finetune_on_pregenerated.py 15.8 KB
Newer Older
1
2
3
4
5
6
7
8
from argparse import ArgumentParser
from pathlib import Path
import torch
import logging
import json
import random
import numpy as np
from collections import namedtuple
9
from tempfile import TemporaryDirectory
10
11
12

from torch.utils.data import DataLoader, Dataset, RandomSampler
from torch.utils.data.distributed import DistributedSampler
13
from tqdm import tqdm
14
15
16

from pytorch_pretrained_bert.modeling import BertForPreTraining
from pytorch_pretrained_bert.tokenization import BertTokenizer
17
from pytorch_pretrained_bert.optimization import BertAdam, WarmupLinearSchedule
18
19

InputFeatures = namedtuple("InputFeatures", "input_ids input_mask segment_ids lm_label_ids is_next")
Matthew Carrigan's avatar
Matthew Carrigan committed
20
21
22

log_format = '%(asctime)-10s: %(message)s'
logging.basicConfig(level=logging.INFO, format=log_format)
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56


def convert_example_to_features(example, tokenizer, max_seq_length):
    tokens = example["tokens"]
    segment_ids = example["segment_ids"]
    is_random_next = example["is_random_next"]
    masked_lm_positions = example["masked_lm_positions"]
    masked_lm_labels = example["masked_lm_labels"]

    assert len(tokens) == len(segment_ids) <= max_seq_length  # The preprocessed data should be already truncated
    input_ids = tokenizer.convert_tokens_to_ids(tokens)
    masked_label_ids = tokenizer.convert_tokens_to_ids(masked_lm_labels)

    input_array = np.zeros(max_seq_length, dtype=np.int)
    input_array[:len(input_ids)] = input_ids

    mask_array = np.zeros(max_seq_length, dtype=np.bool)
    mask_array[:len(input_ids)] = 1

    segment_array = np.zeros(max_seq_length, dtype=np.bool)
    segment_array[:len(segment_ids)] = segment_ids

    lm_label_array = np.full(max_seq_length, dtype=np.int, fill_value=-1)
    lm_label_array[masked_lm_positions] = masked_label_ids

    features = InputFeatures(input_ids=input_array,
                             input_mask=mask_array,
                             segment_ids=segment_array,
                             lm_label_ids=lm_label_array,
                             is_next=is_random_next)
    return features


class PregeneratedDataset(Dataset):
57
    def __init__(self, training_path, epoch, tokenizer, num_data_epochs, reduce_memory=False):
58
59
60
61
62
63
64
65
66
67
        self.vocab = tokenizer.vocab
        self.tokenizer = tokenizer
        self.epoch = epoch
        self.data_epoch = epoch % num_data_epochs
        data_file = training_path / f"epoch_{self.data_epoch}.json"
        metrics_file = training_path / f"epoch_{self.data_epoch}_metrics.json"
        assert data_file.is_file() and metrics_file.is_file()
        metrics = json.loads(metrics_file.read_text())
        num_samples = metrics['num_training_examples']
        seq_len = metrics['max_seq_len']
68
69
70
71
72
73
74
75
76
        self.temp_dir = None
        self.working_dir = None
        if reduce_memory:
            self.temp_dir = TemporaryDirectory()
            self.working_dir = Path(self.temp_dir.name)
            input_ids = np.memmap(filename=self.working_dir/'input_ids.memmap',
                                  mode='w+', dtype=np.int32, shape=(num_samples, seq_len))
            input_masks = np.memmap(filename=self.working_dir/'input_masks.memmap',
                                    shape=(num_samples, seq_len), mode='w+', dtype=np.bool)
77
            segment_ids = np.memmap(filename=self.working_dir/'segment_ids.memmap',
78
79
80
81
82
83
84
85
86
87
88
89
                                    shape=(num_samples, seq_len), mode='w+', dtype=np.bool)
            lm_label_ids = np.memmap(filename=self.working_dir/'lm_label_ids.memmap',
                                     shape=(num_samples, seq_len), mode='w+', dtype=np.int32)
            lm_label_ids[:] = -1
            is_nexts = np.memmap(filename=self.working_dir/'is_nexts.memmap',
                                 shape=(num_samples,), mode='w+', dtype=np.bool)
        else:
            input_ids = np.zeros(shape=(num_samples, seq_len), dtype=np.int32)
            input_masks = np.zeros(shape=(num_samples, seq_len), dtype=np.bool)
            segment_ids = np.zeros(shape=(num_samples, seq_len), dtype=np.bool)
            lm_label_ids = np.full(shape=(num_samples, seq_len), dtype=np.int32, fill_value=-1)
            is_nexts = np.zeros(shape=(num_samples,), dtype=np.bool)
Matthew Carrigan's avatar
Matthew Carrigan committed
90
        logging.info(f"Loading training examples for epoch {epoch}")
91
92
        with data_file.open() as f:
            for i, line in enumerate(tqdm(f, total=num_samples, desc="Training examples")):
93
94
                line = line.strip()
                example = json.loads(line)
95
96
97
98
99
100
101
                features = convert_example_to_features(example, tokenizer, seq_len)
                input_ids[i] = features.input_ids
                segment_ids[i] = features.segment_ids
                input_masks[i] = features.input_mask
                lm_label_ids[i] = features.lm_label_ids
                is_nexts[i] = features.is_next
        assert i == num_samples - 1  # Assert that the sample count metric was true
Matthew Carrigan's avatar
Matthew Carrigan committed
102
        logging.info("Loading complete!")
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
        self.num_samples = num_samples
        self.seq_len = seq_len
        self.input_ids = input_ids
        self.input_masks = input_masks
        self.segment_ids = segment_ids
        self.lm_label_ids = lm_label_ids
        self.is_nexts = is_nexts

    def __len__(self):
        return self.num_samples

    def __getitem__(self, item):
        return (torch.tensor(self.input_ids[item].astype(np.int64)),
                torch.tensor(self.input_masks[item].astype(np.int64)),
                torch.tensor(self.segment_ids[item].astype(np.int64)),
                torch.tensor(self.lm_label_ids[item].astype(np.int64)),
                torch.tensor(self.is_nexts[item].astype(np.int64)))


def main():
    parser = ArgumentParser()
    parser.add_argument('--pregenerated_data', type=Path, required=True)
    parser.add_argument('--output_dir', type=Path, required=True)
126
127
    parser.add_argument("--bert_model", type=str, required=True, help="Bert pre-trained model selected in the list: bert-base-uncased, "
                             "bert-large-uncased, bert-base-cased, bert-base-multilingual, bert-base-chinese.")
128
    parser.add_argument("--do_lower_case", action="store_true")
129
130
    parser.add_argument("--reduce_memory", action="store_true",
                        help="Store training data as on-disc memmaps to massively reduce memory usage")
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151

    parser.add_argument("--epochs", type=int, default=3, help="Number of epochs to train for")
    parser.add_argument("--local_rank",
                        type=int,
                        default=-1,
                        help="local_rank for distributed training on gpus")
    parser.add_argument("--no_cuda",
                        action='store_true',
                        help="Whether not to use CUDA when available")
    parser.add_argument('--gradient_accumulation_steps',
                        type=int,
                        default=1,
                        help="Number of updates steps to accumulate before performing a backward/update pass.")
    parser.add_argument("--train_batch_size",
                        default=32,
                        type=int,
                        help="Total batch size for training.")
    parser.add_argument('--fp16',
                        action='store_true',
                        help="Whether to use 16-bit float precision instead of 32-bit")
    parser.add_argument('--loss_scale',
Matthew Carrigan's avatar
Matthew Carrigan committed
152
153
                        type=float, default=0,
                        help="Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n"
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
                        "0 (default value): dynamic loss scaling.\n"
                        "Positive power of 2: static loss scaling value.\n")
    parser.add_argument("--warmup_proportion",
                        default=0.1,
                        type=float,
                        help="Proportion of training to perform linear learning rate warmup for. "
                             "E.g., 0.1 = 10%% of training.")
    parser.add_argument("--learning_rate",
                        default=3e-5,
                        type=float,
                        help="The initial learning rate for Adam.")
    parser.add_argument('--seed',
                        type=int,
                        default=42,
                        help="random seed for initialization")
    args = parser.parse_args()

171
172
    assert args.pregenerated_data.is_dir(), \
        "--pregenerated_data should point to the folder of files made by pregenerate_training_data.py!"
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199

    samples_per_epoch = []
    for i in range(args.epochs):
        epoch_file = args.pregenerated_data / f"epoch_{i}.json"
        metrics_file = args.pregenerated_data / f"epoch_{i}_metrics.json"
        if epoch_file.is_file() and metrics_file.is_file():
            metrics = json.loads(metrics_file.read_text())
            samples_per_epoch.append(metrics['num_training_examples'])
        else:
            if i == 0:
                exit("No training data was found!")
            print(f"Warning! There are fewer epochs of pregenerated data ({i}) than training epochs ({args.epochs}).")
            print("This script will loop over the available data, but training diversity may be negatively impacted.")
            num_data_epochs = i
            break
    else:
        num_data_epochs = args.epochs

    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
        n_gpu = torch.cuda.device_count()
    else:
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        n_gpu = 1
        # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.distributed.init_process_group(backend='nccl')
Matthew Carrigan's avatar
Matthew Carrigan committed
200
    logging.info("device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}".format(
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
        device, n_gpu, bool(args.local_rank != -1), args.fp16))

    if args.gradient_accumulation_steps < 1:
        raise ValueError("Invalid gradient_accumulation_steps parameter: {}, should be >= 1".format(
                            args.gradient_accumulation_steps))

    args.train_batch_size = args.train_batch_size // args.gradient_accumulation_steps

    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)

    if args.output_dir.is_dir() and list(args.output_dir.iterdir()):
Matthew Carrigan's avatar
Matthew Carrigan committed
216
        logging.warning(f"Output directory ({args.output_dir}) already exists and is not empty!")
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
    args.output_dir.mkdir(parents=True, exist_ok=True)

    tokenizer = BertTokenizer.from_pretrained(args.bert_model, do_lower_case=args.do_lower_case)

    total_train_examples = 0
    for i in range(args.epochs):
        # The modulo takes into account the fact that we may loop over limited epochs of data
        total_train_examples += samples_per_epoch[i % len(samples_per_epoch)]

    num_train_optimization_steps = int(
        total_train_examples / args.train_batch_size / args.gradient_accumulation_steps)
    if args.local_rank != -1:
        num_train_optimization_steps = num_train_optimization_steps // torch.distributed.get_world_size()

    # Prepare model
    model = BertForPreTraining.from_pretrained(args.bert_model)
    if args.fp16:
        model.half()
    model.to(device)
    if args.local_rank != -1:
        try:
            from apex.parallel import DistributedDataParallel as DDP
        except ImportError:
            raise ImportError(
                "Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training.")
        model = DDP(model)
    elif n_gpu > 1:
        model = torch.nn.DataParallel(model)

    # Prepare optimizer
    param_optimizer = list(model.named_parameters())
    no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
    optimizer_grouped_parameters = [
        {'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)],
         'weight_decay': 0.01},
        {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
    ]

    if args.fp16:
        try:
            from apex.optimizers import FP16_Optimizer
            from apex.optimizers import FusedAdam
        except ImportError:
260
261
            raise ImportError(
                "Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training.")
262
263
264
265
266
267
268
269
270

        optimizer = FusedAdam(optimizer_grouped_parameters,
                              lr=args.learning_rate,
                              bias_correction=False,
                              max_grad_norm=1.0)
        if args.loss_scale == 0:
            optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True)
        else:
            optimizer = FP16_Optimizer(optimizer, static_loss_scale=args.loss_scale)
271
272
        warmup_linear = WarmupLinearSchedule(warmup=args.warmup_proportion,
                                             t_total=num_train_optimization_steps)
273
274
275
276
277
278
    else:
        optimizer = BertAdam(optimizer_grouped_parameters,
                             lr=args.learning_rate,
                             warmup=args.warmup_proportion,
                             t_total=num_train_optimization_steps)

279
280
281
282
283
284
285
286
    global_step = 0
    logging.info("***** Running training *****")
    logging.info(f"  Num examples = {total_train_examples}")
    logging.info("  Batch size = %d", args.train_batch_size)
    logging.info("  Num steps = %d", num_train_optimization_steps)
    model.train()
    for epoch in range(args.epochs):
        epoch_dataset = PregeneratedDataset(epoch=epoch, training_path=args.pregenerated_data, tokenizer=tokenizer,
287
                                            num_data_epochs=num_data_epochs, reduce_memory=args.reduce_memory)
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
        if args.local_rank == -1:
            train_sampler = RandomSampler(epoch_dataset)
        else:
            train_sampler = DistributedSampler(epoch_dataset)
        train_dataloader = DataLoader(epoch_dataset, sampler=train_sampler, batch_size=args.train_batch_size)
        tr_loss = 0
        nb_tr_examples, nb_tr_steps = 0, 0
        with tqdm(total=len(train_dataloader), desc=f"Epoch {epoch}") as pbar:
            for step, batch in enumerate(train_dataloader):
                batch = tuple(t.to(device) for t in batch)
                input_ids, input_mask, segment_ids, lm_label_ids, is_next = batch
                loss = model(input_ids, segment_ids, input_mask, lm_label_ids, is_next)
                if n_gpu > 1:
                    loss = loss.mean() # mean() to average on multi-gpu.
                if args.gradient_accumulation_steps > 1:
                    loss = loss / args.gradient_accumulation_steps
                if args.fp16:
                    optimizer.backward(loss)
                else:
                    loss.backward()
                tr_loss += loss.item()
                nb_tr_examples += input_ids.size(0)
                nb_tr_steps += 1
                pbar.update(1)
312
                mean_loss = tr_loss * args.gradient_accumulation_steps / nb_tr_steps
313
314
                pbar.set_postfix_str(f"Loss: {mean_loss:.5f}")
                if (step + 1) % args.gradient_accumulation_steps == 0:
315
                    if args.fp16:
316
317
                        # modify learning rate with special warm up BERT uses
                        # if args.fp16 is False, BertAdam is used that handles this automatically
318
                        lr_this_step = args.learning_rate * warmup_linear.get_lr(global_step, args.warmup_proportion)
319
320
321
322
323
324
325
326
327
328
329
                        for param_group in optimizer.param_groups:
                            param_group['lr'] = lr_this_step
                    optimizer.step()
                    optimizer.zero_grad()
                    global_step += 1

    # Save a trained model
    logging.info("** ** * Saving fine-tuned model ** ** * ")
    model_to_save = model.module if hasattr(model, 'module') else model  # Only save the model it-self
    output_model_file = args.output_dir / "pytorch_model.bin"
    torch.save(model_to_save.state_dict(), str(output_model_file))
330
331
332
333


if __name__ == '__main__':
    main()