test_accelerate_examples.py 12.6 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# coding=utf-8
# Copyright 2018 HuggingFace Inc..
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import argparse
import json
import logging
import os
21
22
import shutil
import subprocess
23
import sys
24
import tempfile
25
26
27

import torch

28
from accelerate.utils import write_basic_config
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
from transformers.testing_utils import TestCasePlus, get_gpu_count, slow, torch_device
from transformers.utils import is_apex_available


logging.basicConfig(level=logging.DEBUG)

logger = logging.getLogger()


def get_setup_file():
    parser = argparse.ArgumentParser()
    parser.add_argument("-f")
    args = parser.parse_args()
    return args.f


def get_results(output_dir):
    results = {}
    path = os.path.join(output_dir, "all_results.json")
    if os.path.exists(path):
        with open(path, "r") as f:
            results = json.load(f)
    else:
        raise ValueError(f"can't find {path}")
    return results


def is_cuda_and_apex_available():
    is_using_cuda = torch.cuda.is_available() and torch_device == "cuda"
    return is_using_cuda and is_apex_available()


61
62
63
64
stream_handler = logging.StreamHandler(sys.stdout)
logger.addHandler(stream_handler)


65
class ExamplesTestsNoTrainer(TestCasePlus):
66
67
68
69
70
71
72
73
74
75
76
77
    @classmethod
    def setUpClass(cls):
        # Write Accelerate config, will pick up on CPU, GPU, and multi-GPU
        cls.tmpdir = tempfile.mkdtemp()
        cls.configPath = os.path.join(cls.tmpdir, "default_config.yml")
        write_basic_config(save_location=cls.configPath)
        cls._launch_args = ["accelerate", "launch", "--config_file", cls.configPath]

    @classmethod
    def tearDownClass(cls):
        shutil.rmtree(cls.tmpdir)

78
79
80
    def test_run_glue_no_trainer(self):
        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
81
            {self.examples_dir}/pytorch/text-classification/run_glue_no_trainer.py
82
83
84
85
86
87
88
89
90
            --model_name_or_path distilbert-base-uncased
            --output_dir {tmp_dir}
            --train_file ./tests/fixtures/tests_samples/MRPC/train.csv
            --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv
            --per_device_train_batch_size=2
            --per_device_eval_batch_size=1
            --learning_rate=1e-4
            --seed=42
            --checkpointing_steps epoch
91
92
            --with_tracking
        """.split()
93
94
95
96

        if is_cuda_and_apex_available():
            testargs.append("--fp16")

97
98
99
100
101
        _ = subprocess.run(self._launch_args + testargs, stdout=subprocess.PIPE)
        result = get_results(tmp_dir)
        self.assertGreaterEqual(result["eval_accuracy"], 0.75)
        self.assertTrue(os.path.exists(os.path.join(tmp_dir, "epoch_0")))
        self.assertTrue(os.path.exists(os.path.join(tmp_dir, "glue_no_trainer")))
102
103
104
105

    def test_run_clm_no_trainer(self):
        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
106
            {self.examples_dir}/pytorch/language-modeling/run_clm_no_trainer.py
107
108
109
110
111
112
113
114
115
            --model_name_or_path distilgpt2
            --train_file ./tests/fixtures/sample_text.txt
            --validation_file ./tests/fixtures/sample_text.txt
            --block_size 128
            --per_device_train_batch_size 5
            --per_device_eval_batch_size 5
            --num_train_epochs 2
            --output_dir {tmp_dir}
            --checkpointing_steps epoch
116
117
            --with_tracking
        """.split()
118
119
120
121
122

        if torch.cuda.device_count() > 1:
            # Skipping because there are not enough batches to train the model + would need a drop_last to work.
            return

123
124
125
126
127
        _ = subprocess.run(self._launch_args + testargs, stdout=subprocess.PIPE)
        result = get_results(tmp_dir)
        self.assertLess(result["perplexity"], 100)
        self.assertTrue(os.path.exists(os.path.join(tmp_dir, "epoch_0")))
        self.assertTrue(os.path.exists(os.path.join(tmp_dir, "clm_no_trainer")))
128
129
130
131

    def test_run_mlm_no_trainer(self):
        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
132
            {self.examples_dir}/pytorch/language-modeling/run_mlm_no_trainer.py
133
134
135
136
137
138
            --model_name_or_path distilroberta-base
            --train_file ./tests/fixtures/sample_text.txt
            --validation_file ./tests/fixtures/sample_text.txt
            --output_dir {tmp_dir}
            --num_train_epochs=1
            --checkpointing_steps epoch
139
            --with_tracking
140
141
        """.split()

142
143
144
145
146
        _ = subprocess.run(self._launch_args + testargs, stdout=subprocess.PIPE)
        result = get_results(tmp_dir)
        self.assertLess(result["perplexity"], 42)
        self.assertTrue(os.path.exists(os.path.join(tmp_dir, "epoch_0")))
        self.assertTrue(os.path.exists(os.path.join(tmp_dir, "mlm_no_trainer")))
147
148
149
150
151
152
153

    def test_run_ner_no_trainer(self):
        # with so little data distributed training needs more epochs to get the score on par with 0/1 gpu
        epochs = 7 if get_gpu_count() > 1 else 2

        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
154
            {self.examples_dir}/pytorch/token-classification/run_ner_no_trainer.py
155
156
157
158
159
160
161
162
163
164
            --model_name_or_path bert-base-uncased
            --train_file tests/fixtures/tests_samples/conll/sample.json
            --validation_file tests/fixtures/tests_samples/conll/sample.json
            --output_dir {tmp_dir}
            --learning_rate=2e-4
            --per_device_train_batch_size=2
            --per_device_eval_batch_size=2
            --num_train_epochs={epochs}
            --seed 7
            --checkpointing_steps epoch
165
            --with_tracking
166
167
        """.split()

168
169
170
171
172
173
        _ = subprocess.run(self._launch_args + testargs, stdout=subprocess.PIPE)
        result = get_results(tmp_dir)
        self.assertGreaterEqual(result["eval_accuracy"], 0.75)
        self.assertLess(result["train_loss"], 0.5)
        self.assertTrue(os.path.exists(os.path.join(tmp_dir, "epoch_0")))
        self.assertTrue(os.path.exists(os.path.join(tmp_dir, "ner_no_trainer")))
174
175
176
177

    def test_run_squad_no_trainer(self):
        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
178
            {self.examples_dir}/pytorch/question-answering/run_qa_no_trainer.py
179
            --model_name_or_path bert-base-uncased
180
            --version_2_with_negative
181
182
183
184
185
186
187
188
189
            --train_file tests/fixtures/tests_samples/SQUAD/sample.json
            --validation_file tests/fixtures/tests_samples/SQUAD/sample.json
            --output_dir {tmp_dir}
            --max_train_steps=10
            --num_warmup_steps=2
            --learning_rate=2e-4
            --per_device_train_batch_size=2
            --per_device_eval_batch_size=1
            --checkpointing_steps epoch
190
            --with_tracking
191
192
        """.split()

193
194
195
        _ = subprocess.run(self._launch_args + testargs, stdout=subprocess.PIPE)
        result = get_results(tmp_dir)
        # Because we use --version_2_with_negative the testing script uses SQuAD v2 metrics.
196
197
        self.assertGreaterEqual(result["eval_f1"], 28)
        self.assertGreaterEqual(result["eval_exact"], 28)
198
199
        self.assertTrue(os.path.exists(os.path.join(tmp_dir, "epoch_0")))
        self.assertTrue(os.path.exists(os.path.join(tmp_dir, "qa_no_trainer")))
200
201
202
203

    def test_run_swag_no_trainer(self):
        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
204
            {self.examples_dir}/pytorch/multiple-choice/run_swag_no_trainer.py
205
206
207
208
209
210
211
212
213
            --model_name_or_path bert-base-uncased
            --train_file tests/fixtures/tests_samples/swag/sample.json
            --validation_file tests/fixtures/tests_samples/swag/sample.json
            --output_dir {tmp_dir}
            --max_train_steps=20
            --num_warmup_steps=2
            --learning_rate=2e-4
            --per_device_train_batch_size=2
            --per_device_eval_batch_size=1
214
            --with_tracking
215
216
        """.split()

217
218
219
220
        _ = subprocess.run(self._launch_args + testargs, stdout=subprocess.PIPE)
        result = get_results(tmp_dir)
        self.assertGreaterEqual(result["eval_accuracy"], 0.8)
        self.assertTrue(os.path.exists(os.path.join(tmp_dir, "swag_no_trainer")))
221
222
223
224
225

    @slow
    def test_run_summarization_no_trainer(self):
        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
226
            {self.examples_dir}/pytorch/summarization/run_summarization_no_trainer.py
227
228
229
230
231
232
233
234
235
236
            --model_name_or_path t5-small
            --train_file tests/fixtures/tests_samples/xsum/sample.json
            --validation_file tests/fixtures/tests_samples/xsum/sample.json
            --output_dir {tmp_dir}
            --max_train_steps=50
            --num_warmup_steps=8
            --learning_rate=2e-4
            --per_device_train_batch_size=2
            --per_device_eval_batch_size=1
            --checkpointing_steps epoch
237
            --with_tracking
238
239
        """.split()

240
241
242
243
244
245
246
247
        _ = subprocess.run(self._launch_args + testargs, stdout=subprocess.PIPE)
        result = get_results(tmp_dir)
        self.assertGreaterEqual(result["eval_rouge1"], 10)
        self.assertGreaterEqual(result["eval_rouge2"], 2)
        self.assertGreaterEqual(result["eval_rougeL"], 7)
        self.assertGreaterEqual(result["eval_rougeLsum"], 7)
        self.assertTrue(os.path.exists(os.path.join(tmp_dir, "epoch_0")))
        self.assertTrue(os.path.exists(os.path.join(tmp_dir, "summarization_no_trainer")))
248
249
250
251
252

    @slow
    def test_run_translation_no_trainer(self):
        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
253
            {self.examples_dir}/pytorch/translation/run_translation_no_trainer.py
254
255
256
257
258
259
260
261
262
263
264
265
266
267
            --model_name_or_path sshleifer/student_marian_en_ro_6_1
            --source_lang en
            --target_lang ro
            --train_file tests/fixtures/tests_samples/wmt16/sample.json
            --validation_file tests/fixtures/tests_samples/wmt16/sample.json
            --output_dir {tmp_dir}
            --max_train_steps=50
            --num_warmup_steps=8
            --learning_rate=3e-3
            --per_device_train_batch_size=2
            --per_device_eval_batch_size=1
            --source_lang en_XX
            --target_lang ro_RO
            --checkpointing_steps epoch
268
            --with_tracking
269
270
        """.split()

271
272
273
274
275
        _ = subprocess.run(self._launch_args + testargs, stdout=subprocess.PIPE)
        result = get_results(tmp_dir)
        self.assertGreaterEqual(result["eval_bleu"], 30)
        self.assertTrue(os.path.exists(os.path.join(tmp_dir, "epoch_0")))
        self.assertTrue(os.path.exists(os.path.join(tmp_dir, "translation_no_trainer")))
276
277
278
279
280
281
282
283

    @slow
    def test_run_semantic_segmentation_no_trainer(self):
        stream_handler = logging.StreamHandler(sys.stdout)
        logger.addHandler(stream_handler)

        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
284
            {self.examples_dir}/pytorch/semantic-segmentation/run_semantic_segmentation_no_trainer.py
285
286
287
288
289
290
291
292
293
294
            --dataset_name huggingface/semantic-segmentation-test-sample
            --output_dir {tmp_dir}
            --max_train_steps=10
            --num_warmup_steps=2
            --learning_rate=2e-4
            --per_device_train_batch_size=2
            --per_device_eval_batch_size=1
            --checkpointing_steps epoch
        """.split()

295
296
297
        _ = subprocess.run(self._launch_args + testargs, stdout=subprocess.PIPE)
        result = get_results(tmp_dir)
        self.assertGreaterEqual(result["eval_overall_accuracy"], 0.10)
298
299
300
301

    def test_run_image_classification_no_trainer(self):
        tmp_dir = self.get_auto_remove_tmp_dir()
        testargs = f"""
302
            {self.examples_dir}/pytorch/image-classification/run_image_classification_no_trainer.py
303
304
305
306
307
308
309
310
311
312
313
            --dataset_name huggingface/image-classification-test-sample
            --output_dir {tmp_dir}
            --num_warmup_steps=8
            --learning_rate=3e-3
            --per_device_train_batch_size=2
            --per_device_eval_batch_size=1
            --checkpointing_steps epoch
            --with_tracking
            --seed 42
        """.split()

314
315
316
317
318
        _ = subprocess.run(self._launch_args + testargs, stdout=subprocess.PIPE)
        result = get_results(tmp_dir)
        self.assertGreaterEqual(result["eval_accuracy"], 0.50)
        self.assertTrue(os.path.exists(os.path.join(tmp_dir, "epoch_0")))
        self.assertTrue(os.path.exists(os.path.join(tmp_dir, "image_classification_no_trainer")))