test_modeling_tf_distilbert.py 10.2 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
# coding=utf-8
Sylvain Gugger's avatar
Sylvain Gugger committed
2
# Copyright 2020 The HuggingFace Team. All rights reserved.
thomwolf's avatar
thomwolf committed
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

thomwolf's avatar
thomwolf committed
16

Matt's avatar
Matt committed
17
18
from __future__ import annotations

19
20
import unittest

Aymeric Augustin's avatar
Aymeric Augustin committed
21
from transformers import DistilBertConfig, is_tf_available
22
from transformers.testing_utils import require_tf, slow
Aymeric Augustin's avatar
Aymeric Augustin committed
23

Yih-Dar's avatar
Yih-Dar committed
24
25
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
26
from ...test_pipeline_mixin import PipelineTesterMixin
thomwolf's avatar
thomwolf committed
27
28
29


if is_tf_available():
30
    import tensorflow as tf
31

Sylvain Gugger's avatar
Sylvain Gugger committed
32
    from transformers.models.distilbert.modeling_tf_distilbert import (
33
        TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
34
        TFDistilBertForMaskedLM,
35
        TFDistilBertForMultipleChoice,
36
37
        TFDistilBertForQuestionAnswering,
        TFDistilBertForSequenceClassification,
38
        TFDistilBertForTokenClassification,
39
        TFDistilBertModel,
40
    )
thomwolf's avatar
thomwolf committed
41
42


43
44
class TFDistilBertModelTester:
    def __init__(
Lysandre's avatar
Lysandre committed
45
46
        self,
        parent,
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
    ):
        self.parent = parent
        self.batch_size = 13
        self.seq_length = 7
        self.is_training = True
        self.use_input_mask = True
        self.use_token_type_ids = False
        self.use_labels = True
        self.vocab_size = 99
        self.hidden_size = 32
        self.num_hidden_layers = 5
        self.num_attention_heads = 4
        self.intermediate_size = 37
        self.hidden_act = "gelu"
        self.hidden_dropout_prob = 0.1
        self.attention_probs_dropout_prob = 0.1
        self.max_position_embeddings = 512
        self.type_vocab_size = 16
        self.type_sequence_label_size = 2
        self.initializer_range = 0.02
        self.num_labels = 3
        self.num_choices = 4
        self.scope = None

    def prepare_config_and_inputs(self):
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

        input_mask = None
        if self.use_input_mask:
76
            input_mask = random_attention_mask([self.batch_size, self.seq_length])
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106

        sequence_labels = None
        token_labels = None
        choice_labels = None
        if self.use_labels:
            sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
            token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
            choice_labels = ids_tensor([self.batch_size], self.num_choices)

        config = DistilBertConfig(
            vocab_size=self.vocab_size,
            dim=self.hidden_size,
            n_layers=self.num_hidden_layers,
            n_heads=self.num_attention_heads,
            hidden_dim=self.intermediate_size,
            hidden_act=self.hidden_act,
            dropout=self.hidden_dropout_prob,
            attention_dropout=self.attention_probs_dropout_prob,
            max_position_embeddings=self.max_position_embeddings,
            initializer_range=self.initializer_range,
        )

        return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels

    def create_and_check_distilbert_model(
        self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = TFDistilBertModel(config=config)
        inputs = {"input_ids": input_ids, "attention_mask": input_mask}

Sylvain Gugger's avatar
Sylvain Gugger committed
107
        result = model(inputs)
108
109
110

        inputs = [input_ids, input_mask]

Sylvain Gugger's avatar
Sylvain Gugger committed
111
        result = model(inputs)
112

113
        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
114
115
116
117
118
119

    def create_and_check_distilbert_for_masked_lm(
        self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = TFDistilBertForMaskedLM(config=config)
        inputs = {"input_ids": input_ids, "attention_mask": input_mask}
Sylvain Gugger's avatar
Sylvain Gugger committed
120
        result = model(inputs)
121
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
122
123
124
125
126

    def create_and_check_distilbert_for_question_answering(
        self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = TFDistilBertForQuestionAnswering(config=config)
127
128
129
        inputs = {
            "input_ids": input_ids,
            "attention_mask": input_mask,
130
        }
Sylvain Gugger's avatar
Sylvain Gugger committed
131
        result = model(inputs)
132
133
        self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length))
        self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length))
134
135
136
137
138
139
140

    def create_and_check_distilbert_for_sequence_classification(
        self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        config.num_labels = self.num_labels
        model = TFDistilBertForSequenceClassification(config)
        inputs = {"input_ids": input_ids, "attention_mask": input_mask}
Sylvain Gugger's avatar
Sylvain Gugger committed
141
        result = model(inputs)
142
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))
143

144
145
146
147
148
149
150
151
152
153
154
    def create_and_check_distilbert_for_multiple_choice(
        self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        config.num_choices = self.num_choices
        model = TFDistilBertForMultipleChoice(config)
        multiple_choice_inputs_ids = tf.tile(tf.expand_dims(input_ids, 1), (1, self.num_choices, 1))
        multiple_choice_input_mask = tf.tile(tf.expand_dims(input_mask, 1), (1, self.num_choices, 1))
        inputs = {
            "input_ids": multiple_choice_inputs_ids,
            "attention_mask": multiple_choice_input_mask,
        }
Sylvain Gugger's avatar
Sylvain Gugger committed
155
        result = model(inputs)
156
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices))
157
158
159
160
161
162
163

    def create_and_check_distilbert_for_token_classification(
        self, config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        config.num_labels = self.num_labels
        model = TFDistilBertForTokenClassification(config)
        inputs = {"input_ids": input_ids, "attention_mask": input_mask}
Sylvain Gugger's avatar
Sylvain Gugger committed
164
        result = model(inputs)
165
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels))
166

167
168
169
170
171
172
173
    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        (config, input_ids, input_mask, sequence_labels, token_labels, choice_labels) = config_and_inputs
        inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask}
        return config, inputs_dict


174
@require_tf
175
class TFDistilBertModelTest(TFModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
176
177
178
179
180
181
    all_model_classes = (
        (
            TFDistilBertModel,
            TFDistilBertForMaskedLM,
            TFDistilBertForQuestionAnswering,
            TFDistilBertForSequenceClassification,
182
183
            TFDistilBertForTokenClassification,
            TFDistilBertForMultipleChoice,
184
185
186
187
        )
        if is_tf_available()
        else None
    )
188
189
190
191
192
193
194
195
196
197
198
199
    pipeline_model_mapping = (
        {
            "feature-extraction": TFDistilBertModel,
            "fill-mask": TFDistilBertForMaskedLM,
            "question-answering": TFDistilBertForQuestionAnswering,
            "text-classification": TFDistilBertForSequenceClassification,
            "token-classification": TFDistilBertForTokenClassification,
            "zero-shot": TFDistilBertForSequenceClassification,
        }
        if is_tf_available()
        else {}
    )
200
    test_head_masking = False
201
    test_onnx = False
thomwolf's avatar
thomwolf committed
202
203

    def setUp(self):
204
        self.model_tester = TFDistilBertModelTester(self)
thomwolf's avatar
thomwolf committed
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
        self.config_tester = ConfigTester(self, config_class=DistilBertConfig, dim=37)

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_distilbert_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_distilbert_model(*config_and_inputs)

    def test_for_masked_lm(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_distilbert_for_masked_lm(*config_and_inputs)

    def test_for_question_answering(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_distilbert_for_question_answering(*config_and_inputs)

    def test_for_sequence_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_distilbert_for_sequence_classification(*config_and_inputs)

226
227
228
229
230
231
232
233
    def test_for_multiple_choice(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_distilbert_for_multiple_choice(*config_and_inputs)

    def test_for_token_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_distilbert_for_token_classification(*config_and_inputs)

234
235
236
237
238
    @slow
    def test_model_from_pretrained(self):
        for model_name in list(TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]):
            model = TFDistilBertModel.from_pretrained(model_name)
            self.assertIsNotNone(model)
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261


@require_tf
class TFDistilBertModelIntegrationTest(unittest.TestCase):
    @slow
    def test_inference_masked_lm(self):
        model = TFDistilBertModel.from_pretrained("distilbert-base-uncased")
        input_ids = tf.constant([[0, 1, 2, 3, 4, 5]])
        output = model(input_ids)[0]

        expected_shape = [1, 6, 768]
        self.assertEqual(output.shape, expected_shape)

        expected_slice = tf.constant(
            [
                [
                    [0.19261885, -0.13732955, 0.4119799],
                    [0.22150156, -0.07422661, 0.39037204],
                    [0.22756018, -0.0896414, 0.3701467],
                ]
            ]
        )
        tf.debugging.assert_near(output[:, :3, :3], expected_slice, atol=1e-4)