"...research_projects/movement-pruning/masked_run_squad.py" did not exist on "d1ab1fab1be7199e082129dfbe46eb52bca92799"
test_modeling_bert.py 22.9 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
# coding=utf-8
Sylvain Gugger's avatar
Sylvain Gugger committed
2
# Copyright 2020 The HuggingFace Team. All rights reserved.
thomwolf's avatar
thomwolf committed
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

thomwolf's avatar
thomwolf committed
16

17
18
import unittest

19
from transformers import is_torch_available
20
from transformers.testing_utils import require_torch, slow, torch_device
thomwolf's avatar
thomwolf committed
21

22
from .test_configuration_common import ConfigTester
23
from .test_generation_utils import GenerationTesterMixin
24
from .test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
thomwolf's avatar
thomwolf committed
25

Aymeric Augustin's avatar
Aymeric Augustin committed
26

27
if is_torch_available():
28
29
    import torch

30
    from transformers import (
31
        MODEL_FOR_PRETRAINING_MAPPING,
32
33
        BertConfig,
        BertForMaskedLM,
34
        BertForMultipleChoice,
35
36
37
38
39
        BertForNextSentencePrediction,
        BertForPreTraining,
        BertForQuestionAnswering,
        BertForSequenceClassification,
        BertForTokenClassification,
40
41
        BertLMHeadModel,
        BertModel,
42
    )
Sylvain Gugger's avatar
Sylvain Gugger committed
43
    from transformers.models.bert.modeling_bert import BERT_PRETRAINED_MODEL_ARCHIVE_LIST
thomwolf's avatar
thomwolf committed
44

thomwolf's avatar
thomwolf committed
45

46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
class BertModelTester:
    def __init__(
        self,
        parent,
        batch_size=13,
        seq_length=7,
        is_training=True,
        use_input_mask=True,
        use_token_type_ids=True,
        use_labels=True,
        vocab_size=99,
        hidden_size=32,
        num_hidden_layers=5,
        num_attention_heads=4,
        intermediate_size=37,
        hidden_act="gelu",
        hidden_dropout_prob=0.1,
        attention_probs_dropout_prob=0.1,
        max_position_embeddings=512,
        type_vocab_size=16,
        type_sequence_label_size=2,
        initializer_range=0.02,
        num_labels=3,
        num_choices=4,
        scope=None,
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.seq_length = seq_length
        self.is_training = is_training
        self.use_input_mask = use_input_mask
        self.use_token_type_ids = use_token_type_ids
        self.use_labels = use_labels
        self.vocab_size = vocab_size
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.intermediate_size = intermediate_size
        self.hidden_act = hidden_act
        self.hidden_dropout_prob = hidden_dropout_prob
        self.attention_probs_dropout_prob = attention_probs_dropout_prob
        self.max_position_embeddings = max_position_embeddings
        self.type_vocab_size = type_vocab_size
        self.type_sequence_label_size = type_sequence_label_size
        self.initializer_range = initializer_range
        self.num_labels = num_labels
        self.num_choices = num_choices
        self.scope = scope

    def prepare_config_and_inputs(self):
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

        input_mask = None
        if self.use_input_mask:
100
            input_mask = random_attention_mask([self.batch_size, self.seq_length])
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

        token_type_ids = None
        if self.use_token_type_ids:
            token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)

        sequence_labels = None
        token_labels = None
        choice_labels = None
        if self.use_labels:
            sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
            token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
            choice_labels = ids_tensor([self.batch_size], self.num_choices)

        config = BertConfig(
            vocab_size=self.vocab_size,
            hidden_size=self.hidden_size,
            num_hidden_layers=self.num_hidden_layers,
            num_attention_heads=self.num_attention_heads,
            intermediate_size=self.intermediate_size,
            hidden_act=self.hidden_act,
            hidden_dropout_prob=self.hidden_dropout_prob,
            attention_probs_dropout_prob=self.attention_probs_dropout_prob,
            max_position_embeddings=self.max_position_embeddings,
            type_vocab_size=self.type_vocab_size,
            is_decoder=False,
            initializer_range=self.initializer_range,
        )
thomwolf's avatar
thomwolf committed
128

129
130
131
        return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels

    def prepare_config_and_inputs_for_decoder(self):
132
        (
133
134
135
136
137
138
139
140
141
142
143
144
            config,
            input_ids,
            token_type_ids,
            input_mask,
            sequence_labels,
            token_labels,
            choice_labels,
        ) = self.prepare_config_and_inputs()

        config.is_decoder = True
        encoder_hidden_states = floats_tensor([self.batch_size, self.seq_length, self.hidden_size])
        encoder_attention_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)
thomwolf's avatar
thomwolf committed
145

146
        return (
147
148
149
150
151
152
153
154
155
            config,
            input_ids,
            token_type_ids,
            input_mask,
            sequence_labels,
            token_labels,
            choice_labels,
            encoder_hidden_states,
            encoder_attention_mask,
156
157
        )

158
    def create_and_check_model(
159
160
161
162
163
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = BertModel(config=config)
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
164
165
166
        result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids)
        result = model(input_ids, token_type_ids=token_type_ids)
        result = model(input_ids)
Stas Bekman's avatar
Stas Bekman committed
167
168
        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
        self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size))
169

170
    def create_and_check_model_as_decoder(
171
172
173
174
175
176
177
178
179
180
181
        self,
        config,
        input_ids,
        token_type_ids,
        input_mask,
        sequence_labels,
        token_labels,
        choice_labels,
        encoder_hidden_states,
        encoder_attention_mask,
    ):
182
        config.add_cross_attention = True
183
184
185
        model = BertModel(config)
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
186
        result = model(
187
188
189
190
191
192
            input_ids,
            attention_mask=input_mask,
            token_type_ids=token_type_ids,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_attention_mask,
        )
Sylvain Gugger's avatar
Sylvain Gugger committed
193
        result = model(
194
195
196
197
198
            input_ids,
            attention_mask=input_mask,
            token_type_ids=token_type_ids,
            encoder_hidden_states=encoder_hidden_states,
        )
Sylvain Gugger's avatar
Sylvain Gugger committed
199
        result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids)
Stas Bekman's avatar
Stas Bekman committed
200
201
        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
        self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size))
202

203
    def create_and_check_for_causal_lm(
204
205
206
207
208
209
210
211
212
213
214
215
216
217
        self,
        config,
        input_ids,
        token_type_ids,
        input_mask,
        sequence_labels,
        token_labels,
        choice_labels,
        encoder_hidden_states,
        encoder_attention_mask,
    ):
        model = BertLMHeadModel(config=config)
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
218
        result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels)
Stas Bekman's avatar
Stas Bekman committed
219
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
220

221
    def create_and_check_for_masked_lm(
222
223
224
225
226
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = BertForMaskedLM(config=config)
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
227
        result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels)
Stas Bekman's avatar
Stas Bekman committed
228
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
229

230
    def create_and_check_model_for_causal_lm_as_decoder(
231
232
233
234
235
236
237
238
239
240
241
        self,
        config,
        input_ids,
        token_type_ids,
        input_mask,
        sequence_labels,
        token_labels,
        choice_labels,
        encoder_hidden_states,
        encoder_attention_mask,
    ):
242
        config.add_cross_attention = True
243
        model = BertLMHeadModel(config=config)
244
245
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
246
        result = model(
247
248
249
            input_ids,
            attention_mask=input_mask,
            token_type_ids=token_type_ids,
250
            labels=token_labels,
251
252
253
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_attention_mask,
        )
Sylvain Gugger's avatar
Sylvain Gugger committed
254
        result = model(
255
256
257
            input_ids,
            attention_mask=input_mask,
            token_type_ids=token_type_ids,
258
            labels=token_labels,
259
260
            encoder_hidden_states=encoder_hidden_states,
        )
Stas Bekman's avatar
Stas Bekman committed
261
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
262

263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
    def create_and_check_decoder_model_past_large_inputs(
        self,
        config,
        input_ids,
        token_type_ids,
        input_mask,
        sequence_labels,
        token_labels,
        choice_labels,
        encoder_hidden_states,
        encoder_attention_mask,
    ):
        config.is_decoder = True
        config.add_cross_attention = True
        model = BertLMHeadModel(config=config).to(torch_device).eval()

        # first forward pass
        outputs = model(
            input_ids,
            attention_mask=input_mask,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_attention_mask,
            use_cache=True,
        )
        past_key_values = outputs.past_key_values

        # create hypothetical multiple next token and extent to next_input_ids
        next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size)
        next_mask = ids_tensor((self.batch_size, 3), vocab_size=2)

        # append to next input_ids and
        next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
        next_attention_mask = torch.cat([input_mask, next_mask], dim=-1)

        output_from_no_past = model(
            next_input_ids,
            attention_mask=next_attention_mask,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_attention_mask,
            output_hidden_states=True,
        )["hidden_states"][0]
        output_from_past = model(
            next_tokens,
            attention_mask=next_attention_mask,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_attention_mask,
            past_key_values=past_key_values,
            output_hidden_states=True,
        )["hidden_states"][0]

        # select random slice
        random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
        output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach()
        output_from_past_slice = output_from_past[:, :, random_slice_idx].detach()

        self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1])

        # test that outputs are equal for slice
        self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))

323
    def create_and_check_for_next_sequence_prediction(
324
325
326
327
328
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = BertForNextSentencePrediction(config=config)
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
329
        result = model(
Lysandre's avatar
Lysandre committed
330
331
332
            input_ids,
            attention_mask=input_mask,
            token_type_ids=token_type_ids,
333
            labels=sequence_labels,
334
        )
Stas Bekman's avatar
Stas Bekman committed
335
        self.parent.assertEqual(result.logits.shape, (self.batch_size, 2))
336

337
    def create_and_check_for_pretraining(
338
339
340
341
342
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = BertForPreTraining(config=config)
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
343
        result = model(
344
345
346
            input_ids,
            attention_mask=input_mask,
            token_type_ids=token_type_ids,
347
            labels=token_labels,
348
349
            next_sentence_label=sequence_labels,
        )
Stas Bekman's avatar
Stas Bekman committed
350
351
        self.parent.assertEqual(result.prediction_logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
        self.parent.assertEqual(result.seq_relationship_logits.shape, (self.batch_size, 2))
352

353
    def create_and_check_for_question_answering(
354
355
356
357
358
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = BertForQuestionAnswering(config=config)
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
359
        result = model(
360
361
362
363
364
365
            input_ids,
            attention_mask=input_mask,
            token_type_ids=token_type_ids,
            start_positions=sequence_labels,
            end_positions=sequence_labels,
        )
Stas Bekman's avatar
Stas Bekman committed
366
367
        self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length))
        self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length))
368

369
    def create_and_check_for_sequence_classification(
370
371
372
373
374
375
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        config.num_labels = self.num_labels
        model = BertForSequenceClassification(config)
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
376
        result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=sequence_labels)
Stas Bekman's avatar
Stas Bekman committed
377
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))
378

379
    def create_and_check_for_token_classification(
380
381
382
383
384
385
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        config.num_labels = self.num_labels
        model = BertForTokenClassification(config=config)
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
386
        result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels)
Stas Bekman's avatar
Stas Bekman committed
387
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels))
388

389
    def create_and_check_for_multiple_choice(
390
391
392
393
394
395
396
397
398
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        config.num_choices = self.num_choices
        model = BertForMultipleChoice(config=config)
        model.to(torch_device)
        model.eval()
        multiple_choice_inputs_ids = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
        multiple_choice_token_type_ids = token_type_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
        multiple_choice_input_mask = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
Sylvain Gugger's avatar
Sylvain Gugger committed
399
        result = model(
400
401
402
403
404
            multiple_choice_inputs_ids,
            attention_mask=multiple_choice_input_mask,
            token_type_ids=multiple_choice_token_type_ids,
            labels=choice_labels,
        )
Stas Bekman's avatar
Stas Bekman committed
405
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices))
406
407
408
409

    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        (
410
411
412
413
414
415
416
            config,
            input_ids,
            token_type_ids,
            input_mask,
            sequence_labels,
            token_labels,
            choice_labels,
417
418
419
420
421
422
        ) = config_and_inputs
        inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
        return config, inputs_dict


@require_torch
423
class BertModelTest(ModelTesterMixin, GenerationTesterMixin, unittest.TestCase):
424
425
426
427

    all_model_classes = (
        (
            BertModel,
428
            BertLMHeadModel,
429
            BertForMaskedLM,
430
            BertForMultipleChoice,
431
432
433
434
435
436
437
438
439
            BertForNextSentencePrediction,
            BertForPreTraining,
            BertForQuestionAnswering,
            BertForSequenceClassification,
            BertForTokenClassification,
        )
        if is_torch_available()
        else ()
    )
440
    all_generative_model_classes = (BertLMHeadModel,) if is_torch_available() else ()
thomwolf's avatar
thomwolf committed
441

442
443
444
445
446
447
448
449
450
451
452
453
454
455
    # special case for ForPreTraining model
    def _prepare_for_class(self, inputs_dict, model_class, return_labels=False):
        inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels)

        if return_labels:
            if model_class in MODEL_FOR_PRETRAINING_MAPPING.values():
                inputs_dict["labels"] = torch.zeros(
                    (self.model_tester.batch_size, self.model_tester.seq_length), dtype=torch.long, device=torch_device
                )
                inputs_dict["next_sentence_label"] = torch.zeros(
                    self.model_tester.batch_size, dtype=torch.long, device=torch_device
                )
        return inputs_dict

thomwolf's avatar
thomwolf committed
456
    def setUp(self):
457
        self.model_tester = BertModelTester(self)
thomwolf's avatar
thomwolf committed
458
        self.config_tester = ConfigTester(self, config_class=BertConfig, hidden_size=37)
thomwolf's avatar
thomwolf committed
459
460

    def test_config(self):
thomwolf's avatar
thomwolf committed
461
        self.config_tester.run_common_tests()
thomwolf's avatar
thomwolf committed
462

463
    def test_model(self):
thomwolf's avatar
thomwolf committed
464
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
465
        self.model_tester.create_and_check_model(*config_and_inputs)
thomwolf's avatar
thomwolf committed
466

467
468
469
470
471
472
    def test_model_various_embeddings(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        for type in ["absolute", "relative_key", "relative_key_query"]:
            config_and_inputs[0].position_embedding_type = type
            self.model_tester.create_and_check_model(*config_and_inputs)

473
    def test_model_as_decoder(self):
474
        config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder()
475
        self.model_tester.create_and_check_model_as_decoder(*config_and_inputs)
476

477
    def test_model_as_decoder_with_default_input_mask(self):
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
        # This regression test was failing with PyTorch < 1.3
        (
            config,
            input_ids,
            token_type_ids,
            input_mask,
            sequence_labels,
            token_labels,
            choice_labels,
            encoder_hidden_states,
            encoder_attention_mask,
        ) = self.model_tester.prepare_config_and_inputs_for_decoder()

        input_mask = None

493
        self.model_tester.create_and_check_model_as_decoder(
494
495
496
497
498
499
500
501
502
503
504
            config,
            input_ids,
            token_type_ids,
            input_mask,
            sequence_labels,
            token_labels,
            choice_labels,
            encoder_hidden_states,
            encoder_attention_mask,
        )

505
506
    def test_for_causal_lm(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder()
507
        self.model_tester.create_and_check_for_causal_lm(*config_and_inputs)
508

thomwolf's avatar
thomwolf committed
509
510
    def test_for_masked_lm(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
511
        self.model_tester.create_and_check_for_masked_lm(*config_and_inputs)
thomwolf's avatar
thomwolf committed
512

513
    def test_for_causal_lm_decoder(self):
514
        config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder()
515
        self.model_tester.create_and_check_model_for_causal_lm_as_decoder(*config_and_inputs)
516

517
518
519
520
    def test_decoder_model_past_with_large_inputs(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder()
        self.model_tester.create_and_check_decoder_model_past_large_inputs(*config_and_inputs)

thomwolf's avatar
thomwolf committed
521
522
    def test_for_multiple_choice(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
523
        self.model_tester.create_and_check_for_multiple_choice(*config_and_inputs)
thomwolf's avatar
thomwolf committed
524

thomwolf's avatar
thomwolf committed
525
526
    def test_for_next_sequence_prediction(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
527
        self.model_tester.create_and_check_for_next_sequence_prediction(*config_and_inputs)
thomwolf's avatar
thomwolf committed
528

thomwolf's avatar
thomwolf committed
529
530
    def test_for_pretraining(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
531
        self.model_tester.create_and_check_for_pretraining(*config_and_inputs)
thomwolf's avatar
thomwolf committed
532

thomwolf's avatar
thomwolf committed
533
534
    def test_for_question_answering(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
535
        self.model_tester.create_and_check_for_question_answering(*config_and_inputs)
thomwolf's avatar
thomwolf committed
536

thomwolf's avatar
thomwolf committed
537
538
    def test_for_sequence_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
539
        self.model_tester.create_and_check_for_sequence_classification(*config_and_inputs)
thomwolf's avatar
thomwolf committed
540

thomwolf's avatar
thomwolf committed
541
542
    def test_for_token_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
543
        self.model_tester.create_and_check_for_token_classification(*config_and_inputs)
thomwolf's avatar
thomwolf committed
544

545
    @slow
thomwolf's avatar
thomwolf committed
546
    def test_model_from_pretrained(self):
547
        for model_name in BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
548
            model = BertModel.from_pretrained(model_name)
thomwolf's avatar
thomwolf committed
549
            self.assertIsNotNone(model)
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589


@require_torch
class BertModelIntegrationTest(unittest.TestCase):
    @slow
    def test_inference_no_head_absolute_embedding(self):
        model = BertModel.from_pretrained("bert-base-uncased")
        input_ids = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]])
        output = model(input_ids)[0]
        expected_shape = torch.Size((1, 11, 768))
        self.assertEqual(output.shape, expected_shape)
        expected_slice = torch.tensor(
            [[[-0.0483, 0.1188, -0.0313], [-0.0606, 0.1435, 0.0199], [-0.0235, 0.1519, 0.0175]]]
        )

        self.assertTrue(torch.allclose(output[:, :3, :3], expected_slice, atol=1e-4))

    @slow
    def test_inference_no_head_relative_embedding_key(self):
        model = BertModel.from_pretrained("zhiheng-huang/bert-base-uncased-embedding-relative-key")
        input_ids = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]])
        output = model(input_ids)[0]
        expected_shape = torch.Size((1, 11, 768))
        self.assertEqual(output.shape, expected_shape)
        expected_slice = torch.tensor(
            [[[0.3492, 0.4126, -0.1484], [0.2274, -0.0549, 0.1623], [0.5889, 0.6797, -0.0189]]]
        )

        self.assertTrue(torch.allclose(output[:, :3, :3], expected_slice, atol=1e-4))

    @slow
    def test_inference_no_head_relative_embedding_key_query(self):
        model = BertModel.from_pretrained("zhiheng-huang/bert-base-uncased-embedding-relative-key-query")
        input_ids = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]])
        output = model(input_ids)[0]
        expected_shape = torch.Size((1, 11, 768))
        self.assertEqual(output.shape, expected_shape)
        expected_slice = torch.tensor([[[1.1677, 0.5129, 0.9524], [0.6659, 0.5958, 0.6688], [1.1714, 0.1764, 0.6266]]])

        self.assertTrue(torch.allclose(output[:, :3, :3], expected_slice, atol=1e-4))