test_pipelines.py 13.9 KB
Newer Older
1
import unittest
Julien Chaumond's avatar
Julien Chaumond committed
2
from typing import Iterable, List, Optional
Morgan Funtowicz's avatar
Morgan Funtowicz committed
3
4

from transformers import pipeline
Lysandre Debut's avatar
Lysandre Debut committed
5
6
7
8
9
10
11
12
from transformers.pipelines import (
    FeatureExtractionPipeline,
    FillMaskPipeline,
    NerPipeline,
    Pipeline,
    QuestionAnsweringPipeline,
    TextClassificationPipeline,
)
13

Lysandre Debut's avatar
Lysandre Debut committed
14
from .utils import require_tf, require_torch, slow
15

Aymeric Augustin's avatar
Aymeric Augustin committed
16

17
18
19
20
21
QA_FINETUNED_MODELS = [
    (("bert-base-uncased", {"use_fast": False}), "bert-large-uncased-whole-word-masking-finetuned-squad", None),
    (("bert-base-cased", {"use_fast": False}), "bert-large-cased-whole-word-masking-finetuned-squad", None),
    (("bert-base-cased", {"use_fast": False}), "distilbert-base-cased-distilled-squad", None),
]
Morgan Funtowicz's avatar
Morgan Funtowicz committed
22

23
24
25
26
27
TF_QA_FINETUNED_MODELS = [
    (("bert-base-uncased", {"use_fast": False}), "bert-large-uncased-whole-word-masking-finetuned-squad", None),
    (("bert-base-cased", {"use_fast": False}), "bert-large-cased-whole-word-masking-finetuned-squad", None),
    (("bert-base-cased", {"use_fast": False}), "distilbert-base-cased-distilled-squad", None),
]
28
29
30

TF_NER_FINETUNED_MODELS = {
    (
31
        "bert-base-cased",
Julien Chaumond's avatar
Julien Chaumond committed
32
33
        "dbmdz/bert-large-cased-finetuned-conll03-english",
        "dbmdz/bert-large-cased-finetuned-conll03-english",
34
35
36
    )
}

Morgan Funtowicz's avatar
Morgan Funtowicz committed
37
38
NER_FINETUNED_MODELS = {
    (
39
        "bert-base-cased",
Julien Chaumond's avatar
Julien Chaumond committed
40
41
        "dbmdz/bert-large-cased-finetuned-conll03-english",
        "dbmdz/bert-large-cased-finetuned-conll03-english",
Morgan Funtowicz's avatar
Morgan Funtowicz committed
42
43
44
45
    )
}

FEATURE_EXTRACT_FINETUNED_MODELS = {
46
47
    ("bert-base-cased", "bert-base-cased", None),
    # ('xlnet-base-cased', 'xlnet-base-cased', None), # Disabled for now as it crash for TF2
48
    ("distilbert-base-cased", "distilbert-base-cased", None),
Morgan Funtowicz's avatar
Morgan Funtowicz committed
49
}
50

51
TF_FEATURE_EXTRACT_FINETUNED_MODELS = {
52
53
    ("bert-base-cased", "bert-base-cased", None),
    # ('xlnet-base-cased', 'xlnet-base-cased', None), # Disabled for now as it crash for TF2
54
    ("distilbert-base-cased", "distilbert-base-cased", None),
55
56
57
58
}

TF_TEXT_CLASSIF_FINETUNED_MODELS = {
    (
59
        "bert-base-uncased",
60
61
        "distilbert-base-uncased-finetuned-sst-2-english",
        "distilbert-base-uncased-finetuned-sst-2-english",
62
63
64
    )
}

Morgan Funtowicz's avatar
Morgan Funtowicz committed
65
66
TEXT_CLASSIF_FINETUNED_MODELS = {
    (
67
        "bert-base-uncased",
68
69
        "distilbert-base-uncased-finetuned-sst-2-english",
        "distilbert-base-uncased-finetuned-sst-2-english",
Morgan Funtowicz's avatar
Morgan Funtowicz committed
70
    )
71
72
}

73
74
75
FILL_MASK_FINETUNED_MODELS = [
    (("distilroberta-base", {"use_fast": False}), "distilroberta-base", None),
]
Julien Chaumond's avatar
Julien Chaumond committed
76

77
78
79
TF_FILL_MASK_FINETUNED_MODELS = [
    (("distilroberta-base", {"use_fast": False}), "distilroberta-base", None),
]
Julien Chaumond's avatar
Julien Chaumond committed
80

81

Morgan Funtowicz's avatar
Morgan Funtowicz committed
82
class MonoColumnInputTestCase(unittest.TestCase):
Julien Chaumond's avatar
Julien Chaumond committed
83
84
85
86
87
88
89
90
91
    def _test_mono_column_pipeline(
        self,
        nlp: Pipeline,
        valid_inputs: List,
        invalid_inputs: List,
        output_keys: Iterable[str],
        expected_multi_result: Optional[List] = None,
        expected_check_keys: Optional[List[str]] = None,
    ):
Morgan Funtowicz's avatar
Morgan Funtowicz committed
92
93
94
95
96
97
98
99
100
101
102
103
        self.assertIsNotNone(nlp)

        mono_result = nlp(valid_inputs[0])
        self.assertIsInstance(mono_result, list)
        self.assertIsInstance(mono_result[0], (dict, list))

        if isinstance(mono_result[0], list):
            mono_result = mono_result[0]

        for key in output_keys:
            self.assertIn(key, mono_result[0])

104
        multi_result = [nlp(input) for input in valid_inputs]
Morgan Funtowicz's avatar
Morgan Funtowicz committed
105
106
107
        self.assertIsInstance(multi_result, list)
        self.assertIsInstance(multi_result[0], (dict, list))

Julien Chaumond's avatar
Julien Chaumond committed
108
109
110
111
112
113
114
        if expected_multi_result is not None:
            for result, expect in zip(multi_result, expected_multi_result):
                for key in expected_check_keys or []:
                    self.assertEqual(
                        set([o[key] for o in result]), set([o[key] for o in expect]),
                    )

Morgan Funtowicz's avatar
Morgan Funtowicz committed
115
116
117
118
119
120
121
122
123
        if isinstance(multi_result[0], list):
            multi_result = multi_result[0]

        for result in multi_result:
            for key in output_keys:
                self.assertIn(key, result)

        self.assertRaises(Exception, nlp, invalid_inputs)

124
    @require_torch
Morgan Funtowicz's avatar
Morgan Funtowicz committed
125
    def test_ner(self):
126
127
        mandatory_keys = {"entity", "word", "score"}
        valid_inputs = ["HuggingFace is solving NLP one commit at a time.", "HuggingFace is based in New-York & Paris"]
Morgan Funtowicz's avatar
Morgan Funtowicz committed
128
129
        invalid_inputs = [None]
        for tokenizer, model, config in NER_FINETUNED_MODELS:
130
            nlp = pipeline(task="ner", model=model, config=config, tokenizer=tokenizer)
131
            self._test_mono_column_pipeline(nlp, valid_inputs, invalid_inputs, mandatory_keys)
Morgan Funtowicz's avatar
Morgan Funtowicz committed
132

133
134
    @require_tf
    def test_tf_ner(self):
135
136
        mandatory_keys = {"entity", "word", "score"}
        valid_inputs = ["HuggingFace is solving NLP one commit at a time.", "HuggingFace is based in New-York & Paris"]
137
        invalid_inputs = [None]
138
        for tokenizer, model, config in TF_NER_FINETUNED_MODELS:
139
            nlp = pipeline(task="ner", model=model, config=config, tokenizer=tokenizer, framework="tf")
140
            self._test_mono_column_pipeline(nlp, valid_inputs, invalid_inputs, mandatory_keys)
Morgan Funtowicz's avatar
Morgan Funtowicz committed
141

142
    @require_torch
Morgan Funtowicz's avatar
Morgan Funtowicz committed
143
    def test_sentiment_analysis(self):
Julien Chaumond's avatar
Julien Chaumond committed
144
        mandatory_keys = {"label", "score"}
145
        valid_inputs = ["HuggingFace is solving NLP one commit at a time.", "HuggingFace is based in New-York & Paris"]
Morgan Funtowicz's avatar
Morgan Funtowicz committed
146
147
        invalid_inputs = [None]
        for tokenizer, model, config in TEXT_CLASSIF_FINETUNED_MODELS:
148
            nlp = pipeline(task="sentiment-analysis", model=model, config=config, tokenizer=tokenizer)
149
            self._test_mono_column_pipeline(nlp, valid_inputs, invalid_inputs, mandatory_keys)
Morgan Funtowicz's avatar
Morgan Funtowicz committed
150

151
152
    @require_tf
    def test_tf_sentiment_analysis(self):
Julien Chaumond's avatar
Julien Chaumond committed
153
        mandatory_keys = {"label", "score"}
154
        valid_inputs = ["HuggingFace is solving NLP one commit at a time.", "HuggingFace is based in New-York & Paris"]
155
        invalid_inputs = [None]
156
        for tokenizer, model, config in TF_TEXT_CLASSIF_FINETUNED_MODELS:
157
            nlp = pipeline(task="sentiment-analysis", model=model, config=config, tokenizer=tokenizer, framework="tf")
158
            self._test_mono_column_pipeline(nlp, valid_inputs, invalid_inputs, mandatory_keys)
Morgan Funtowicz's avatar
Morgan Funtowicz committed
159

160
    @require_torch
Julien Chaumond's avatar
Julien Chaumond committed
161
    def test_feature_extraction(self):
162
        valid_inputs = ["HuggingFace is solving NLP one commit at a time.", "HuggingFace is based in New-York & Paris"]
Morgan Funtowicz's avatar
Morgan Funtowicz committed
163
164
        invalid_inputs = [None]
        for tokenizer, model, config in FEATURE_EXTRACT_FINETUNED_MODELS:
Julien Chaumond's avatar
Julien Chaumond committed
165
            nlp = pipeline(task="feature-extraction", model=model, config=config, tokenizer=tokenizer)
166
            self._test_mono_column_pipeline(nlp, valid_inputs, invalid_inputs, {})
Morgan Funtowicz's avatar
Morgan Funtowicz committed
167

168
    @require_tf
Julien Chaumond's avatar
Julien Chaumond committed
169
    def test_tf_feature_extraction(self):
170
        valid_inputs = ["HuggingFace is solving NLP one commit at a time.", "HuggingFace is based in New-York & Paris"]
171
        invalid_inputs = [None]
172
        for tokenizer, model, config in TF_FEATURE_EXTRACT_FINETUNED_MODELS:
173
            nlp = pipeline(task="feature-extraction", model=model, config=config, tokenizer=tokenizer, framework="tf")
174
            self._test_mono_column_pipeline(nlp, valid_inputs, invalid_inputs, {})
Morgan Funtowicz's avatar
Morgan Funtowicz committed
175

Julien Chaumond's avatar
Julien Chaumond committed
176
177
178
179
180
181
182
183
184
185
    @require_torch
    def test_fill_mask(self):
        mandatory_keys = {"sequence", "score", "token"}
        valid_inputs = [
            "My name is <mask>",
            "The largest city in France is <mask>",
        ]
        invalid_inputs = [None]
        expected_multi_result = [
            [
186
187
                {"sequence": "<s> My name is:</s>", "score": 0.009954338893294334, "token": 35},
                {"sequence": "<s> My name is John</s>", "score": 0.0080940006300807, "token": 610},
Julien Chaumond's avatar
Julien Chaumond committed
188
189
190
            ],
            [
                {
191
192
193
194
195
196
197
                    "sequence": "<s> The largest city in France is Paris</s>",
                    "score": 0.3185044229030609,
                    "token": 2201,
                },
                {
                    "sequence": "<s> The largest city in France is Lyon</s>",
                    "score": 0.21112334728240967,
Julien Chaumond's avatar
Julien Chaumond committed
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
                    "token": 12790,
                },
            ],
        ]
        for tokenizer, model, config in FILL_MASK_FINETUNED_MODELS:
            nlp = pipeline(task="fill-mask", model=model, config=config, tokenizer=tokenizer, topk=2)
            self._test_mono_column_pipeline(
                nlp,
                valid_inputs,
                invalid_inputs,
                mandatory_keys,
                expected_multi_result=expected_multi_result,
                expected_check_keys=["sequence"],
            )

    @require_tf
    def test_tf_fill_mask(self):
        mandatory_keys = {"sequence", "score", "token"}
        valid_inputs = [
            "My name is <mask>",
            "The largest city in France is <mask>",
        ]
        invalid_inputs = [None]
        expected_multi_result = [
            [
223
224
                {"sequence": "<s> My name is:</s>", "score": 0.009954338893294334, "token": 35},
                {"sequence": "<s> My name is John</s>", "score": 0.0080940006300807, "token": 610},
Julien Chaumond's avatar
Julien Chaumond committed
225
226
227
            ],
            [
                {
228
229
230
231
232
233
234
                    "sequence": "<s> The largest city in France is Paris</s>",
                    "score": 0.3185044229030609,
                    "token": 2201,
                },
                {
                    "sequence": "<s> The largest city in France is Lyon</s>",
                    "score": 0.21112334728240967,
Julien Chaumond's avatar
Julien Chaumond committed
235
236
237
238
239
                    "token": 12790,
                },
            ],
        ]
        for tokenizer, model, config in TF_FILL_MASK_FINETUNED_MODELS:
240
            nlp = pipeline(task="fill-mask", model=model, config=config, tokenizer=tokenizer, framework="tf", topk=2)
Julien Chaumond's avatar
Julien Chaumond committed
241
242
243
244
245
246
247
248
249
            self._test_mono_column_pipeline(
                nlp,
                valid_inputs,
                invalid_inputs,
                mandatory_keys,
                expected_multi_result=expected_multi_result,
                expected_check_keys=["sequence"],
            )

250
251
252
253
254
255
256
257
258
259
    @require_torch
    def test_summarization(self):
        valid_inputs = ["A string like this", ["list of strings entry 1", "list of strings v2"]]
        invalid_inputs = [4, "<mask>"]
        mandatory_keys = ["summary_text"]
        nlp = pipeline(task="summarization")
        self._test_mono_column_pipeline(
            nlp, valid_inputs, invalid_inputs, mandatory_keys,
        )

Morgan Funtowicz's avatar
Morgan Funtowicz committed
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281

class MultiColumnInputTestCase(unittest.TestCase):
    def _test_multicolumn_pipeline(self, nlp, valid_inputs: list, invalid_inputs: list, output_keys: Iterable[str]):
        self.assertIsNotNone(nlp)

        mono_result = nlp(valid_inputs[0])
        self.assertIsInstance(mono_result, dict)

        for key in output_keys:
            self.assertIn(key, mono_result)

        multi_result = nlp(valid_inputs)
        self.assertIsInstance(multi_result, list)
        self.assertIsInstance(multi_result[0], dict)

        for result in multi_result:
            for key in output_keys:
                self.assertIn(key, result)

        self.assertRaises(Exception, nlp, invalid_inputs[0])
        self.assertRaises(Exception, nlp, invalid_inputs)

282
    @require_torch
Morgan Funtowicz's avatar
Morgan Funtowicz committed
283
    def test_question_answering(self):
284
        mandatory_output_keys = {"score", "answer", "start", "end"}
Morgan Funtowicz's avatar
Morgan Funtowicz committed
285
        valid_samples = [
286
            {"question": "Where was HuggingFace founded ?", "context": "HuggingFace was founded in Paris."},
Morgan Funtowicz's avatar
Morgan Funtowicz committed
287
            {
288
289
290
                "question": "In what field is HuggingFace working ?",
                "context": "HuggingFace is a startup based in New-York founded in Paris which is trying to solve NLP.",
            },
Morgan Funtowicz's avatar
Morgan Funtowicz committed
291
292
        ]
        invalid_samples = [
293
294
295
296
            {"question": "", "context": "This is a test to try empty question edge case"},
            {"question": None, "context": "This is a test to try empty question edge case"},
            {"question": "What is does with empty context ?", "context": ""},
            {"question": "What is does with empty context ?", "context": None},
Morgan Funtowicz's avatar
Morgan Funtowicz committed
297
298
299
        ]

        for tokenizer, model, config in QA_FINETUNED_MODELS:
300
            nlp = pipeline(task="question-answering", model=model, config=config, tokenizer=tokenizer)
301
            self._test_multicolumn_pipeline(nlp, valid_samples, invalid_samples, mandatory_output_keys)
Morgan Funtowicz's avatar
Morgan Funtowicz committed
302

303
    @require_tf
Lysandre's avatar
Lysandre committed
304
    @slow
305
    def test_tf_question_answering(self):
306
        mandatory_output_keys = {"score", "answer", "start", "end"}
307
        valid_samples = [
308
            {"question": "Where was HuggingFace founded ?", "context": "HuggingFace was founded in Paris."},
309
            {
310
311
312
                "question": "In what field is HuggingFace working ?",
                "context": "HuggingFace is a startup based in New-York founded in Paris which is trying to solve NLP.",
            },
313
314
        ]
        invalid_samples = [
315
316
317
318
            {"question": "", "context": "This is a test to try empty question edge case"},
            {"question": None, "context": "This is a test to try empty question edge case"},
            {"question": "What is does with empty context ?", "context": ""},
            {"question": "What is does with empty context ?", "context": None},
319
        ]
Morgan Funtowicz's avatar
Morgan Funtowicz committed
320

321
        for tokenizer, model, config in TF_QA_FINETUNED_MODELS:
322
            nlp = pipeline(task="question-answering", model=model, config=config, tokenizer=tokenizer, framework="tf")
323
            self._test_multicolumn_pipeline(nlp, valid_samples, invalid_samples, mandatory_output_keys)
Lysandre Debut's avatar
Lysandre Debut committed
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350


class PipelineCommonTests(unittest.TestCase):

    pipelines = (
        NerPipeline,
        FeatureExtractionPipeline,
        QuestionAnsweringPipeline,
        FillMaskPipeline,
        TextClassificationPipeline,
    )

    @slow
    @require_tf
    def test_tf_defaults(self):
        # Test that pipelines can be correctly loaded without any argument
        for default_pipeline in self.pipelines:
            with self.subTest(msg="Testing Torch defaults with PyTorch and {}".format(default_pipeline.task)):
                default_pipeline(framework="tf")

    @slow
    @require_torch
    def test_pt_defaults(self):
        # Test that pipelines can be correctly loaded without any argument
        for default_pipeline in self.pipelines:
            with self.subTest(msg="Testing Torch defaults with PyTorch and {}".format(default_pipeline.task)):
                default_pipeline(framework="pt")