test_modeling_gpt2.py 37 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
# coding=utf-8
Sylvain Gugger's avatar
Sylvain Gugger committed
2
# Copyright 2020 The HuggingFace Team. All rights reserved.
thomwolf's avatar
thomwolf committed
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

thomwolf's avatar
thomwolf committed
16

17
import datetime
18
import gc
19
import math
20
21
import unittest

22
from transformers import GPT2Config, is_torch_available
23
from transformers.testing_utils import backend_empty_cache, require_torch, slow, torch_device
thomwolf's avatar
thomwolf committed
24

25
from ...generation.test_utils import GenerationTesterMixin
Yih-Dar's avatar
Yih-Dar committed
26
27
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
28
from ...test_pipeline_mixin import PipelineTesterMixin
Aymeric Augustin's avatar
Aymeric Augustin committed
29
30


31
if is_torch_available():
32
    import torch
33

34
35
    from transformers import (
        GPT2DoubleHeadsModel,
peter-sk's avatar
peter-sk committed
36
        GPT2ForQuestionAnswering,
37
        GPT2ForSequenceClassification,
38
        GPT2ForTokenClassification,
39
40
        GPT2LMHeadModel,
        GPT2Model,
41
        GPT2Tokenizer,
42
43
    )

44

45
46
47
48
49
50
51
52
53
54
55
56
57
class GPT2ModelTester:
    def __init__(
        self,
        parent,
        batch_size=14,
        seq_length=7,
        is_training=True,
        use_token_type_ids=True,
        use_input_mask=True,
        use_labels=True,
        use_mc_token_ids=True,
        vocab_size=99,
        hidden_size=32,
58
        num_hidden_layers=2,
59
60
61
62
63
64
65
66
67
68
69
70
71
72
        num_attention_heads=4,
        intermediate_size=37,
        hidden_act="gelu",
        hidden_dropout_prob=0.1,
        attention_probs_dropout_prob=0.1,
        max_position_embeddings=512,
        type_vocab_size=16,
        type_sequence_label_size=2,
        initializer_range=0.02,
        num_labels=3,
        num_choices=4,
        scope=None,
    ):
        self.parent = parent
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
        self.batch_size = batch_size
        self.seq_length = seq_length
        self.is_training = is_training
        self.use_token_type_ids = use_token_type_ids
        self.use_input_mask = use_input_mask
        self.use_labels = use_labels
        self.use_mc_token_ids = use_mc_token_ids
        self.vocab_size = vocab_size
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.intermediate_size = intermediate_size
        self.hidden_act = hidden_act
        self.hidden_dropout_prob = hidden_dropout_prob
        self.attention_probs_dropout_prob = attention_probs_dropout_prob
        self.max_position_embeddings = max_position_embeddings
        self.type_vocab_size = type_vocab_size
        self.type_sequence_label_size = type_sequence_label_size
        self.initializer_range = initializer_range
        self.num_labels = num_labels
        self.num_choices = num_choices
94
95
96
        self.scope = None
        self.bos_token_id = vocab_size - 1
        self.eos_token_id = vocab_size - 1
97
        self.pad_token_id = vocab_size - 1
98

99
    def get_large_model_config(self):
100
        return GPT2Config.from_pretrained("openai-community/gpt2")
101

102
103
104
    def prepare_config_and_inputs(
        self, gradient_checkpointing=False, scale_attn_by_inverse_layer_idx=False, reorder_and_upcast_attn=False
    ):
105
106
107
108
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

        input_mask = None
        if self.use_input_mask:
109
            input_mask = random_attention_mask([self.batch_size, self.seq_length])
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126

        token_type_ids = None
        if self.use_token_type_ids:
            token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)

        mc_token_ids = None
        if self.use_mc_token_ids:
            mc_token_ids = ids_tensor([self.batch_size, self.num_choices], self.seq_length)

        sequence_labels = None
        token_labels = None
        choice_labels = None
        if self.use_labels:
            sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
            token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
            choice_labels = ids_tensor([self.batch_size], self.num_choices)

127
128
129
130
131
        config = self.get_config(
            gradient_checkpointing=gradient_checkpointing,
            scale_attn_by_inverse_layer_idx=scale_attn_by_inverse_layer_idx,
            reorder_and_upcast_attn=reorder_and_upcast_attn,
        )
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146

        head_mask = ids_tensor([self.num_hidden_layers, self.num_attention_heads], 2)

        return (
            config,
            input_ids,
            input_mask,
            head_mask,
            token_type_ids,
            mc_token_ids,
            sequence_labels,
            token_labels,
            choice_labels,
        )

147
148
149
    def get_config(
        self, gradient_checkpointing=False, scale_attn_by_inverse_layer_idx=False, reorder_and_upcast_attn=False
    ):
150
151
152
153
154
        return GPT2Config(
            vocab_size=self.vocab_size,
            n_embd=self.hidden_size,
            n_layer=self.num_hidden_layers,
            n_head=self.num_attention_heads,
155
156
157
158
            n_inner=self.intermediate_size,
            activation_function=self.hidden_act,
            resid_pdrop=self.hidden_dropout_prob,
            attn_pdrop=self.attention_probs_dropout_prob,
159
160
161
            n_positions=self.max_position_embeddings,
            type_vocab_size=self.type_vocab_size,
            initializer_range=self.initializer_range,
162
            use_cache=True,
163
164
165
            bos_token_id=self.bos_token_id,
            eos_token_id=self.eos_token_id,
            pad_token_id=self.pad_token_id,
166
167
168
            gradient_checkpointing=gradient_checkpointing,
            scale_attn_by_inverse_layer_idx=scale_attn_by_inverse_layer_idx,
            reorder_and_upcast_attn=reorder_and_upcast_attn,
169
170
        )

171
172
173
174
175
    def get_pipeline_config(self):
        config = self.get_config()
        config.vocab_size = 300
        return config

176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
    def prepare_config_and_inputs_for_decoder(self):
        (
            config,
            input_ids,
            input_mask,
            head_mask,
            token_type_ids,
            mc_token_ids,
            sequence_labels,
            token_labels,
            choice_labels,
        ) = self.prepare_config_and_inputs()

        encoder_hidden_states = floats_tensor([self.batch_size, self.seq_length, self.hidden_size])
        encoder_attention_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)

        return (
            config,
            input_ids,
            input_mask,
            head_mask,
            token_type_ids,
            sequence_labels,
            token_labels,
            choice_labels,
            encoder_hidden_states,
            encoder_attention_mask,
        )

205
206
207
208
209
    def create_and_check_gpt2_model(self, config, input_ids, input_mask, head_mask, token_type_ids, *args):
        model = GPT2Model(config=config)
        model.to(torch_device)
        model.eval()

Sylvain Gugger's avatar
Sylvain Gugger committed
210
211
212
        result = model(input_ids, token_type_ids=token_type_ids, head_mask=head_mask)
        result = model(input_ids, token_type_ids=token_type_ids)
        result = model(input_ids)
213

Stas Bekman's avatar
Stas Bekman committed
214
        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
215
        self.parent.assertEqual(len(result.past_key_values), config.n_layer)
216
217
218
219
220
221
222

    def create_and_check_gpt2_model_past(self, config, input_ids, input_mask, head_mask, token_type_ids, *args):
        model = GPT2Model(config=config)
        model.to(torch_device)
        model.eval()

        # first forward pass
223
224
225
226
227
228
229
        outputs = model(input_ids, token_type_ids=token_type_ids, use_cache=True)
        outputs_use_cache_conf = model(input_ids, token_type_ids=token_type_ids)
        outputs_no_past = model(input_ids, token_type_ids=token_type_ids, use_cache=False)

        self.parent.assertTrue(len(outputs) == len(outputs_use_cache_conf))
        self.parent.assertTrue(len(outputs) == len(outputs_no_past) + 1)

Sylvain Gugger's avatar
Sylvain Gugger committed
230
        output, past = outputs.to_tuple()
231
232
233
234
235
236
237
238
239

        # create hypothetical next token and extent to next_input_ids
        next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size)
        next_token_types = ids_tensor([self.batch_size, 1], self.type_vocab_size)

        # append to next input_ids and token_type_ids
        next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
        next_token_type_ids = torch.cat([token_type_ids, next_token_types], dim=-1)

Sylvain Gugger's avatar
Sylvain Gugger committed
240
        output_from_no_past = model(next_input_ids, token_type_ids=next_token_type_ids)["last_hidden_state"]
Sylvain Gugger's avatar
Sylvain Gugger committed
241
242
243
        output_from_past = model(next_tokens, token_type_ids=next_token_types, past_key_values=past)[
            "last_hidden_state"
        ]
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265

        # select random slice
        random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
        output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx].detach()
        output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach()

        # test that outputs are equal for slice
        self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))

    def create_and_check_gpt2_model_attention_mask_past(
        self, config, input_ids, input_mask, head_mask, token_type_ids, *args
    ):
        model = GPT2Model(config=config)
        model.to(torch_device)
        model.eval()

        # create attention mask
        attn_mask = torch.ones(input_ids.shape, dtype=torch.long, device=torch_device)
        half_seq_length = self.seq_length // 2
        attn_mask[:, half_seq_length:] = 0

        # first forward pass
Sylvain Gugger's avatar
Sylvain Gugger committed
266
        output, past = model(input_ids, attention_mask=attn_mask).to_tuple()
267
268
269
270
271
272
273
274
275
276
277
278

        # create hypothetical next token and extent to next_input_ids
        next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size)

        # change a random masked slice from input_ids
        random_seq_idx_to_change = ids_tensor((1,), half_seq_length).item() + 1
        random_other_next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size).squeeze(-1)
        input_ids[:, -random_seq_idx_to_change] = random_other_next_tokens

        # append to next input_ids and attn_mask
        next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
        attn_mask = torch.cat(
Lysandre's avatar
Lysandre committed
279
280
            [attn_mask, torch.ones((attn_mask.shape[0], 1), dtype=torch.long, device=torch_device)],
            dim=1,
281
282
283
        )

        # get two different outputs
Sylvain Gugger's avatar
Sylvain Gugger committed
284
        output_from_no_past = model(next_input_ids, attention_mask=attn_mask)["last_hidden_state"]
Sylvain Gugger's avatar
Sylvain Gugger committed
285
        output_from_past = model(next_tokens, past_key_values=past, attention_mask=attn_mask)["last_hidden_state"]
286
287
288
289
290
291
292
293
294

        # select random slice
        random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
        output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx].detach()
        output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach()

        # test that outputs are equal for slice
        self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))

295
296
297
298
299
300
301
302
    def create_and_check_gpt2_model_past_large_inputs(
        self, config, input_ids, input_mask, head_mask, token_type_ids, *args
    ):
        model = GPT2Model(config=config)
        model.to(torch_device)
        model.eval()

        # first forward pass
303
        outputs = model(input_ids, token_type_ids=token_type_ids, attention_mask=input_mask, use_cache=True)
304
305
306
307
308
309

        output, past = outputs.to_tuple()

        # create hypothetical next token and extent to next_input_ids
        next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size)
        next_token_types = ids_tensor([self.batch_size, 3], self.type_vocab_size)
310
        next_mask = ids_tensor((self.batch_size, 3), vocab_size=2)
311
312
313
314

        # append to next input_ids and token_type_ids
        next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
        next_token_type_ids = torch.cat([token_type_ids, next_token_types], dim=-1)
315
316
317
318
319
320
321
322
        next_attention_mask = torch.cat([input_mask, next_mask], dim=-1)

        output_from_no_past = model(
            next_input_ids, token_type_ids=next_token_type_ids, attention_mask=next_attention_mask
        )["last_hidden_state"]
        output_from_past = model(
            next_tokens, token_type_ids=next_token_types, attention_mask=next_attention_mask, past_key_values=past
        )["last_hidden_state"]
323
324
325
326
327
328
329
330
331
332
        self.parent.assertTrue(output_from_past.shape[1] == next_tokens.shape[1])

        # select random slice
        random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
        output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach()
        output_from_past_slice = output_from_past[:, :, random_slice_idx].detach()

        # test that outputs are equal for slice
        self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))

333
334
335
336
337
    def create_and_check_lm_head_model(self, config, input_ids, input_mask, head_mask, token_type_ids, *args):
        model = GPT2LMHeadModel(config)
        model.to(torch_device)
        model.eval()

Sylvain Gugger's avatar
Sylvain Gugger committed
338
        result = model(input_ids, token_type_ids=token_type_ids, labels=input_ids)
Stas Bekman's avatar
Stas Bekman committed
339
340
        self.parent.assertEqual(result.loss.shape, ())
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
341

342
343
344
    def create_and_check_forward_and_backwards(
        self, config, input_ids, input_mask, head_mask, token_type_ids, *args, gradient_checkpointing=False
    ):
345
346
        model = GPT2LMHeadModel(config)
        model.to(torch_device)
347
348
        if gradient_checkpointing:
            model.gradient_checkpointing_enable()
349
350
351
352
353
354

        result = model(input_ids, token_type_ids=token_type_ids, labels=input_ids)
        self.parent.assertEqual(result.loss.shape, ())
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
        result.loss.backward()

355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
    def create_and_check_double_lm_head_model(
        self, config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, *args
    ):
        model = GPT2DoubleHeadsModel(config)
        model.to(torch_device)
        model.eval()

        multiple_choice_inputs_ids = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
        multiple_choice_input_mask = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
        multiple_choice_token_type_ids = token_type_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()

        inputs = {
            "input_ids": multiple_choice_inputs_ids,
            "mc_token_ids": mc_token_ids,
            "attention_mask": multiple_choice_input_mask,
            "token_type_ids": multiple_choice_token_type_ids,
            "labels": multiple_choice_inputs_ids,
        }

Sylvain Gugger's avatar
Sylvain Gugger committed
374
        result = model(**inputs)
375
        self.parent.assertEqual(result.loss.shape, ())
Stas Bekman's avatar
Stas Bekman committed
376
        self.parent.assertEqual(
377
            result.logits.shape, (self.batch_size, self.num_choices, self.seq_length, self.vocab_size)
378
        )
Stas Bekman's avatar
Stas Bekman committed
379
        self.parent.assertEqual(result.mc_logits.shape, (self.batch_size, self.num_choices))
380

peter-sk's avatar
peter-sk committed
381
382
383
384
385
386
387
388
389
390
391
    def create_and_check_gpt2_for_question_answering(
        self, config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, *args
    ):
        config.num_labels = self.num_labels
        model = GPT2ForQuestionAnswering(config)
        model.to(torch_device)
        model.eval()
        result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids)
        self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length))
        self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length))

392
393
394
395
396
397
398
399
400
401
    def create_and_check_gpt2_for_sequence_classification(
        self, config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, *args
    ):
        config.num_labels = self.num_labels
        model = GPT2ForSequenceClassification(config)
        model.to(torch_device)
        model.eval()
        result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=sequence_labels)
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))

402
403
404
405
406
407
408
409
410
411
    def create_and_check_gpt2_for_token_classification(
        self, config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, *args
    ):
        config.num_labels = self.num_labels
        model = GPT2ForTokenClassification(config)
        model.to(torch_device)
        model.eval()
        result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids)
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels))

412
413
414
415
416
417
418
419
    def create_and_check_gpt2_weight_initialization(self, config, *args):
        model = GPT2Model(config)
        model_std = model.config.initializer_range / math.sqrt(2 * model.config.n_layer)
        for key in model.state_dict().keys():
            if "c_proj" in key and "weight" in key:
                self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key]) - model_std), 0.001)
                self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key]) - 0.0), 0.01)

420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()

        (
            config,
            input_ids,
            input_mask,
            head_mask,
            token_type_ids,
            mc_token_ids,
            sequence_labels,
            token_labels,
            choice_labels,
        ) = config_and_inputs

        inputs_dict = {
            "input_ids": input_ids,
            "token_type_ids": token_type_ids,
            "head_mask": head_mask,
        }

        return config, inputs_dict


444
@require_torch
445
class GPT2ModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase):
446
    all_model_classes = (
peter-sk's avatar
peter-sk committed
447
448
449
450
451
452
453
454
        (
            GPT2Model,
            GPT2LMHeadModel,
            GPT2DoubleHeadsModel,
            GPT2ForQuestionAnswering,
            GPT2ForSequenceClassification,
            GPT2ForTokenClassification,
        )
455
456
457
458
        if is_torch_available()
        else ()
    )
    all_generative_model_classes = (GPT2LMHeadModel, GPT2DoubleHeadsModel) if is_torch_available() else ()
459
460
461
    pipeline_model_mapping = (
        {
            "feature-extraction": GPT2Model,
peter-sk's avatar
peter-sk committed
462
            "question-answering": GPT2ForQuestionAnswering,
463
464
465
466
467
468
469
470
            "text-classification": GPT2ForSequenceClassification,
            "text-generation": GPT2LMHeadModel,
            "token-classification": GPT2ForTokenClassification,
            "zero-shot": GPT2ForSequenceClassification,
        }
        if is_torch_available()
        else {}
    )
471
    all_parallelizable_model_classes = (GPT2LMHeadModel, GPT2DoubleHeadsModel) if is_torch_available() else ()
472
    fx_compatible = True
473
    test_missing_keys = False
474
    test_model_parallel = True
475

476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
    # special case for DoubleHeads model
    def _prepare_for_class(self, inputs_dict, model_class, return_labels=False):
        inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels)

        if return_labels:
            if model_class.__name__ == "GPT2DoubleHeadsModel":
                inputs_dict["labels"] = torch.zeros(
                    (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length),
                    dtype=torch.long,
                    device=torch_device,
                )
                inputs_dict["input_ids"] = inputs_dict["labels"]
                inputs_dict["token_type_ids"] = inputs_dict["labels"]
                inputs_dict["mc_token_ids"] = torch.zeros(
                    (self.model_tester.batch_size, self.model_tester.num_choices),
                    dtype=torch.long,
                    device=torch_device,
                )
                inputs_dict["mc_labels"] = torch.zeros(
                    self.model_tester.batch_size, dtype=torch.long, device=torch_device
                )
        return inputs_dict

499
    def setUp(self):
500
        self.model_tester = GPT2ModelTester(self)
501
        self.config_tester = ConfigTester(self, config_class=GPT2Config, n_embd=37)
thomwolf's avatar
thomwolf committed
502

503
504
505
506
    def tearDown(self):
        super().tearDown()
        # clean-up as much as possible GPU memory occupied by PyTorch
        gc.collect()
507
        backend_empty_cache(torch_device)
508

thomwolf's avatar
thomwolf committed
509
    def test_config(self):
510
        self.config_tester.run_common_tests()
thomwolf's avatar
thomwolf committed
511

512
513
514
    def test_gpt2_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_gpt2_model(*config_and_inputs)
thomwolf's avatar
thomwolf committed
515

516
517
518
519
520
521
522
523
    def test_gpt2_model_past(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_gpt2_model_past(*config_and_inputs)

    def test_gpt2_model_att_mask_past(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_gpt2_model_attention_mask_past(*config_and_inputs)

524
525
526
527
    def test_gpt2_model_past_large_inputs(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_gpt2_model_past_large_inputs(*config_and_inputs)

528
529
530
531
532
533
534
    def test_gpt2_lm_head_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_lm_head_model(*config_and_inputs)

    def test_gpt2_double_lm_head_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_double_lm_head_model(*config_and_inputs)
thomwolf's avatar
thomwolf committed
535

peter-sk's avatar
peter-sk committed
536
537
538
539
    def test_gpt2_question_answering_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_gpt2_for_question_answering(*config_and_inputs)

540
541
542
543
    def test_gpt2_sequence_classification_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_gpt2_for_sequence_classification(*config_and_inputs)

544
545
546
547
    def test_gpt2_token_classification_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_gpt2_for_token_classification(*config_and_inputs)

548
    def test_gpt2_gradient_checkpointing(self):
549
550
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_forward_and_backwards(*config_and_inputs, gradient_checkpointing=True)
551

552
553
554
555
556
557
558
559
560
561
562
563
    def test_gpt2_scale_attn_by_inverse_layer_idx(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs(scale_attn_by_inverse_layer_idx=True)
        self.model_tester.create_and_check_forward_and_backwards(*config_and_inputs)

    def test_gpt2_reorder_and_upcast_attn(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs(reorder_and_upcast_attn=True)
        self.model_tester.create_and_check_forward_and_backwards(*config_and_inputs)

    def test_gpt2_weight_initialization(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_gpt2_weight_initialization(*config_and_inputs)

564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
    @unittest.skip(
        reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
    )
    def test_training_gradient_checkpointing(self):
        pass

    @unittest.skip(
        reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
    )
    def test_training_gradient_checkpointing_use_reentrant(self):
        pass

    @unittest.skip(
        reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
    )
    def test_training_gradient_checkpointing_use_reentrant_false(self):
        pass

582
583
    @slow
    def test_batch_generation(self):
584
        model = GPT2LMHeadModel.from_pretrained("openai-community/gpt2")
585
        model.to(torch_device)
586
        tokenizer = GPT2Tokenizer.from_pretrained("openai-community/gpt2")
587
588
589
590
591
592
593
594
595
596
597
598
599
600

        tokenizer.padding_side = "left"

        # Define PAD Token = EOS Token = 50256
        tokenizer.pad_token = tokenizer.eos_token
        model.config.pad_token_id = model.config.eos_token_id

        # use different length sentences to test batching
        sentences = [
            "Hello, my dog is a little",
            "Today, I",
        ]

        inputs = tokenizer(sentences, return_tensors="pt", padding=True)
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
        input_ids = inputs["input_ids"].to(torch_device)
        token_type_ids = torch.cat(
            [
                input_ids.new_full((input_ids.shape[0], input_ids.shape[1] - 1), 0),
                input_ids.new_full((input_ids.shape[0], 1), 500),
            ],
            dim=-1,
        )

        outputs = model.generate(
            input_ids=input_ids,
            attention_mask=inputs["attention_mask"].to(torch_device),
        )

        outputs_tt = model.generate(
            input_ids=input_ids,
            attention_mask=inputs["attention_mask"].to(torch_device),
            token_type_ids=token_type_ids,
        )

        inputs_non_padded = tokenizer(sentences[0], return_tensors="pt").input_ids.to(torch_device)
        output_non_padded = model.generate(input_ids=inputs_non_padded)

        num_paddings = inputs_non_padded.shape[-1] - inputs["attention_mask"][-1].long().sum().cpu().item()
        inputs_padded = tokenizer(sentences[1], return_tensors="pt").input_ids.to(torch_device)
        output_padded = model.generate(input_ids=inputs_padded, max_length=model.config.max_length - num_paddings)

        batch_out_sentence = tokenizer.batch_decode(outputs, skip_special_tokens=True)
        batch_out_sentence_tt = tokenizer.batch_decode(outputs_tt, skip_special_tokens=True)
        non_padded_sentence = tokenizer.decode(output_non_padded[0], skip_special_tokens=True)
        padded_sentence = tokenizer.decode(output_padded[0], skip_special_tokens=True)

        expected_output_sentence = [
            "Hello, my dog is a little bit of a mess. I'm not sure if he's going",
            "Today, I'm going to be doing a lot of research on this. I",
        ]
        self.assertListEqual(expected_output_sentence, batch_out_sentence)
        self.assertTrue(batch_out_sentence_tt != batch_out_sentence)  # token_type_ids should change output
        self.assertListEqual(expected_output_sentence, [non_padded_sentence, padded_sentence])

    @slow
    def test_batch_generation_2heads(self):
643
        model = GPT2DoubleHeadsModel.from_pretrained("openai-community/gpt2")
644
        model.to(torch_device)
645
        tokenizer = GPT2Tokenizer.from_pretrained("openai-community/gpt2")
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668

        tokenizer.padding_side = "left"

        # This tokenizer has no pad token, so we have to set it in some way
        # Define PAD Token = EOS Token = 50256
        tokenizer.pad_token = tokenizer.eos_token
        model.config.pad_token_id = model.config.eos_token_id

        # use different length sentences to test batching
        sentences = [
            "Hello, my dog is a little",
            "Today, I",
        ]

        inputs = tokenizer(sentences, return_tensors="pt", padding=True)
        input_ids = inputs["input_ids"].to(torch_device)
        token_type_ids = torch.cat(
            [
                input_ids.new_full((input_ids.shape[0], input_ids.shape[1] - 1), 0),
                input_ids.new_full((input_ids.shape[0], 1), 500),
            ],
            dim=-1,
        )
669
670

        outputs = model.generate(
671
672
673
674
675
676
            input_ids=input_ids,
            attention_mask=inputs["attention_mask"].to(torch_device),
        )

        outputs_tt = model.generate(
            input_ids=input_ids,
677
            attention_mask=inputs["attention_mask"].to(torch_device),
678
            token_type_ids=token_type_ids,
679
680
681
682
683
684
685
686
687
688
        )

        inputs_non_padded = tokenizer(sentences[0], return_tensors="pt").input_ids.to(torch_device)
        output_non_padded = model.generate(input_ids=inputs_non_padded)

        num_paddings = inputs_non_padded.shape[-1] - inputs["attention_mask"][-1].long().sum().cpu().item()
        inputs_padded = tokenizer(sentences[1], return_tensors="pt").input_ids.to(torch_device)
        output_padded = model.generate(input_ids=inputs_padded, max_length=model.config.max_length - num_paddings)

        batch_out_sentence = tokenizer.batch_decode(outputs, skip_special_tokens=True)
689
        batch_out_sentence_tt = tokenizer.batch_decode(outputs_tt, skip_special_tokens=True)
690
691
692
693
694
695
696
697
        non_padded_sentence = tokenizer.decode(output_non_padded[0], skip_special_tokens=True)
        padded_sentence = tokenizer.decode(output_padded[0], skip_special_tokens=True)

        expected_output_sentence = [
            "Hello, my dog is a little bit of a mess. I'm not sure if he's going",
            "Today, I'm going to be doing a lot of research on this. I",
        ]
        self.assertListEqual(expected_output_sentence, batch_out_sentence)
698
        self.assertTrue(batch_out_sentence_tt != batch_out_sentence)  # token_type_ids should change output
699
700
        self.assertListEqual(expected_output_sentence, [non_padded_sentence, padded_sentence])

701
    @slow
702
    def test_model_from_pretrained(self):
703
704
705
        model_name = "openai-community/gpt2"
        model = GPT2Model.from_pretrained(model_name)
        self.assertIsNotNone(model)
706
707


708
@require_torch
709
class GPT2ModelLanguageGenerationTest(unittest.TestCase):
710
711
712
713
    def tearDown(self):
        super().tearDown()
        # clean-up as much as possible GPU memory occupied by PyTorch
        gc.collect()
714
        backend_empty_cache(torch_device)
715

716
717
718
719
720
721
722
723
    def _test_lm_generate_gpt2_helper(
        self,
        gradient_checkpointing=False,
        reorder_and_upcast_attn=False,
        scale_attn_by_inverse_layer_idx=False,
        verify_outputs=True,
    ):
        model = GPT2LMHeadModel.from_pretrained(
724
            "openai-community/gpt2",
725
726
727
728
729
730
731
732
            reorder_and_upcast_attn=reorder_and_upcast_attn,
            scale_attn_by_inverse_layer_idx=scale_attn_by_inverse_layer_idx,
        )
        if gradient_checkpointing:
            model.gradient_checkpointing_enable()
        else:
            model.gradient_checkpointing_disable()
        model.to(torch_device)
Matt's avatar
Matt committed
733
734
735
736
737

        # The dog
        input_ids = torch.tensor([[464, 3290]], dtype=torch.long, device=torch_device)

        # The dog was found in a field near the intersection of West and West Streets.\n\nThe dog
738
        expected_output_ids = [464, 3290, 373, 1043, 287, 257, 2214, 1474, 262, 16246, 286, 2688, 290, 2688, 27262, 13, 198, 198, 464, 3290,]  # fmt: skip
739
740
741
742
        output_ids = model.generate(input_ids, do_sample=False)
        if verify_outputs:
            self.assertListEqual(output_ids[0].tolist(), expected_output_ids)

743
744
    @slow
    def test_lm_generate_gpt2(self):
745
746
747
748
749
750
751
752
753
754
755
756
757
        self._test_lm_generate_gpt2_helper()

    @slow
    def test_lm_generate_gpt2_with_gradient_checkpointing(self):
        self._test_lm_generate_gpt2_helper(gradient_checkpointing=True)

    @slow
    def test_lm_generate_gpt2_with_reorder_and_upcast_attn(self):
        self._test_lm_generate_gpt2_helper(reorder_and_upcast_attn=True)

    @slow
    def test_lm_generate_gpt2_with_scale_attn_by_inverse_layer_idx(self):
        self._test_lm_generate_gpt2_helper(scale_attn_by_inverse_layer_idx=True, verify_outputs=False)
758
759

    @slow
760
    def test_gpt2_sample(self):
761
762
        tokenizer = GPT2Tokenizer.from_pretrained("openai-community/gpt2")
        model = GPT2LMHeadModel.from_pretrained("openai-community/gpt2")
763
        model.to(torch_device)
764
765

        torch.manual_seed(0)
766
767
        tokenized = tokenizer("Today is a nice day and", return_tensors="pt", return_token_type_ids=True)
        input_ids = tokenized.input_ids.to(torch_device)
768
769
770
        output_ids = model.generate(input_ids, do_sample=True)
        output_str = tokenizer.decode(output_ids[0], skip_special_tokens=True)

771
772
773
774
775
776
777
778
        token_type_ids = tokenized.token_type_ids.to(torch_device)
        output_seq = model.generate(input_ids=input_ids, do_sample=True, num_return_sequences=5)
        output_seq_tt = model.generate(
            input_ids=input_ids, token_type_ids=token_type_ids, do_sample=True, num_return_sequences=5
        )
        output_seq_strs = tokenizer.batch_decode(output_seq, skip_special_tokens=True)
        output_seq_tt_strs = tokenizer.batch_decode(output_seq_tt, skip_special_tokens=True)

779
780
781
782
        EXPECTED_OUTPUT_STR = (
            "Today is a nice day and if you don't know anything about the state of play during your holiday"
        )
        self.assertEqual(output_str, EXPECTED_OUTPUT_STR)
783
        self.assertTrue(
784
            all(output_seq_strs[idx] != output_seq_tt_strs[idx] for idx in range(len(output_seq_tt_strs)))
785
        )  # token_type_ids should change output
786
787
788

    @slow
    def test_gpt2_sample_max_time(self):
789
790
        tokenizer = GPT2Tokenizer.from_pretrained("openai-community/gpt2")
        model = GPT2LMHeadModel.from_pretrained("openai-community/gpt2")
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
        model.to(torch_device)

        torch.manual_seed(0)
        tokenized = tokenizer("Today is a nice day and", return_tensors="pt", return_token_type_ids=True)
        input_ids = tokenized.input_ids.to(torch_device)

        MAX_TIME = 0.5

        start = datetime.datetime.now()
        model.generate(input_ids, do_sample=True, max_time=MAX_TIME, max_length=256)
        duration = datetime.datetime.now() - start
        self.assertGreater(duration, datetime.timedelta(seconds=MAX_TIME))
        self.assertLess(duration, datetime.timedelta(seconds=1.5 * MAX_TIME))

        start = datetime.datetime.now()
        model.generate(input_ids, do_sample=False, max_time=MAX_TIME, max_length=256)
        duration = datetime.datetime.now() - start
        self.assertGreater(duration, datetime.timedelta(seconds=MAX_TIME))
        self.assertLess(duration, datetime.timedelta(seconds=1.5 * MAX_TIME))

        start = datetime.datetime.now()
        model.generate(input_ids, do_sample=False, num_beams=2, max_time=MAX_TIME, max_length=256)
        duration = datetime.datetime.now() - start
        self.assertGreater(duration, datetime.timedelta(seconds=MAX_TIME))
        self.assertLess(duration, datetime.timedelta(seconds=1.5 * MAX_TIME))

        start = datetime.datetime.now()
        model.generate(input_ids, do_sample=True, num_beams=2, max_time=MAX_TIME, max_length=256)
        duration = datetime.datetime.now() - start
        self.assertGreater(duration, datetime.timedelta(seconds=MAX_TIME))
        self.assertLess(duration, datetime.timedelta(seconds=1.5 * MAX_TIME))

        start = datetime.datetime.now()
        model.generate(input_ids, do_sample=False, max_time=None, max_length=256)
        duration = datetime.datetime.now() - start
        self.assertGreater(duration, datetime.timedelta(seconds=1.5 * MAX_TIME))
827
828
829
830
831
832
833
834

    @slow
    def test_contrastive_search_gpt2(self):
        article = (
            "DeepMind Technologies is a British artificial intelligence subsidiary of Alphabet Inc. and research "
            "laboratory founded in 2010. DeepMind was acquired by Google in 2014. The company is based"
        )

835
836
        gpt2_tokenizer = GPT2Tokenizer.from_pretrained("openai-community/gpt2-large")
        gpt2_model = GPT2LMHeadModel.from_pretrained("openai-community/gpt2-large").to(torch_device)
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
        input_ids = gpt2_tokenizer(article, return_tensors="pt").input_ids.to(torch_device)

        outputs = gpt2_model.generate(input_ids, penalty_alpha=0.6, top_k=4, max_length=256)

        generated_text = gpt2_tokenizer.batch_decode(outputs, skip_special_tokens=True)

        self.assertListEqual(
            generated_text,
            [
                "DeepMind Technologies is a British artificial intelligence subsidiary of Alphabet Inc. and research "
                "laboratory founded in 2010. DeepMind was acquired by Google in 2014. The company is based in London, "
                "United Kingdom\n\nGoogle has a lot of data on its users and uses it to improve its products, such as "
                "Google Now, which helps users find the information they're looking for on the web. But the company "
                "is not the only one to collect data on its users. Facebook, for example, has its own facial "
                "recognition technology, as well as a database of millions of photos that it uses to personalize its "
                "News Feed.\n\nFacebook's use of data is a hot topic in the tech industry, with privacy advocates "
                "concerned about the company's ability to keep users' information private. In a blog post last "
                'year, Facebook CEO Mark Zuckerberg said his company would "do our best to be transparent about our '
                'data use and how we use it."\n\n"We have made it clear that we do not sell or share your data with '
                'third parties," Zuckerberg wrote. "If you have questions or concerns, please reach out to us at '
                'privacy@facebook.com."\n\nGoogle declined to comment on the privacy implications of its use of data, '
                "but said in a statement to The Associated Press that"
            ],
        )