seq2seq_trainer.py 4.94 KB
Newer Older
Suraj Patil's avatar
Suraj Patil committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
import logging
from typing import Any, Dict, Optional, Tuple, Union

import torch
from torch import nn
from torch.utils.data import DistributedSampler, RandomSampler

from transformers import Trainer
from transformers.file_utils import is_torch_tpu_available
from transformers.trainer import get_tpu_sampler


try:
    from .utils import label_smoothed_nll_loss
except ImportError:
    from utils import label_smoothed_nll_loss


logger = logging.getLogger(__name__)


class Seq2SeqTrainer(Trainer):
    def _get_train_sampler(self) -> Optional[torch.utils.data.sampler.Sampler]:
        if isinstance(self.train_dataset, torch.utils.data.IterableDataset):
            return None
        elif is_torch_tpu_available():
            return get_tpu_sampler(self.train_dataset)
        else:
            if self.args.sortish_sampler:
                self.train_dataset.make_sortish_sampler(
                    self.args.per_device_train_batch_size, distributed=self.args.n_gpu > 1
                )

            return (
                RandomSampler(self.train_dataset)
                if self.args.local_rank == -1
                else DistributedSampler(self.train_dataset)
            )

    def compute_loss(self, model, inputs):
        labels = inputs.pop("labels")
        outputs = model(**inputs, use_cache=False)
        logits = outputs[0]
        return self._compute_loss(logits, labels, ignore_index=model.config.pad_token_id)

    def _compute_loss(self, logits, labels, ignore_index):
        if self.args.label_smoothing == 0:
            # Same behavior as modeling_bart.py
            loss_fct = torch.nn.CrossEntropyLoss(ignore_index=ignore_index)
            assert logits.shape[-1] == self.model.config.vocab_size
            loss = loss_fct(logits.view(-1, logits.shape[-1]), labels.view(-1))
        else:
            lprobs = torch.nn.functional.log_softmax(logits, dim=-1)
            loss, nll_loss = label_smoothed_nll_loss(
                lprobs, labels, self.args.label_smoothing, ignore_index=ignore_index
            )
        return loss

    def prediction_step(
        self, model: nn.Module, inputs: Dict[str, Union[torch.Tensor, Any]], prediction_loss_only: bool
    ) -> Tuple[Optional[float], Optional[torch.Tensor], Optional[torch.Tensor]]:
        """
        Perform an evaluation step on :obj:`model` using obj:`inputs`.

        Subclass and override to inject custom behavior.

        Args:
            model (:obj:`nn.Module`):
                The model to evaluate.
            inputs (:obj:`Dict[str, Union[torch.Tensor, Any]]`):
                The inputs and targets of the model.

                The dictionary will be unpacked before being fed to the model. Most models expect the targets under the
                argument :obj:`labels`. Check your model's documentation for all accepted arguments.
            prediction_loss_only (:obj:`bool`):
                Whether or not to return the loss only.

        Return:
            Tuple[Optional[float], Optional[torch.Tensor], Optional[torch.Tensor]]:
            A tuple with the loss, logits and labels (each being optional).
        """
        inputs = self._prepare_inputs(inputs)

        max_length = (
            model.config.max_generate_length
            if hasattr(model.config, "max_generate_length")
            else model.config.max_position_embeddings
        )

        with torch.no_grad():
            if self.args.predict_with_generate and not self.args.prediction_loss_only:
                generated_tokens = model.generate(
                    inputs["input_ids"],
                    attention_mask=inputs["attention_mask"],
                    use_cache=True,
                    num_beams=model.config.num_beams,
                    max_length=max_length,
                )
                # in case the batch is shorter than max length, the output should be padded
                generated_tokens = self._pad_tensors_to_max_len(
                    generated_tokens, max_length, model.config.pad_token_id
                )

            labels_out = inputs.get("labels")
            outputs = model(**inputs)
            logits = outputs[1]
            loss = self._compute_loss(logits, labels_out, model.config.pad_token_id)
            loss = loss.mean().item()
            if self.args.prediction_loss_only:
                logits = None
            else:
                logits = generated_tokens if self.args.predict_with_generate else logits

        if self.args.prediction_loss_only:
            return (loss, None, None)

        labels_out = labels_out.detach()
        labels = self._pad_tensors_to_max_len(labels_out, max_length, model.config.pad_token_id)
        return (loss, logits.detach(), labels)

    def _pad_tensors_to_max_len(self, tensor, max_length, pad_token_id):
        padded_tensor = pad_token_id * torch.ones(
            (tensor.shape[0], max_length), dtype=tensor.dtype, device=tensor.device
        )
        padded_tensor[:, : tensor.shape[-1]] = tensor
        return padded_tensor