatTensor(np.cos(position_enc[:, 1::2]))
    out.detach_()
    out.requires_grad = False


def gelu(x):
    """
    GELU activation
    https://arxiv.org/abs/1606.08415
    https://github.com/huggingface/pytorch-openai-transformer-lm/blob/master/model_pytorch.py#L14
    https://github.com/huggingface/pytorch-pretrained-BERT/blob/master/modeling.py
    """
    # return 0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))
    return 0.5 * x * (1.0 + torch.erf(x / math.sqrt(2.0)))


def get_masks(slen, lengths, causal):
    """
    Generate hidden states mask, and optionally an attention mask.
    """
    assert lengths.max().item() <= slen
    bs = lengths.size(0)
    alen = torch.arange(slen, dtype=torch.long, device=lengths.device)
    mask = alen < lengths[:, None]

    # attention mask is the same as mask, or triangular inferior attention (causal)
    if causal:
        attn_mask = alen[None, None, :].repeat(bs, slen, 1) <= alen[None, :, None]
    else:
        attn_mask = mask

    # sanity check
    assert mask.size() == (bs, slen)
    assert causal is False or attn_mask.size() == (bs, slen, slen)

    return mask, attn_mask


class MultiHeadAttention(nn.Module):

    NEW_ID = itertools.count()

    def __init__(self, n_heads, dim, dropout):
        super().__init__()
        self.layer_id = next(MultiHeadAttention.NEW_ID)
        self.dim = dim
        self.n_heads = n_heads
        self.dropout = dropout
        assert self.dim % self.n_heads == 0

        self.q_lin = Linear(dim, dim)
        self.k_lin = Linear(dim, dim)
        self.v_lin = Linear(dim, dim)
        self.out_lin = Linear(dim, dim)

    def forward(self, input, mask, kv=None, cache=None):
        """
        Self-attention (if kv is None) or attention over source sentence (provided by kv).
        """
        # Input is (bs, qlen, dim)
        # Mask is (bs, klen) (non-causal) or (bs, klen, klen)
        bs, qlen, dim = input.size()
        if kv is None:
            klen = qlen if cache is None else cache['slen'] + qlen
        else:
            klen = kv.size(1)
        assert dim == self.dim, 'Dimensions do not match: %s input vs %s configured' % (dim, self.dim)
        n_heads = self.n_heads
        dim_per_head = dim // n_heads
        mask_reshape = (bs, 1, qlen, klen) if mask.dim() == 3 else (bs, 1, 1, klen)

        def shape(x):
            """  projection """
            return x.view(bs, -1, self.n_heads, dim_per_head).transpose(1, 2)

        def unshape(x):
            """  compute context """
            return x.transpose(1, 2).contiguous().view(bs, -1, self.n_heads * dim_per_head)

        q = shape(self.q_lin(input))                                          # (bs, n_heads, qlen, dim_per_head)
        if kv is None:
            k = shape(self.k_lin(input))                                      # (bs, n_heads, qlen, dim_per_head)
            v = shape(self.v_lin(input))                                      # (bs, n_heads, qlen, dim_per_head)
        elif cache is None or self.layer_id not in cache:
            k = v = kv
            k = shape(self.k_lin(k))                                          # (bs, n_heads, qlen, dim_per_head)
            v = shape(self.v_lin(v))                                          # (bs, n_heads, qlen, dim_per_head)

        if cache is not None:
            if self.layer_id in cache:
                if kv is None:
                    k_, v_ = cache[self.layer_id]
                    k = torch.cat([k_, k], dim=2)                             # (bs, n_heads, klen, dim_per_head)
                    v = torch.cat([v_, v], dim=2)                             # (bs, n_heads, klen, dim_per_head)
                else:
                    k, v = cache[self.layer_id]
            cache[self.layer_id] = (k, v)

        q = q / math.sqrt(dim_per_head)                                       # (bs, n_heads, qlen, dim_per_head)
        scores = torch.matmul(q, k.transpose(2, 3))                           # (bs, n_heads, qlen, klen)
        mask = (mask == 0).view(mask_reshape).expand_as(scores)               # (bs, n_heads, qlen, klen)
        scores.masked_fill_(mask, -float('inf'))                              # (bs, n_heads, qlen, klen)

        weights = F.softmax(scores.float(), dim=-1).type_as(scores)           # (bs, n_heads, qlen, klen)
        weights = F.dropout(weights, p=self.dropout, training=self.training)  # (bs, n_heads, qlen, klen)
        context = torch.matmul(weights, v)                                    # (bs, n_heads, qlen, dim_per_head)
        context = unshape(context)                                            # (bs, qlen, dim)

        return self.out_lin(context)


class TransformerFFN(nn.Module):

    def __init__(self, in_dim, dim_hidden, out_dim, dropout, gelu_activation):
        super().__init__()
        self.dropout = dropout
        self.lin1 = Linear(in_dim, dim_hidden)
        self.lin2 = Linear(dim_hidden, out_dim)
        self.act = gelu if gelu_activation else F.relu

    def forward(self, input):
        x = self.lin1(input)
        x = self.act(x)
        x = self.lin2(x)
        x = F.dropout(x, p=self.dropout, training=self.training)
        return x


class BeamHypotheses(object):

    def __init__(self, n_hyp, max_len, length_penalty, early_stopping):
        """
        Initialize n-best list of hypotheses.
        """
        self.max_len = max_len - 1  # ignoring <BOS>
        self.length_penalty = length_penalty
        self.early_stopping = early_stopping
        self.n_hyp = n_hyp
        self.hyp = []
        self.worst_score = 1e9

    def __len__(self):
        """
        Number of hypotheses in the list.
        """
        return len(self.hyp)

    def add(self, hyp, sum_logprobs):
        """
        Add a new hypothesis to the list.
        """
        score = sum_logprobs / len(hyp) ** self.length_penalty
        if len(self) < self.n_hyp or score > self.worst_score:
            self.hyp.append((score, hyp))
            if len(self) > self.n_hyp:
                sorted_scores = sorted([(s, idx) for idx, (s, _) in enumerate(self.hyp)])
                del self.hyp[sorted_scores[0][1]]
                self.worst_score = sorted_scores[1][0]
            else:
                self.worst_score = min(score, self.worst_score)

    def is_done(self, best_sum_logprobs):
        """
        If there are enough hypotheses and that none of the hypotheses being generated
        can become better than the worst one in the heap, then we are done with this sentence.
        """
        if len(self) < self.n_hyp:
            return False
        elif self.early_stopping:
            return True
        else:
            return self.worst_score >= best_sum_logprobs / self.max_len ** self.length_penalty


393
class XLMPreTrainedModel(PreTrainedModel):
394
395
396
    """ An abstract class to handle weights initialization and
        a simple interface for dowloading and loading pretrained models.
    """
397
398
399
400
401
402
403
404
    config_class = XLMConfig
    pretrained_model_archive_map = PRETRAINED_MODEL_ARCHIVE_MAP
    pretrained_config_archive_map = PRETRAINED_CONFIG_ARCHIVE_MAP
    load_tf_weights = None
    base_model_prefix = "xlm"

    def __init__(self, *inputs, **kwargs):
        super(XLMPreTrainedModel, self).__init__(*inputs, **kwargs)
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432

    def init_weights(self, module):
        """ Initialize the weights.
        """
        if isinstance(module, (nn.Linear, nn.Embedding)):
            # Slightly different from the TF version which uses truncated_normal for initialization
            # cf https://github.com/pytorch/pytorch/pull/5617
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
        elif isinstance(module, XLMLayerNorm):
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)
        elif isinstance(module, XLMRelativeAttention):
            for param in [module.q, module.k, module.v, module.o, module.r,
                          module.r_r_bias, module.r_s_bias, module.r_w_bias,
                          module.seg_embed]:
                param.data.normal_(mean=0.0, std=self.config.initializer_range)
        if isinstance(module, nn.Linear) and module.bias is not None:
            module.bias.data.zero_()


class XLMModel(XLMPreTrainedModel):

    ATTRIBUTES = ['encoder', 'eos_index', 'pad_index',  # 'with_output', 
                  'n_langs', 'n_words', 'dim', 'n_layers', 'n_heads', 
                  'hidden_dim', 'dropout', 'attention_dropout', 'asm',
                  'asm_cutoffs', 'asm_div_value']

    def __init__(self, params, output_attentions=False, keep_multihead_output=False):  #, dico, is_encoder, with_output):
thomwolf's avatar
thomwolf committed
433
434
435
        """ XLM model from: "Cross-lingual Language Model Pretraining" by Guillaume Lample, Alexis Conneau
            Paper: https://arxiv.org/abs/1901.07291
            Original code: https://github.com/facebookresearch/XLM
thomwolf's avatar
thomwolf committed
436
437

        Params:
thomwolf's avatar
thomwolf committed
438
            `config`: a XLMConfig class instance with the configuration to build a new model
thomwolf's avatar
thomwolf committed
439
440
441
442
443
444
445
446
447
448
            `output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False
            `keep_multihead_output`: If True, saves output of the multi-head attention module with its gradient.
                This can be used to compute head importance metrics. Default: False

        Inputs:
            `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length]
                with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts
                `run_bert_extract_features.py`, `run_bert_classifier.py` and `run_bert_squad.py`)
            `token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token
                types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to
thomwolf's avatar
thomwolf committed
449
                a `sentence B` token (see XLM paper for more details).
thomwolf's avatar
thomwolf committed
450
451
452
453
454
455
456
457
458
459
460
461
            `attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices
                selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
                input sequence length in the current batch. It's the mask that we typically use for attention when
                a batch has varying length sentences.
            `output_all_encoded_layers`: boolean which controls the content of the `encoded_layers` output as described below. Default: `True`.
            `head_mask`: an optional torch.Tensor of shape [num_heads] or [num_layers, num_heads] with indices between 0 and 1.
                It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked, 0.0 => head is not masked.


        Outputs: Tuple of (encoded_layers, pooled_output)
            `encoded_layers`: controled by `output_all_encoded_layers` argument:
                - `output_all_encoded_layers=True`: outputs a list of the full sequences of encoded-hidden-states at the end
thomwolf's avatar
thomwolf committed
462
                    of each attention block (i.e. 12 full sequences for XLM-base, 24 for XLM-large), each
thomwolf's avatar
thomwolf committed
463
464
465
466
467
                    encoded-hidden-state is a torch.FloatTensor of size [batch_size, sequence_length, hidden_size],
                - `output_all_encoded_layers=False`: outputs only the full sequence of hidden-states corresponding
                    to the last attention block of shape [batch_size, sequence_length, hidden_size],
            `pooled_output`: a torch.FloatTensor of size [batch_size, hidden_size] which is the output of a
                classifier pretrained on top of the hidden state associated to the first character of the
thomwolf's avatar
thomwolf committed
468
                input (`CLS`) to train on the Next-Sentence task (see XLM's paper).
thomwolf's avatar
thomwolf committed
469
470
471
472
473
474
475
476

        Example usage:
        ```python
        # Already been converted into WordPiece token ids
        input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
        input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
        token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])

thomwolf's avatar
thomwolf committed
477
        config = modeling.XLMConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
thomwolf's avatar
thomwolf committed
478
479
            num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)

thomwolf's avatar
thomwolf committed
480
        model = modeling.XLMModel(config=config)
thomwolf's avatar
thomwolf committed
481
482
        all_encoder_layers, pooled_output = model(input_ids, token_type_ids, input_mask)
        ```
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
        """
        super(XLMModel, self).__init__(params)
        self.output_attentions = output_attentions

        # encoder / decoder, output layer
        # self.is_encoder = is_encoder
        # self.is_decoder = not is_encoder
        # self.with_output = with_output

        # dictionary / languages
        self.n_langs = params.n_langs
        self.n_words = params.n_words
        self.eos_index = params.eos_index
        self.pad_index = params.pad_index
        # self.dico = dico
        self.id2lang = params.id2lang
        self.lang2id = params.lang2id
        # assert len(self.dico) == self.n_words
        assert len(self.id2lang) == len(self.lang2id) == self.n_langs

        # model parameters
        self.dim = params.emb_dim       # 512 by default
        self.hidden_dim = self.dim * 4  # 2048 by default
        self.n_heads = params.n_heads   # 8 by default
        self.n_layers = params.n_layers
        self.dropout = params.dropout
        self.attention_dropout = params.attention_dropout
        assert self.dim % self.n_heads == 0, 'transformer dim must be a multiple of n_heads'

        # embeddings
        self.position_embeddings = Embedding(params.max_position_embeddings, self.dim)
        if params.sinusoidal_embeddings:
            create_sinusoidal_embeddings(params.max_position_embeddings, self.dim, out=self.position_embeddings.weight)
        if params.n_langs > 1:
            self.lang_embeddings = Embedding(self.n_langs, self.dim)
        self.embeddings = Embedding(self.n_words, self.dim, padding_idx=self.pad_index)
        self.layer_norm_emb = nn.LayerNorm(self.dim, eps=1e-12)

        # transformer layers
        self.attentions = nn.ModuleList()
        self.layer_norm1 = nn.ModuleList()
        self.ffns = nn.ModuleList()
        self.layer_norm2 = nn.ModuleList()
        if self.is_decoder:
            self.layer_norm15 = nn.ModuleList()
            self.encoder_attn = nn.ModuleList()

        for _ in range(self.n_layers):
            self.attentions.append(MultiHeadAttention(self.n_heads, self.dim, dropout=self.attention_dropout))
            self.layer_norm1.append(nn.LayerNorm(self.dim, eps=1e-12))
            if self.is_decoder:
                self.layer_norm15.append(nn.LayerNorm(self.dim, eps=1e-12))
                self.encoder_attn.append(MultiHeadAttention(self.n_heads, self.dim, dropout=self.attention_dropout))
            self.ffns.append(TransformerFFN(self.dim, self.hidden_dim, self.dim, dropout=self.dropout, gelu_activation=params.gelu_activation))
            self.layer_norm2.append(nn.LayerNorm(self.dim, eps=1e-12))

        # output layer
        # if self.with_output:
        #     self.pred_layer = PredLayer(params)
        #     if params.share_inout_emb:
        #         self.pred_layer.proj.weight = self.embeddings.weight

    # def forward(self, mode, **kwargs):
    #     """
    #     Forward function with different forward modes.
    #     ### Small hack to handle PyTorch distributed.
    #     """
    #     if mode == 'fwd':
    #         return self.fwd(**kwargs)
    #     elif mode == 'predict':
    #         return self.predict(**kwargs)
    #     else:
    #         raise Exception("Unknown mode: %s" % mode)

    def forward(self, x, lengths, causal, src_enc=None, src_len=None, positions=None, langs=None, cache=None):
        """
        Inputs:
            `x` LongTensor(slen, bs), containing word indices
            `lengths` LongTensor(bs), containing the length of each sentence
            `causal` Boolean, if True, the attention is only done over previous hidden states
            `positions` LongTensor(slen, bs), containing word positions
            `langs` LongTensor(slen, bs), containing language IDs
        """
        # lengths = (x != self.pad_index).float().sum(dim=1)
        # mask = x != self.pad_index

        # check inputs
        slen, bs = x.size()
        assert lengths.size(0) == bs
        assert lengths.max().item() <= slen
        x = x.transpose(0, 1)  # batch size as dimension 0
        assert (src_enc is None) == (src_len is None)
        if src_enc is not None:
            assert self.is_decoder
            assert src_enc.size(0) == bs

        # generate masks
        mask, attn_mask = get_masks(slen, lengths, causal)
        if self.is_decoder and src_enc is not None:
            src_mask = torch.arange(src_len.max(), dtype=torch.long, device=lengths.device) < src_len[:, None]

        # positions
        if positions is None:
            positions = x.new(slen).long()
            positions = torch.arange(slen, out=positions).unsqueeze(0)
        else:
            assert positions.size() == (slen, bs)
            positions = positions.transpose(0, 1)

        # langs
        if langs is not None:
            assert langs.size() == (slen, bs)
            langs = langs.transpose(0, 1)

        # do not recompute cached elements
        if cache is not None:
            _slen = slen - cache['slen']
            x = x[:, -_slen:]
            positions = positions[:, -_slen:]
            if langs is not None:
                langs = langs[:, -_slen:]
            mask = mask[:, -_slen:]
            attn_mask = attn_mask[:, -_slen:]

        # embeddings
        tensor = self.embeddings(x)
        tensor = tensor + self.position_embeddings(positions).expand_as(tensor)
        if langs is not None:
            tensor = tensor + self.lang_embeddings(langs)
        tensor = self.layer_norm_emb(tensor)
        tensor = F.dropout(tensor, p=self.dropout, training=self.training)
        tensor *= mask.unsqueeze(-1).to(tensor.dtype)

        # transformer layers
        for i in range(self.n_layers):

            # self attention
            attn = self.attentions[i](tensor, attn_mask, cache=cache)
            attn = F.dropout(attn, p=self.dropout, training=self.training)
            tensor = tensor + attn
            tensor = self.layer_norm1[i](tensor)

            # encoder attention (for decoder only)
            if self.is_decoder and src_enc is not None:
                attn = self.encoder_attn[i](tensor, src_mask, kv=src_enc, cache=cache)
                attn = F.dropout(attn, p=self.dropout, training=self.training)
                tensor = tensor + attn
                tensor = self.layer_norm15[i](tensor)

            # FFN
            tensor = tensor + self.ffns[i](tensor)
            tensor = self.layer_norm2[i](tensor)
            tensor *= mask.unsqueeze(-1).to(tensor.dtype)

        # update cache length
        if cache is not None:
            cache['slen'] += tensor.size(1)

        # move back sequence length to dimension 0
        tensor = tensor.transpose(0, 1)

        return tensor

    def predict(self, tensor, pred_mask, y, get_scores):
        """
        Given the last hidden state, compute word scores and/or the loss.
            `pred_mask` is a ByteTensor of shape (slen, bs), filled with 1 when
                we need to predict a word
            `y` is a LongTensor of shape (pred_mask.sum(),)
            `get_scores` is a boolean specifying whether we need to return scores
        """
        masked_tensor = tensor[pred_mask.unsqueeze(-1).expand_as(tensor)].view(-1, self.dim)
        scores, loss = self.pred_layer(masked_tensor, y, get_scores)
        return scores, loss

    def generate(self, src_enc, src_len, tgt_lang_id, max_len=200, sample_temperature=None):
        """
        Decode a sentence given initial start.
        `x`:
            - LongTensor(bs, slen)
                <EOS> W1 W2 W3 <EOS> <PAD>
                <EOS> W1 W2 W3   W4  <EOS>
        `lengths`:
            - LongTensor(bs) [5, 6]
        `positions`:
            - False, for regular "arange" positions (LM)
            - True, to reset positions from the new generation (MT)
        `langs`:
            - must be None if the model only supports one language
            - lang_id if only one language is involved (LM)
            - (lang_id1, lang_id2) if two languages are involved (MT)
        """

        # input batch
        bs = len(src_len)
        assert src_enc.size(0) == bs

        # generated sentences
        generated = src_len.new(max_len, bs)  # upcoming output
        generated.fill_(self.pad_index)       # fill upcoming ouput with <PAD>
        generated[0].fill_(self.eos_index)    # we use <EOS> for <BOS> everywhere

        # positions
        positions = src_len.new(max_len).long()
        positions = torch.arange(max_len, out=positions).unsqueeze(1).expand(max_len, bs)

        # language IDs
        langs = src_len.new(max_len).long().fill_(tgt_lang_id)
        langs = langs.unsqueeze(1).expand(max_len, bs)

        # current position / max lengths / length of generated sentences / unfinished sentences
        cur_len = 1
        gen_len = src_len.clone().fill_(1)
        unfinished_sents = src_len.clone().fill_(1)

        # cache compute states
        cache = {'slen': 0}

        while cur_len < max_len:

            # compute word scores
            tensor = self.forward(
                'fwd',
                x=generated[:cur_len],
                lengths=gen_len,
                positions=positions[:cur_len],
                langs=langs[:cur_len],
                causal=True,
                src_enc=src_enc,
                src_len=src_len,
                cache=cache
            )
            assert tensor.size() == (1, bs, self.dim)
            tensor = tensor.data[-1, :, :]               # (bs, dim)
            scores = self.pred_layer.get_scores(tensor)  # (bs, n_words)

            # select next words: sample or greedy
            if sample_temperature is None:
                next_words = torch.topk(scores, 1)[1].squeeze(1)
            else:
                next_words = torch.multinomial(F.softmax(scores / sample_temperature, dim=1), 1).squeeze(1)
            assert next_words.size() == (bs,)

            # update generations / lengths / finished sentences / current length
            generated[cur_len] = next_words * unfinished_sents + self.pad_index * (1 - unfinished_sents)
            gen_len.add_(unfinished_sents)
            unfinished_sents.mul_(next_words.ne(self.eos_index).long())
            cur_len = cur_len + 1

            # stop when there is a </s> in each sentence, or if we exceed the maximul length
            if unfinished_sents.max() == 0:
                break

        # add <EOS> to unfinished sentences
        if cur_len == max_len:
            generated[-1].masked_fill_(unfinished_sents.byte(), self.eos_index)

        # sanity check
        assert (generated == self.eos_index).sum() == 2 * bs

        return generated[:cur_len], gen_len

    def generate_beam(self, src_enc, src_len, tgt_lang_id, beam_size, length_penalty, early_stopping, max_len=200):
        """
        Decode a sentence given initial start.
        `x`:
            - LongTensor(bs, slen)
                <EOS> W1 W2 W3 <EOS> <PAD>
                <EOS> W1 W2 W3   W4  <EOS>
        `lengths`:
            - LongTensor(bs) [5, 6]
        `positions`:
            - False, for regular "arange" positions (LM)
            - True, to reset positions from the new generation (MT)
        `langs`:
            - must be None if the model only supports one language
            - lang_id if only one language is involved (LM)
            - (lang_id1, lang_id2) if two languages are involved (MT)
        """

        # check inputs
        assert src_enc.size(0) == src_len.size(0)
        assert beam_size >= 1

        # batch size / number of words
        bs = len(src_len)
        n_words = self.n_words

        # expand to beam size the source latent representations / source lengths
        src_enc = src_enc.unsqueeze(1).expand((bs, beam_size) + src_enc.shape[1:]).contiguous().view((bs * beam_size,) + src_enc.shape[1:])
        src_len = src_len.unsqueeze(1).expand(bs, beam_size).contiguous().view(-1)

        # generated sentences (batch with beam current hypotheses)
        generated = src_len.new(max_len, bs * beam_size)  # upcoming output
        generated.fill_(self.pad_index)                   # fill upcoming ouput with <PAD>
        generated[0].fill_(self.eos_index)                # we use <EOS> for <BOS> everywhere

        # generated hypotheses
        generated_hyps = [BeamHypotheses(beam_size, max_len, length_penalty, early_stopping) for _ in range(bs)]

        # positions
        positions = src_len.new(max_len).long()
        positions = torch.arange(max_len, out=positions).unsqueeze(1).expand_as(generated)

        # language IDs
        langs = positions.clone().fill_(tgt_lang_id)

        # scores for each sentence in the beam
        beam_scores = src_enc.new(bs, beam_size).fill_(0)
        beam_scores[:, 1:] = -1e9
        beam_scores = beam_scores.view(-1)

        # current position
        cur_len = 1

        # cache compute states
        cache = {'slen': 0}

        # done sentences
        done = [False for _ in range(bs)]

        while cur_len < max_len:

            # compute word scores
            tensor = self.forward(
                'fwd',
                x=generated[:cur_len],
                lengths=src_len.new(bs * beam_size).fill_(cur_len),
                positions=positions[:cur_len],
                langs=langs[:cur_len],
                causal=True,
                src_enc=src_enc,
                src_len=src_len,
                cache=cache
            )
            assert tensor.size() == (1, bs * beam_size, self.dim)
            tensor = tensor.data[-1, :, :]               # (bs * beam_size, dim)
            scores = self.pred_layer.get_scores(tensor)  # (bs * beam_size, n_words)
            scores = F.log_softmax(scores, dim=-1)       # (bs * beam_size, n_words)
            assert scores.size() == (bs * beam_size, n_words)

            # select next words with scores
            _scores = scores + beam_scores[:, None].expand_as(scores)  # (bs * beam_size, n_words)
            _scores = _scores.view(bs, beam_size * n_words)            # (bs, beam_size * n_words)

            next_scores, next_words = torch.topk(_scores, 2 * beam_size, dim=1, largest=True, sorted=True)
            assert next_scores.size() == next_words.size() == (bs, 2 * beam_size)

            # next batch beam content
            # list of (bs * beam_size) tuple(next hypothesis score, next word, current position in the batch)
            next_batch_beam = []

            # for each sentence
            for sent_id in range(bs):

                # if we are done with this sentence
                done[sent_id] = done[sent_id] or generated_hyps[sent_id].is_done(next_scores[sent_id].max().item())
                if done[sent_id]:
                    next_batch_beam.extend([(0, self.pad_index, 0)] * beam_size)  # pad the batch
                    continue

                # next sentence beam content
                next_sent_beam = []

                # next words for this sentence
                for idx, value in zip(next_words[sent_id], next_scores[sent_id]):

                    # get beam and word IDs
                    beam_id = idx // n_words
                    word_id = idx % n_words

                    # end of sentence, or next word
                    if word_id == self.eos_index or cur_len + 1 == max_len:
                        generated_hyps[sent_id].add(generated[:cur_len, sent_id * beam_size + beam_id].clone(), value.item())
                    else:
                        next_sent_beam.append((value, word_id, sent_id * beam_size + beam_id))

                    # the beam for next step is full
                    if len(next_sent_beam) == beam_size:
                        break

                # update next beam content
                assert len(next_sent_beam) == 0 if cur_len + 1 == max_len else beam_size
                if len(next_sent_beam) == 0:
                    next_sent_beam = [(0, self.pad_index, 0)] * beam_size  # pad the batch
                next_batch_beam.extend(next_sent_beam)
                assert len(next_batch_beam) == beam_size * (sent_id + 1)

            # sanity check / prepare next batch
            assert len(next_batch_beam) == bs * beam_size
            beam_scores = beam_scores.new([x[0] for x in next_batch_beam])
            beam_words = generated.new([x[1] for x in next_batch_beam])
            beam_idx = src_len.new([x[2] for x in next_batch_beam])

            # re-order batch and internal states
            generated = generated[:, beam_idx]
            generated[cur_len] = beam_words
            for k in cache.keys():
                if k != 'slen':
                    cache[k] = (cache[k][0][beam_idx], cache[k][1][beam_idx])

            # update current length
            cur_len = cur_len + 1

            # stop when we are done with each sentence
            if all(done):
                break

        # visualize hypotheses
        # print([len(x) for x in generated_hyps], cur_len)
        # globals().update( locals() );
        # !import code; code.interact(local=vars())
        # for ii in range(bs):
        #     for ss, ww in sorted(generated_hyps[ii].hyp, key=lambda x: x[0], reverse=True):
        #         print("%.3f " % ss + " ".join(self.dico[x] for x in ww.tolist()))
        #     print("")

        # select the best hypotheses
        tgt_len = src_len.new(bs)
        best = []

        for i, hypotheses in enumerate(generated_hyps):
            best_hyp = max(hypotheses.hyp, key=lambda x: x[0])[1]
            tgt_len[i] = len(best_hyp) + 1  # +1 for the <EOS> symbol
            best.append(best_hyp)

        # generate target batch
        decoded = src_len.new(tgt_len.max().item(), bs).fill_(self.pad_index)
        for i, hypo in enumerate(best):
            decoded[:tgt_len[i] - 1, i] = hypo
            decoded[tgt_len[i] - 1, i] = self.eos_index

        # sanity check
        assert (decoded == self.eos_index).sum() == 2 * bs

        return decoded, tgt_len


class XLMModel(XLMPreTrainedModel):
922
    def __init__(self, config, output_attentions=False, output_hidden_states=False):
923
924
        super(XLMModel, self).__init__(config)
        self.output_attentions = output_attentions
925
926
        self.output_hidden_states = output_hidden_states

927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
        self.mem_len = config.mem_len
        self.reuse_len = config.reuse_len
        self.d_model = config.d_model
        self.same_length = config.same_length
        self.attn_type = config.attn_type
        self.bi_data = config.bi_data
        self.clamp_len = config.clamp_len

        self.word_embedding = nn.Embedding(config.n_token, config.d_model)
        self.mask_emb = nn.Parameter(torch.Tensor(1, 1, config.d_model))
        layer = XLMLayer(config, output_attentions=output_attentions,
                                   keep_multihead_output=keep_multihead_output)
        self.layer = nn.ModuleList([copy.deepcopy(layer) for _ in range(config.n_layer)])
        self.dropout = nn.Dropout(config.dropout)

    def prune_heads(self, heads_to_prune):
        """ Prunes heads of the model.
            heads_to_prune: dict of {layer_num: list of heads to prune in this layer}
        """
        for layer, heads in heads_to_prune.items():
            self.layer[layer].attention.prune_heads(heads)

    def get_multihead_outputs(self):
        """ Gather all multi-head outputs.
            Return: list (layers) of multihead module outputs with gradients
        """
        return [layer.attention.self.multihead_output for layer in self.layer]

    def create_mask(self, qlen, mlen):
        """ create causal attention mask.
            float mask where 1.0 indicate masked, 0.0 indicated not-masked.
             same_length=False:      same_length=True:
             <mlen > <  qlen >       <mlen > <  qlen >
          ^ [0 0 0 0 0 1 1 1 1]     [0 0 0 0 0 1 1 1 1]
            [0 0 0 0 0 0 1 1 1]     [1 0 0 0 0 0 1 1 1]
       qlen [0 0 0 0 0 0 0 1 1]     [1 1 0 0 0 0 0 1 1]
            [0 0 0 0 0 0 0 0 1]     [1 1 1 0 0 0 0 0 1]
          v [0 0 0 0 0 0 0 0 0]     [1 1 1 1 0 0 0 0 0]
        """
        attn_mask = torch.ones([qlen, qlen])
        mask_up = torch.triu(attn_mask, diagonal=1)
        attn_mask_pad = torch.zeros([qlen, mlen])
        ret = torch.cat([attn_mask_pad, mask_up], dim=1)
        if self.same_length:
            mask_lo = torch.tril(attn_mask, diagonal=-1)
            ret = torch.cat([ret[:, :qlen] + mask_lo, ret[:, qlen:]], dim=1)

        ret = ret.to(next(self.parameters()))
        return ret

    def cache_mem(self, curr_out, prev_mem):
        """cache hidden states into memory."""
        if self.mem_len is None or self.mem_len == 0:
            return None
        else:
            if self.reuse_len is not None and self.reuse_len > 0:
                curr_out = curr_out[:self.reuse_len]

            if prev_mem is None:
                new_mem = curr_out[-self.mem_len:]
            else:
                new_mem = torch.cat([prev_mem, curr_out], dim=0)[-self.mem_len:]

        return new_mem.detach()

    @staticmethod
    def positional_embedding(pos_seq, inv_freq, bsz=None):
        sinusoid_inp = torch.einsum('i,d->id', pos_seq, inv_freq)
        pos_emb = torch.cat([torch.sin(sinusoid_inp), torch.cos(sinusoid_inp)], dim=-1)
        pos_emb = pos_emb[:, None, :]

        if bsz is not None:
            pos_emb = pos_emb.expand(-1, bsz, -1)

        return pos_emb

    def relative_positional_encoding(self, qlen, klen, bsz=None):
        """create relative positional encoding."""
        freq_seq = torch.arange(0, self.d_model, 2.0, dtype=torch.float)
        inv_freq = 1 / (10000 ** (freq_seq / self.d_model))

        if self.attn_type == 'bi':
            # beg, end = klen - 1, -qlen
            beg, end = klen, -qlen
        elif self.attn_type == 'uni':
            # beg, end = klen - 1, -1
            beg, end = klen, -1
        else:
            raise ValueError('Unknown `attn_type` {}.'.format(self.attn_type))

        if self.bi_data:
            fwd_pos_seq = torch.arange(beg, end, -1.0, dtype=torch.float)
            bwd_pos_seq = torch.arange(-beg, -end, 1.0, dtype=torch.float)

            if self.clamp_len > 0:
                fwd_pos_seq = fwd_pos_seq.clamp(-self.clamp_len, self.clamp_len)
                bwd_pos_seq = bwd_pos_seq.clamp(-self.clamp_len, self.clamp_len)

            if bsz is not None:
                fwd_pos_emb = self.positional_embedding(fwd_pos_seq, inv_freq, bsz//2)
                bwd_pos_emb = self.positional_embedding(bwd_pos_seq, inv_freq, bsz//2)
            else:
                fwd_pos_emb = self.positional_embedding(fwd_pos_seq, inv_freq)
                bwd_pos_emb = self.positional_embedding(bwd_pos_seq, inv_freq)

            pos_emb = torch.cat([fwd_pos_emb, bwd_pos_emb], dim=1)
        else:
            fwd_pos_seq = torch.arange(beg, end, -1.0)
            if self.clamp_len > 0:
                fwd_pos_seq = fwd_pos_seq.clamp(-self.clamp_len, self.clamp_len)
            pos_emb = self.positional_embedding(fwd_pos_seq, inv_freq, bsz)

        pos_emb = pos_emb.to(next(self.parameters()))
        return pos_emb

    def forward(self, inp_k, token_type_ids=None, input_mask=None, attention_mask=None,
1043
                mems=None, perm_mask=None, target_mapping=None, inp_q=None, head_mask=None):
1044
1045
1046
1047
1048
1049
1050
1051
        """
        Args:
            inp_k: int32 Tensor in shape [bsz, len], the input token IDs.
            token_type_ids: int32 Tensor in shape [bsz, len], the input segment IDs.
            input_mask: [optional] float32 Tensor in shape [bsz, len], the input mask.
                0 for real tokens and 1 for padding.
            attention_mask: [optional] float32 Tensor, SAME FUNCTION as `input_mask`
                but with 1 for real tokens and 0 for padding.
thomwolf's avatar
thomwolf committed
1052
                Added for easy compatibility with the XLM model (which uses this negative masking).
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
                You can only uses one among `input_mask` and `attention_mask`
            mems: [optional] a list of float32 Tensors in shape [mem_len, bsz, d_model], memory
                from previous batches. The length of the list equals n_layer.
                If None, no memory is used.
            perm_mask: [optional] float32 Tensor in shape [bsz, len, len].
                If perm_mask[k, i, j] = 0, i attend to j in batch k;
                if perm_mask[k, i, j] = 1, i does not attend to j in batch k.
                If None, each position attends to all the others.
            target_mapping: [optional] float32 Tensor in shape [bsz, num_predict, len].
                If target_mapping[k, i, j] = 1, the i-th predict in batch k is
                on the j-th token.
                Only used during pretraining for partial prediction.
                Set to None during finetuning.
            inp_q: [optional] float32 Tensor in shape [bsz, len].
                1 for tokens with losses and 0 for tokens without losses.
                Only used during pretraining for two-stream attention.
                Set to None during finetuning.

            mem_len: int, the number of tokens to cache.
            reuse_len: int, the number of tokens in the currect batch to be cached
                and reused in the future.
            bi_data: bool, whether to use bidirectional input pipeline.
                Usually set to True during pretraining and False during finetuning.
            clamp_len: int, clamp all relative distances larger than clamp_len.
                -1 means no clamping.
            same_length: bool, whether to use the same attention length for each token.
            summary_type: str, "last", "first", "mean", or "attn". The method
                to pool the input to get a vector representation.
        """
        # the original code for XLM uses shapes [len, bsz] with the batch dimension at the end
        # but we want a unified interface in the library with the batch size on the first dimension
        # so we move here the first dimension (batch) to the end
        inp_k = inp_k.transpose(0, 1).contiguous()
        token_type_ids = token_type_ids.transpose(0, 1).contiguous() if token_type_ids is not None else None
        input_mask = input_mask.transpose(0, 1).contiguous() if input_mask is not None else None
        attention_mask = attention_mask.transpose(0, 1).contiguous() if attention_mask is not None else None
        perm_mask = perm_mask.permute(1, 2, 0).contiguous() if perm_mask is not None else None
        target_mapping = target_mapping.permute(1, 2, 0).contiguous() if target_mapping is not None else None
        inp_q = inp_q.transpose(0, 1).contiguous() if inp_q is not None else None

        qlen, bsz = inp_k.shape[0], inp_k.shape[1]
        mlen = mems[0].shape[0] if mems is not None else 0
        klen = mlen + qlen

        dtype_float = next(self.parameters()).dtype
        device = next(self.parameters()).device

        ##### Attention mask
        # causal attention mask
        if self.attn_type == 'uni':
            attn_mask = self.create_mask(qlen, mlen)
            attn_mask = attn_mask[:, :, None, None]
        elif self.attn_type == 'bi':
            attn_mask = None
        else:
            raise ValueError('Unsupported attention type: {}'.format(self.attn_type))

        # data mask: input mask & perm mask
        assert input_mask is None or attention_mask is None, "You can only use one of input_mask (uses 1 for padding) "
thomwolf's avatar
thomwolf committed
1112
        "or attention_mask (uses 0 for padding, added for compatbility with XLM). Please choose one."
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
        if input_mask is None and attention_mask is not None:
            input_mask = 1.0 - attention_mask
        if input_mask is not None and perm_mask is not None:
            data_mask = input_mask[None] + perm_mask
        elif input_mask is not None and perm_mask is None:
            data_mask = input_mask[None]
        elif input_mask is None and perm_mask is not None:
            data_mask = perm_mask
        else:
            data_mask = None

        if data_mask is not None:
            # all mems can be attended to
            mems_mask = torch.zeros([data_mask.shape[0], mlen, bsz]).to(data_mask)
            data_mask = torch.cat([mems_mask, data_mask], dim=1)
            if attn_mask is None:
                attn_mask = data_mask[:, :, :, None]
            else:
                attn_mask += data_mask[:, :, :, None]

        if attn_mask is not None:
            attn_mask = (attn_mask > 0).to(dtype_float)

        if attn_mask is not None:
            non_tgt_mask = -torch.eye(qlen).to(attn_mask)
            non_tgt_mask = torch.cat([torch.zeros([qlen, mlen]).to(attn_mask), non_tgt_mask], dim=-1)
            non_tgt_mask = ((attn_mask + non_tgt_mask[:, :, None, None]) > 0).to(attn_mask)
        else:
            non_tgt_mask = None

        ##### Word embeddings and prepare h & g hidden states
        word_emb_k = self.word_embedding(inp_k)
        output_h = self.dropout(word_emb_k)
        if inp_q is not None:
            if target_mapping is not None:
                word_emb_q = self.mask_emb.expand(target_mapping.shape[0], bsz, -1)
            else:
                inp_q_ext = inp_q[:, :, None]
                word_emb_q = inp_q_ext * self.mask_emb + (1 - inp_q_ext) * word_emb_k
            output_g = self.dropout(word_emb_q)
        else:
            output_g = None

        ##### Segment embedding
        if token_type_ids is not None:
            # Convert `token_type_ids` to one-hot `seg_mat`
            mem_pad = torch.zeros([mlen, bsz], dtype=torch.long, device=device)
            cat_ids = torch.cat([mem_pad, token_type_ids], dim=0)

            # `1` indicates not in the same segment [qlen x klen x bsz]
            seg_mat = (token_type_ids[:, None] != cat_ids[None, :]).long()
            seg_mat = F.one_hot(seg_mat, num_classes=2).to(dtype_float)
        else:
            seg_mat = None

        ##### Positional encoding
        pos_emb = self.relative_positional_encoding(qlen, klen, bsz=bsz)
        pos_emb = self.dropout(pos_emb)

        ##### Head mask if needed (for bertology/pruning)
        # 1.0 in head_mask indicate we keep the head
        # attention_probs has shape bsz x n_heads x N x N
        # input head_mask has shape [num_heads] or [n_layer x num_heads]
        # and head_mask is converted to shape [n_layer x batch x num_heads x seq_length x seq_length]
        if head_mask is not None:
            if head_mask.dim() == 1:
                head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1)
                head_mask = head_mask.expand(self.config.n_layer, -1, -1, -1, -1)
            elif head_mask.dim() == 2:
                head_mask = head_mask.unsqueeze(1).unsqueeze(-1).unsqueeze(-1)  # We can specify head_mask for each layer
            head_mask = head_mask.to(dtype=next(self.parameters()).dtype) # switch to fload if need + fp16 compatibility
        else:
            head_mask = [None] * self.config.n_layer

        new_mems = []
        if mems is None:
            mems = [None] * len(self.layer)

        hidden_states = []
1192
        attentions = []
1193
1194
1195
        for i, layer_module in enumerate(self.layer):
            # cache new mems
            new_mems.append(self.cache_mem(output_h, mems[i]))
1196
1197
1198
1199
1200
            # Save hidden_states
            if output_g is None:
                hidden_states.append(output_h)
            else:
                hidden_states.append((output_h, output_g))
1201
1202
1203
1204
1205
1206

            output_h, output_g = layer_module(output_h, output_g,
                                              attn_mask_h=non_tgt_mask, attn_mask_g=attn_mask,
                                              r=pos_emb, seg_mat=seg_mat,
                                              mems=mems[i], target_mapping=target_mapping,
                                              head_mask=head_mask)
1207
1208
        # Save last hidden_state
        if output_g is None:
1209
            hidden_states.append(output_h)
1210
1211
1212
1213
        else:
            hidden_states.append((output_h, output_g))

        # Select the right output and add dropout
1214
1215
1216
1217
        output = self.dropout(output_g if output_g is not None else output_h)

        # We transpose back here to shape [bsz, len, hidden_dim] (cf. beginning of forward() method)
        output = output.permute(1, 0, 2).contiguous()
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
        if output_g is None:
            hidden_states = [hs.permute(1, 0, 2).contiguous() for hs in hidden_states]
        else:
            hidden_states = [h.permute(1, 0, 2).contiguous() for hs in hidden_states for h in hs]

        # Build the list of outputs
        outputs = [output, new_mems]
        if self.output_attentions:
            outputs.append(attentions)
        if self.output_hidden_states:
            outputs.append(hidden_states)
1229

1230
        return outputs
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289


class XLMPredLayer(nn.Module):
    """
    Prediction layer (cross_entropy or adaptive_softmax).
    """
    def __init__(self, params):
        super().__init__()
        self.asm = params.asm
        self.n_words = params.n_words
        self.pad_index = params.pad_index
        dim = params.emb_dim

        if params.asm is False:
            self.proj = Linear(dim, params.n_words, bias=True)
        else:
            self.proj = nn.AdaptiveLogSoftmaxWithLoss(
                in_features=dim,
                n_classes=params.n_words,
                cutoffs=params.asm_cutoffs,
                div_value=params.asm_div_value,
                head_bias=True,  # default is False
            )

    def forward(self, x, y, get_scores=False):
        """
        Compute the loss, and optionally the scores.
        """
        assert (y == self.pad_index).sum().item() == 0

        if self.asm is False:
            scores = self.proj(x).view(-1, self.n_words)
            loss = F.cross_entropy(scores, y, reduction='elementwise_mean')
        else:
            _, loss = self.proj(x, y)
            scores = self.proj.log_prob(x) if get_scores else None

        return scores, loss

    def get_scores(self, x):
        """
        Compute scores.
        """
        assert x.dim() == 2
        return self.proj.log_prob(x) if self.asm else self.proj(x)


class XLMLMHeadModel(XLMPreTrainedModel):
    """XLM model ("XLM: Generalized Autoregressive Pretraining for Language Understanding").

    Params:
        `config`: a XLMConfig class instance with the configuration to build a new model
        `output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False
        `keep_multihead_output`: If True, saves output of the multi-head attention module with its gradient.
            This can be used to compute head importance metrics. Default: False

    Inputs:
        inp_k: int32 Tensor in shape [bsz, len], the input token IDs.
        token_type_ids: int32 Tensor in shape [bsz, len], the input segment IDs.
thomwolf's avatar
thomwolf committed
1290
        attention_mask: [optional] float32 Tensor in shape [bsz, len], the input mask.
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
            0 for real tokens and 1 for padding.
        mems: [optional] a list of float32 Tensors in shape [mem_len, bsz, d_model], memory
            from previous batches. The length of the list equals n_layer.
            If None, no memory is used.
        perm_mask: [optional] float32 Tensor in shape [bsz, len, len].
            If perm_mask[k, i, j] = 0, i attend to j in batch k;
            if perm_mask[k, i, j] = 1, i does not attend to j in batch k.
            If None, each position attends to all the others.
        target_mapping: [optional] float32 Tensor in shape [bsz, num_predict, len].
            If target_mapping[k, i, j] = 1, the i-th predict in batch k is
            on the j-th token.
            Only used during pretraining for partial prediction.
            Set to None during finetuning.
        inp_q: [optional] float32 Tensor in shape [bsz, len].
            1 for tokens with losses and 0 for tokens without losses.
            Only used during pretraining for two-stream attention.
            Set to None during finetuning.


    Outputs: Tuple of (encoded_layers, pooled_output)
        `encoded_layers`: controled by `output_all_encoded_layers` argument:
            - `output_all_encoded_layers=True`: outputs a list of the full sequences of encoded-hidden-states at the end
                of each attention block (i.e. 12 full sequences for XLM-base, 24 for XLM-large), each
                encoded-hidden-state is a torch.FloatTensor of size [batch_size, sequence_length, d_model],
            - `output_all_encoded_layers=False`: outputs only the full sequence of hidden-states corresponding
                to the last attention block of shape [batch_size, sequence_length, d_model],
        `pooled_output`: a torch.FloatTensor of size [batch_size, d_model] which is the output of a
            classifier pretrained on top of the hidden state associated to the first character of the
            input (`CLS`) to train on the Next-Sentence task (see XLM's paper).

    Example usage:
    ```python
    # Already been converted into WordPiece token ids
    input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
    input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
    token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])

    config = modeling.XLMConfig(vocab_size_or_config_json_file=32000, d_model=768,
        n_layer=12, num_attention_heads=12, intermediate_size=3072)

    model = modeling.XLMModel(config=config)
    all_encoder_layers, pooled_output = model(input_ids, token_type_ids, input_mask)
    ```
    """
1335
    def __init__(self, config, output_attentions=False, output_hidden_states=False):
1336
1337
        super(XLMLMHeadModel, self).__init__(config)
        self.output_attentions = output_attentions
1338
1339
        self.output_hidden_states = output_hidden_states

1340
1341
1342
        self.attn_type = config.attn_type
        self.same_length = config.same_length

1343
        self.transformer = XLMModel(config, output_attentions=output_attentions, output_hidden_states=output_hidden_states)
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
        self.lm_loss = nn.Linear(config.d_model, config.n_token, bias=True)

        # Tie weights

        self.apply(self.init_weights)
        self.tie_weights()

    def tie_weights(self):
        """ Make sure we are sharing the embeddings
        """
        self.lm_loss.weight = self.transformer.word_embedding.weight

    def forward(self, inp_k, token_type_ids=None, input_mask=None, attention_mask=None,
                mems=None, perm_mask=None, target_mapping=None, inp_q=None,
1358
                labels=None, head_mask=None):
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
        """
        Args:
            inp_k: int32 Tensor in shape [bsz, len], the input token IDs.
            token_type_ids: int32 Tensor in shape [bsz, len], the input segment IDs.
            input_mask: float32 Tensor in shape [bsz, len], the input mask.
                0 for real tokens and 1 for padding.
            mems: a list of float32 Tensors in shape [mem_len, bsz, d_model], memory
                from previous batches. The length of the list equals n_layer.
                If None, no memory is used.
            perm_mask: float32 Tensor in shape [bsz, len, len].
                If perm_mask[k, i, j] = 0, i attend to j in batch k;
                if perm_mask[k, i, j] = 1, i does not attend to j in batch k.
                If None, each position attends to all the others.
            target_mapping: float32 Tensor in shape [bsz, num_predict, len].
                If target_mapping[k, i, j] = 1, the i-th predict in batch k is
                on the j-th token.
                Only used during pretraining for partial prediction.
                Set to None during finetuning.
            inp_q: float32 Tensor in shape [bsz, len].
                1 for tokens with losses and 0 for tokens without losses.
                Only used during pretraining for two-stream attention.
                Set to None during finetuning.

            summary_type: str, "last", "first", "mean", or "attn". The method
                to pool the input to get a vector representation.
        """
1385
1386
        transformer_outputs = self.transformer(inp_k, token_type_ids, input_mask, attention_mask,
                                               mems, perm_mask, target_mapping, inp_q, head_mask)
1387

1388
        output = transformer_outputs[0]
1389
1390
        logits = self.lm_loss(output)

1391
1392
        outputs = transformer_outputs[1:]  # Keep new_mems and attention/hidden states if they are here

1393
1394
1395
1396
1397
        if labels is not None:
            # Flatten the tokens
            loss_fct = CrossEntropyLoss(ignore_index=-1)
            loss = loss_fct(logits.view(-1, logits.size(-1)),
                            labels.view(-1))
1398
1399
1400
            outputs = [loss] + outputs

        outputs = [logits] + outputs
1401

1402
        return outputs
1403
1404
1405


class XLMSequenceSummary(nn.Module):
1406
    def __init__(self, config, summary_type="last", use_proj=True):
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
        super(XLMSequenceSummary, self).__init__()
        self.summary_type = summary_type
        if use_proj:
            self.summary = nn.Linear(config.d_model, config.d_model)
        else:
            self.summary = None
        if summary_type == 'attn':
            # We should use a standard multi-head attention module with absolute positional embedding for that.
            # Cf. https://github.com/zihangdai/xlnet/blob/master/modeling.py#L253-L276
            # We can probably just use the multi-head attention module of PyTorch >=1.1.0
            raise NotImplementedError
        self.dropout = nn.Dropout(config.dropout)
        self.activation = nn.Tanh()

    def forward(self, hidden_states):
        """ hidden_states: float Tensor in shape [bsz, seq_len, d_model], the hidden-states of the last layer."""
        if self.summary_type == 'last':
            output = hidden_states[:, -1]
        elif self.summary_type == 'first':
            output = hidden_states[:, 0]
        elif self.summary_type == 'mean':
            output = hidden_states.mean(dim=1)
        elif summary_type == 'attn':
            raise NotImplementedError

        output = self.summary(output)
        output = self.activation(output)
        output = self.dropout(output)
        return output


class XLMForSequenceClassification(XLMPreTrainedModel):
    """XLM model ("XLM: Generalized Autoregressive Pretraining for Language Understanding").

    Params:
        `config`: a XLMConfig class instance with the configuration to build a new model
        `output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False
        `keep_multihead_output`: If True, saves output of the multi-head attention module with its gradient.
            This can be used to compute head importance metrics. Default: False
        `summary_type`: str, "last", "first", "mean", or "attn". The method
            to pool the input to get a vector representation. Default: last

    Inputs:
        inp_k: int32 Tensor in shape [bsz, len], the input token IDs.
        token_type_ids: int32 Tensor in shape [bsz, len], the input segment IDs.
        input_mask: float32 Tensor in shape [bsz, len], the input mask.
            0 for real tokens and 1 for padding.
        attention_mask: [optional] float32 Tensor, SAME FUNCTION as `input_mask`
            but with 1 for real tokens and 0 for padding.
thomwolf's avatar
thomwolf committed
1456
            Added for easy compatibility with the XLM model (which uses this negative masking).
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
            You can only uses one among `input_mask` and `attention_mask`
        mems: a list of float32 Tensors in shape [mem_len, bsz, d_model], memory
            from previous batches. The length of the list equals n_layer.
            If None, no memory is used.
        perm_mask: float32 Tensor in shape [bsz, len, len].
            If perm_mask[k, i, j] = 0, i attend to j in batch k;
            if perm_mask[k, i, j] = 1, i does not attend to j in batch k.
            If None, each position attends to all the others.
        target_mapping: float32 Tensor in shape [bsz, num_predict, len].
            If target_mapping[k, i, j] = 1, the i-th predict in batch k is
            on the j-th token.
            Only used during pretraining for partial prediction.
            Set to None during finetuning.
        inp_q: float32 Tensor in shape [bsz, len].
            1 for tokens with losses and 0 for tokens without losses.
            Only used during pretraining for two-stream attention.
            Set to None during finetuning.
        `head_mask`: an optional torch.Tensor of shape [num_heads] or [num_layers, num_heads] with indices between 0 and 1.
            It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked, 0.0 => head is not masked.


    Outputs: Tuple of (logits or loss, mems)
        `logits or loss`:
            if labels is None:
                Token logits with shape [batch_size, sequence_length] 
            else:
                CrossEntropy loss with the targets
        `new_mems`: list (num layers) of updated mem states at the entry of each layer
            each mem state is a torch.FloatTensor of size [self.config.mem_len, batch_size, self.config.d_model]
            Note that the first two dimensions are transposed in `mems` with regards to `input_ids` and `labels`

    Example usage:
    ```python
    # Already been converted into WordPiece token ids
    input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
    input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
    token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])

    config = modeling.XLMConfig(vocab_size_or_config_json_file=32000, d_model=768,
        n_layer=12, num_attention_heads=12, intermediate_size=3072)

    model = modeling.XLMModel(config=config)
    all_encoder_layers, pooled_output = model(input_ids, token_type_ids, input_mask)
    ```
    """
    def __init__(self, config, summary_type="last", use_proj=True, num_labels=2,
1503
                 output_attentions=False, output_hidden_states=False):
1504
1505
        super(XLMForSequenceClassification, self).__init__(config)
        self.output_attentions = output_attentions
1506
1507
        self.output_hidden_states = output_hidden_states

1508
1509
1510
        self.summary_type = summary_type
        self.num_labels = num_labels

1511
        self.transformer = XLMModel(config, output_attentions=output_attentions, output_hidden_states=output_hidden_states)
1512

1513
        self.sequence_summary = XLMSequenceSummary(config, summary_type=summary_type, use_proj=use_proj)
1514
1515
1516
1517
1518
        self.logits_proj = nn.Linear(config.d_model, num_labels)
        self.apply(self.init_weights)

    def forward(self, inp_k, token_type_ids=None, input_mask=None, attention_mask=None,
                mems=None, perm_mask=None, target_mapping=None, inp_q=None,
1519
                labels=None, head_mask=None):
1520
1521
1522
1523
1524
1525
1526
1527
        """
        Args:
            inp_k: int32 Tensor in shape [bsz, len], the input token IDs.
            token_type_ids: int32 Tensor in shape [bsz, len], the input segment IDs.
            input_mask: float32 Tensor in shape [bsz, len], the input mask.
                0 for real tokens and 1 for padding.
            attention_mask: [optional] float32 Tensor, SAME FUNCTION as `input_mask`
                but with 1 for real tokens and 0 for padding.
thomwolf's avatar
thomwolf committed
1528
                Added for easy compatibility with the XLM model (which uses this negative masking).
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
                You can only uses one among `input_mask` and `attention_mask`
            mems: a list of float32 Tensors in shape [mem_len, bsz, d_model], memory
                from previous batches. The length of the list equals n_layer.
                If None, no memory is used.
            perm_mask: float32 Tensor in shape [bsz, len, len].
                If perm_mask[k, i, j] = 0, i attend to j in batch k;
                if perm_mask[k, i, j] = 1, i does not attend to j in batch k.
                If None, each position attends to all the others.
            target_mapping: float32 Tensor in shape [bsz, num_predict, len].
                If target_mapping[k, i, j] = 1, the i-th predict in batch k is
                on the j-th token.
                Only used during pretraining for partial prediction.
                Set to None during finetuning.
            inp_q: float32 Tensor in shape [bsz, len].
                1 for tokens with losses and 0 for tokens without losses.
                Only used during pretraining for two-stream attention.
                Set to None during finetuning.
        """
1547
1548
        transformer_outputs = self.transformer(inp_k, token_type_ids, input_mask, attention_mask,
                                               mems, perm_mask, target_mapping, inp_q, head_mask)
1549

1550
        output = transformer_outputs[0]
1551
1552
1553
        output = self.sequence_summary(output)
        logits = self.logits_proj(output)

1554
1555
        outputs = transformer_outputs[1:]  # Keep new_mems and attention/hidden states if they are here

1556
1557
1558
1559
1560
1561
1562
1563
        if labels is not None:
            if self.num_labels == 1:
                #  We are doing regression
                loss_fct = MSELoss()
                loss = loss_fct(logits.view(-1), labels.view(-1))
            else:
                loss_fct = CrossEntropyLoss()
                loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
1564
1565
1566
            outputs = [loss] + outputs

        outputs = [logits] + outputs
1567

1568
        return outputs
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590


class XLMForQuestionAnswering(XLMPreTrainedModel):
    """XLM model for Question Answering (span extraction).
    This module is composed of the XLM model with a linear layer on top of
    the sequence output that computes start_logits and end_logits

    Params:
        `config`: a XLMConfig class instance with the configuration to build a new model
        `output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False
        `keep_multihead_output`: If True, saves output of the multi-head attention module with its gradient.
            This can be used to compute head importance metrics. Default: False

    Inputs:
        `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length]
            with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts
            `run_bert_extract_features.py`, `run_bert_classifier.py` and `run_bert_squad.py`)
        `token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token
            types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to
            a `sentence B` token (see XLM paper for more details).
        `attention_mask`: [optional] float32 Tensor, SAME FUNCTION as `input_mask`
            but with 1 for real tokens and 0 for padding.
thomwolf's avatar
thomwolf committed
1591
            Added for easy compatibility with the XLM model (which uses this negative masking).
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
            You can only uses one among `input_mask` and `attention_mask`
        `input_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices
            selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
            input sequence length in the current batch. It's the mask that we typically use for attention when
            a batch has varying length sentences.
        `start_positions`: position of the first token for the labeled span: torch.LongTensor of shape [batch_size].
            Positions are clamped to the length of the sequence and position outside of the sequence are not taken
            into account for computing the loss.
        `end_positions`: position of the last token for the labeled span: torch.LongTensor of shape [batch_size].
            Positions are clamped to the length of the sequence and position outside of the sequence are not taken
            into account for computing the loss.
        `head_mask`: an optional torch.Tensor of shape [num_heads] or [num_layers, num_heads] with indices between 0 and 1.
            It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked, 0.0 => head is not masked.

    Outputs:
        if `start_positions` and `end_positions` are not `None`:
            Outputs the total_loss which is the sum of the CrossEntropy loss for the start and end token positions.
        if `start_positions` or `end_positions` is `None`:
            Outputs a tuple of start_logits, end_logits which are the logits respectively for the start and end
            position tokens of shape [batch_size, sequence_length].

    Example usage:
    ```python
    # Already been converted into WordPiece token ids
    input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
    input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
    token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])

    config = XLMConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
        num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)

    model = XLMForQuestionAnswering(config)
    start_logits, end_logits = model(input_ids, token_type_ids, input_mask)
    ```
    """
1627
    def __init__(self, config, output_attentions=False, output_hidden_states=False):
1628
1629
        super(XLMForQuestionAnswering, self).__init__(config)
        self.output_attentions = output_attentions
1630
1631
1632
        self.output_hidden_states = output_hidden_states

        self.transformer = XLMModel(config, output_attentions=output_attentions, output_hidden_states=output_hidden_states)
1633
1634
1635
1636
1637
        self.qa_outputs = nn.Linear(config.hidden_size, 2)
        self.apply(self.init_weights)

    def forward(self, inp_k, token_type_ids=None, input_mask=None, attention_mask=None,
                mems=None, perm_mask=None, target_mapping=None, inp_q=None,
1638
1639
1640
1641
                start_positions=None, end_positions=None, head_mask=None):

        transformer_outputs = self.transformer(inp_k, token_type_ids, input_mask, attention_mask,
                                               mems, perm_mask, target_mapping, inp_q, head_mask)
1642

1643
        output = transformer_outputs[0]
1644
1645
1646
1647
1648
        logits = self.qa_outputs(output)
        start_logits, end_logits = logits.split(1, dim=-1)
        start_logits = start_logits.squeeze(-1)
        end_logits = end_logits.squeeze(-1)

1649
1650
        outputs = transformer_outputs[1:]  # Keep new_mems and attention/hidden states if they are here

1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
        if start_positions is not None and end_positions is not None:
            # If we are on multi-GPU, split add a dimension
            if len(start_positions.size()) > 1:
                start_positions = start_positions.squeeze(-1)
            if len(end_positions.size()) > 1:
                end_positions = end_positions.squeeze(-1)
            # sometimes the start/end positions are outside our model inputs, we ignore these terms
            ignored_index = start_logits.size(1)
            start_positions.clamp_(0, ignored_index)
            end_positions.clamp_(0, ignored_index)

            loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
            start_loss = loss_fct(start_logits, start_positions)
            end_loss = loss_fct(end_logits, end_positions)
            total_loss = (start_loss + end_loss) / 2
1666
1667
1668
1669
1670
            outputs = [total_loss] + outputs

        outputs = [start_logits, end_logits] + outputs

        return outputs