seq2seq_trainer.py 9.78 KB
Newer Older
1
from typing import Any, Dict, List, Optional, Tuple, Union
Suraj Patil's avatar
Suraj Patil committed
2
3
4
5
6

import torch
from torch import nn
from torch.utils.data import DistributedSampler, RandomSampler

7
from transformers import PreTrainedModel, Trainer, logging
Suraj Patil's avatar
Suraj Patil committed
8
from transformers.file_utils import is_torch_tpu_available
Sylvain Gugger's avatar
Sylvain Gugger committed
9
from transformers.models.fsmt.configuration_fsmt import FSMTConfig
10
11
12
13
14
15
16
17
18
19
from transformers.optimization import (
    Adafactor,
    AdamW,
    get_constant_schedule,
    get_constant_schedule_with_warmup,
    get_cosine_schedule_with_warmup,
    get_cosine_with_hard_restarts_schedule_with_warmup,
    get_linear_schedule_with_warmup,
    get_polynomial_decay_schedule_with_warmup,
)
Sylvain Gugger's avatar
Sylvain Gugger committed
20
from transformers.trainer_pt_utils import get_tpu_sampler
21
from transformers.training_args import ParallelMode
Suraj Patil's avatar
Suraj Patil committed
22
23


24
logger = logging.get_logger(__name__)
Suraj Patil's avatar
Suraj Patil committed
25

26
27
28
29
30
31
32
33
34
arg_to_scheduler = {
    "linear": get_linear_schedule_with_warmup,
    "cosine": get_cosine_schedule_with_warmup,
    "cosine_w_restarts": get_cosine_with_hard_restarts_schedule_with_warmup,
    "polynomial": get_polynomial_decay_schedule_with_warmup,
    "constant": get_constant_schedule,
    "constant_w_warmup": get_constant_schedule_with_warmup,
}

Suraj Patil's avatar
Suraj Patil committed
35
36

class Seq2SeqTrainer(Trainer):
37
    def __init__(self, config=None, data_args=None, *args, **kwargs):
38
        super().__init__(*args, **kwargs)
39
40
41
42
43
44
45
46
47

        if config is None:
            assert isinstance(
                self.model, PreTrainedModel
            ), f"If no `config` is passed the model to be trained has to be of type `PreTrainedModel`, but is {self.model.__class__}"
            self.config = self._actual_model(self.model).config
        else:
            self.config = config

48
        self.data_args = data_args
49
        self.vocab_size = self.config.tgt_vocab_size if isinstance(self.config, FSMTConfig) else self.config.vocab_size
50

51
52
53
54
55
        if self.args.label_smoothing != 0 or (self.data_args is not None and self.data_args.ignore_pad_token_for_loss):
            assert (
                self.config.pad_token_id is not None
            ), "Make sure that `config.pad_token_id` is correcly defined when ignoring `pad_token` for loss calculation or doing label smoothing."

56
57
58
59
60
        if self.config.pad_token_id is None and self.config.eos_token_id is not None:
            logger.warn(
                f"The `config.pad_token_id` is `None`. Using `config.eos_token_id` = {self.config.eos_token_id} for padding.."
            )

61
62
63
64
        if self.args.label_smoothing == 0:
            self.loss_fn = torch.nn.CrossEntropyLoss(ignore_index=self.config.pad_token_id)
        else:
            # dynamically import label_smoothed_nll_loss
65
            from utils import label_smoothed_nll_loss
66
67
68

            self.loss_fn = label_smoothed_nll_loss

69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
    def create_optimizer_and_scheduler(self, num_training_steps: int):
        """
        Setup the optimizer and the learning rate scheduler.

        We provide a reasonable default that works well. If you want to use something else, you can pass a tuple in the
        Trainer's init through :obj:`optimizers`, or subclass and override this method in a subclass.
        """
        if self.optimizer is None:
            no_decay = ["bias", "LayerNorm.weight"]
            optimizer_grouped_parameters = [
                {
                    "params": [p for n, p in self.model.named_parameters() if not any(nd in n for nd in no_decay)],
                    "weight_decay": self.args.weight_decay,
                },
                {
                    "params": [p for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay)],
                    "weight_decay": 0.0,
                },
            ]
            if self.args.adafactor:
                self.optimizer = Adafactor(
                    optimizer_grouped_parameters,
                    lr=self.args.learning_rate,
                    scale_parameter=False,
                    relative_step=False,
                )

            else:
                self.optimizer = AdamW(
                    optimizer_grouped_parameters, lr=self.args.learning_rate, eps=self.args.adam_epsilon
                )

        if self.lr_scheduler is None:
102
103
104
105
106
107
108
109
110
111
112
113
            self.lr_scheduler = self._get_lr_scheduler(num_training_steps)
        else:  # ignoring --lr_scheduler
            logger.warn("scheduler is passed to `Seq2SeqTrainer`, `--lr_scheduler` arg is ignored.")

    def _get_lr_scheduler(self, num_training_steps):
        schedule_func = arg_to_scheduler[self.args.lr_scheduler]
        if self.args.lr_scheduler == "constant":
            scheduler = schedule_func(self.optimizer)
        elif self.args.lr_scheduler == "constant_w_warmup":
            scheduler = schedule_func(self.optimizer, num_warmup_steps=self.args.warmup_steps)
        else:
            scheduler = schedule_func(
114
115
                self.optimizer, num_warmup_steps=self.args.warmup_steps, num_training_steps=num_training_steps
            )
116
        return scheduler
117

Suraj Patil's avatar
Suraj Patil committed
118
119
120
121
122
123
124
125
    def _get_train_sampler(self) -> Optional[torch.utils.data.sampler.Sampler]:
        if isinstance(self.train_dataset, torch.utils.data.IterableDataset):
            return None
        elif is_torch_tpu_available():
            return get_tpu_sampler(self.train_dataset)
        else:
            if self.args.sortish_sampler:
                self.train_dataset.make_sortish_sampler(
126
                    self.args.per_device_train_batch_size,
127
                    distributed=(self.args.parallel_mode == ParallelMode.DISTRIBUTED),
Suraj Patil's avatar
Suraj Patil committed
128
129
130
131
132
133
134
135
                )

            return (
                RandomSampler(self.train_dataset)
                if self.args.local_rank == -1
                else DistributedSampler(self.train_dataset)
            )

136
    def _compute_loss(self, model, inputs, labels):
Suraj Patil's avatar
Suraj Patil committed
137
        if self.args.label_smoothing == 0:
138
139
140
            if self.data_args is not None and self.data_args.ignore_pad_token_for_loss:
                # force training to ignore pad token
                logits = model(**inputs, use_cache=False)[0]
141
                loss = self.loss_fn(logits.view(-1, logits.shape[-1]), labels.view(-1))
142
143
            else:
                # compute usual loss via models
144
                loss, logits = model(**inputs, labels=labels, use_cache=False)[:2]
Suraj Patil's avatar
Suraj Patil committed
145
        else:
146
147
            # compute label smoothed loss
            logits = model(**inputs, use_cache=False)[0]
Suraj Patil's avatar
Suraj Patil committed
148
            lprobs = torch.nn.functional.log_softmax(logits, dim=-1)
149
            loss, _ = self.loss_fn(lprobs, labels, self.args.label_smoothing, ignore_index=self.config.pad_token_id)
150
151
152
        return loss, logits

    def compute_loss(self, model, inputs):
153
154
        labels = inputs.pop("labels")
        loss, _ = self._compute_loss(model, inputs, labels)
Suraj Patil's avatar
Suraj Patil committed
155
156
157
        return loss

    def prediction_step(
158
159
160
161
162
        self,
        model: nn.Module,
        inputs: Dict[str, Union[torch.Tensor, Any]],
        prediction_loss_only: bool,
        ignore_keys: Optional[List[str]] = None,
Suraj Patil's avatar
Suraj Patil committed
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
    ) -> Tuple[Optional[float], Optional[torch.Tensor], Optional[torch.Tensor]]:
        """
        Perform an evaluation step on :obj:`model` using obj:`inputs`.

        Subclass and override to inject custom behavior.

        Args:
            model (:obj:`nn.Module`):
                The model to evaluate.
            inputs (:obj:`Dict[str, Union[torch.Tensor, Any]]`):
                The inputs and targets of the model.

                The dictionary will be unpacked before being fed to the model. Most models expect the targets under the
                argument :obj:`labels`. Check your model's documentation for all accepted arguments.
            prediction_loss_only (:obj:`bool`):
                Whether or not to return the loss only.

        Return:
            Tuple[Optional[float], Optional[torch.Tensor], Optional[torch.Tensor]]:
            A tuple with the loss, logits and labels (each being optional).
        """
        inputs = self._prepare_inputs(inputs)

186
187
188
189
190
191
192
        gen_kwargs = {
            "max_length": self.data_args.val_max_target_length
            if self.data_args is not None
            else self.config.max_length,
            "num_beams": self.data_args.eval_beams if self.data_args is not None else self.config.num_beams,
        }

193
        if self.args.predict_with_generate and not self.args.prediction_loss_only:
194
            generated_tokens = self.model.generate(
195
196
197
198
199
                inputs["input_ids"],
                attention_mask=inputs["attention_mask"],
                **gen_kwargs,
            )
            # in case the batch is shorter than max length, the output should be padded
200
            if generated_tokens.shape[-1] < gen_kwargs["max_length"]:
201
202
                generated_tokens = self._pad_tensors_to_max_len(generated_tokens, gen_kwargs["max_length"])

203
        labels = inputs.pop("labels")
Suraj Patil's avatar
Suraj Patil committed
204
        with torch.no_grad():
205
206
            # compute loss on predict data
            loss, logits = self._compute_loss(model, inputs, labels)
207
208
209
210
211
212
213

        loss = loss.mean().detach()
        if self.args.prediction_loss_only:
            return (loss, None, None)

        logits = generated_tokens if self.args.predict_with_generate else logits

214
215
        if labels.shape[-1] < gen_kwargs["max_length"]:
            labels = self._pad_tensors_to_max_len(labels, gen_kwargs["max_length"])
216
217

        return (loss, logits, labels)
Suraj Patil's avatar
Suraj Patil committed
218

219
    def _pad_tensors_to_max_len(self, tensor, max_length):
220
221
222
223
224
225
226
227
228
        # If PAD token is not defined at least EOS token has to be defined
        pad_token_id = self.config.pad_token_id if self.config.pad_token_id is not None else self.config.eos_token_id

        if pad_token_id is None:
            raise ValueError(
                f"Make sure that either `config.pad_token_id` or `config.eos_token_id` is defined if tensor has to be padded to `max_length`={max_length}"
            )

        padded_tensor = pad_token_id * torch.ones(
Suraj Patil's avatar
Suraj Patil committed
229
230
231
232
            (tensor.shape[0], max_length), dtype=tensor.dtype, device=tensor.device
        )
        padded_tensor[:, : tensor.shape[-1]] = tensor
        return padded_tensor