serialization.mdx 17.5 KB
Newer Older
Sylvain Gugger's avatar
Sylvain Gugger committed
1
2
3
4
5
6
7
8
9
10
11
12
<!--Copyright 2020 The HuggingFace Team. All rights reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->

Steven Liu's avatar
Steven Liu committed
13
# Export to ONNX
Sylvain Gugger's avatar
Sylvain Gugger committed
14

Steven Liu's avatar
Steven Liu committed
15
16
17
18
If you need to deploy 馃 Transformers models in production environments, we recommend
exporting them to a serialized format that can be loaded and executed on specialized
runtimes and hardware. In this guide, we'll show you how to export 馃 Transformers
models to [ONNX (Open Neural Network eXchange)](http://onnx.ai).
Sylvain Gugger's avatar
Sylvain Gugger committed
19

Steven Liu's avatar
Steven Liu committed
20
21
22
23
24
<Tip>

Once exported, a model can be optimized for inference via techniques such as
quantization and pruning. If you are interested in optimizing your models to run with
maximum efficiency, check out the [馃 Optimum
lewtun's avatar
lewtun committed
25
library](https://github.com/huggingface/optimum).
Sylvain Gugger's avatar
Sylvain Gugger committed
26

Steven Liu's avatar
Steven Liu committed
27
</Tip>
Sylvain Gugger's avatar
Sylvain Gugger committed
28

Steven Liu's avatar
Steven Liu committed
29
30
31
32
33
ONNX is an open standard that defines a common set of operators and a common file format
to represent deep learning models in a wide variety of frameworks, including PyTorch and
TensorFlow. When a model is exported to the ONNX format, these operators are used to
construct a computational graph (often called an _intermediate representation_) which
represents the flow of data through the neural network.
Sylvain Gugger's avatar
Sylvain Gugger committed
34

Steven Liu's avatar
Steven Liu committed
35
36
37
By exposing a graph with standardized operators and data types, ONNX makes it easy to
switch between frameworks. For example, a model trained in PyTorch can be exported to
ONNX format and then imported in TensorFlow (and vice versa).
Sylvain Gugger's avatar
Sylvain Gugger committed
38

Steven Liu's avatar
Steven Liu committed
39
40
41
42
馃 Transformers provides a [`transformers.onnx`](main_classes/onnx) package that enables
you to convert model checkpoints to an ONNX graph by leveraging configuration objects.
These configuration objects come ready made for a number of model architectures, and are
designed to be easily extendable to other architectures.
Sylvain Gugger's avatar
Sylvain Gugger committed
43

lewtun's avatar
lewtun committed
44
Ready-made configurations include the following architectures:
Sylvain Gugger's avatar
Sylvain Gugger committed
45

46
<!--This table is automatically generated by `make fix-copies`, do not fill manually!-->
Sylvain Gugger's avatar
Sylvain Gugger committed
47
48
49

- ALBERT
- BART
Jim Rohrer's avatar
Jim Rohrer committed
50
- BEiT
Sylvain Gugger's avatar
Sylvain Gugger committed
51
- BERT
52
- BigBird
53
- BigBird-Pegasus
54
55
- Blenderbot
- BlenderbotSmall
56
- BLOOM
Sylvain Gugger's avatar
Sylvain Gugger committed
57
- CamemBERT
58
- CLIP
rooa's avatar
rooa committed
59
- CodeGen
60
- Conditional DETR
61
- ConvBERT
62
- ConvNeXT
63
- Data2VecText
64
- Data2VecVision
65
66
- DeBERTa
- DeBERTa-v2
67
- DeiT
regisss's avatar
regisss committed
68
- DETR
Sylvain Gugger's avatar
Sylvain Gugger committed
69
- DistilBERT
70
- ELECTRA
71
- ERNIE
72
- FlauBERT
Sylvain Gugger's avatar
Sylvain Gugger committed
73
- GPT Neo
74
- GPT-J
75
- GroupViT
76
- I-BERT
77
- ImageGPT
Sylvain Gugger's avatar
Sylvain Gugger committed
78
- LayoutLM
79
- LayoutLMv3
gcheron's avatar
gcheron committed
80
- LeViT
81
- Longformer
Daniel Stancl's avatar
Daniel Stancl committed
82
- LongT5
83
- M2M100
84
- Marian
Sylvain Gugger's avatar
Sylvain Gugger committed
85
- mBART
86
- MobileBERT
87
- MobileViT
88
- MT5
Sylvain Gugger's avatar
Sylvain Gugger committed
89
- OpenAI GPT-2
90
- OWL-ViT
91
- Perceiver
Gunjan Chhablani's avatar
Gunjan Chhablani committed
92
- PLBart
regisss's avatar
regisss committed
93
- ResNet
Sylvain Gugger's avatar
Sylvain Gugger committed
94
- RoBERTa
95
- RoFormer
96
- SegFormer
97
- SqueezeBERT
98
- Swin Transformer
Sylvain Gugger's avatar
Sylvain Gugger committed
99
- T5
100
- Table Transformer
101
- Vision Encoder decoder
lewtun's avatar
lewtun committed
102
- ViT
103
- Whisper
Ritik Nandwal's avatar
Ritik Nandwal committed
104
- XLM
Sylvain Gugger's avatar
Sylvain Gugger committed
105
- XLM-RoBERTa
106
- XLM-RoBERTa-XL
NielsRogge's avatar
NielsRogge committed
107
- YOLOS
Sylvain Gugger's avatar
Sylvain Gugger committed
108

lewtun's avatar
lewtun committed
109
In the next two sections, we'll show you how to:
Sylvain Gugger's avatar
Sylvain Gugger committed
110

lewtun's avatar
lewtun committed
111
112
* Export a supported model using the `transformers.onnx` package.
* Export a custom model for an unsupported architecture.
Sylvain Gugger's avatar
Sylvain Gugger committed
113

Steven Liu's avatar
Steven Liu committed
114
## Exporting a model to ONNX
Sylvain Gugger's avatar
Sylvain Gugger committed
115

Steven Liu's avatar
Steven Liu committed
116
117
To export a 馃 Transformers model to ONNX, you'll first need to install some extra
dependencies:
Sylvain Gugger's avatar
Sylvain Gugger committed
118

lewtun's avatar
lewtun committed
119
120
121
122
123
```bash
pip install transformers[onnx]
```

The `transformers.onnx` package can then be used as a Python module:
Sylvain Gugger's avatar
Sylvain Gugger committed
124
125
126
127

```bash
python -m transformers.onnx --help

lewtun's avatar
lewtun committed
128
usage: Hugging Face Transformers ONNX exporter [-h] -m MODEL [--feature {causal-lm, ...}] [--opset OPSET] [--atol ATOL] output
Sylvain Gugger's avatar
Sylvain Gugger committed
129
130
131
132
133
134
135

positional arguments:
  output                Path indicating where to store generated ONNX model.

optional arguments:
  -h, --help            show this help message and exit
  -m MODEL, --model MODEL
lewtun's avatar
lewtun committed
136
137
138
139
                        Model ID on huggingface.co or path on disk to load model from.
  --feature {causal-lm, ...}
                        The type of features to export the model with.
  --opset OPSET         ONNX opset version to export the model with.
140
  --atol ATOL           Absolute difference tolerance when validating the model.
Sylvain Gugger's avatar
Sylvain Gugger committed
141
142
143
144
145
```

Exporting a checkpoint using a ready-made configuration can be done as follows:

```bash
lewtun's avatar
lewtun committed
146
python -m transformers.onnx --model=distilbert-base-uncased onnx/
Sylvain Gugger's avatar
Sylvain Gugger committed
147
148
```

Steven Liu's avatar
Steven Liu committed
149
You should see the following logs:
Sylvain Gugger's avatar
Sylvain Gugger committed
150
151
152

```bash
Validating ONNX model...
153
        -[鉁揮 ONNX model output names match reference model ({'last_hidden_state'})
lewtun's avatar
lewtun committed
154
155
156
157
        - Validating ONNX Model output "last_hidden_state":
                -[鉁揮 (2, 8, 768) matches (2, 8, 768)
                -[鉁揮 all values close (atol: 1e-05)
All good, model saved at: onnx/model.onnx
Sylvain Gugger's avatar
Sylvain Gugger committed
158
159
```

Steven Liu's avatar
Steven Liu committed
160
161
162
This exports an ONNX graph of the checkpoint defined by the `--model` argument. In this
example, it is `distilbert-base-uncased`, but it can be any checkpoint on the Hugging
Face Hub or one that's stored locally.
Sylvain Gugger's avatar
Sylvain Gugger committed
163

lewtun's avatar
lewtun committed
164
The resulting `model.onnx` file can then be run on one of the [many
Steven Liu's avatar
Steven Liu committed
165
166
accelerators](https://onnx.ai/supported-tools.html#deployModel) that support the ONNX
standard. For example, we can load and run the model with [ONNX
lewtun's avatar
lewtun committed
167
Runtime](https://onnxruntime.ai/) as follows:
Sylvain Gugger's avatar
Sylvain Gugger committed
168

lewtun's avatar
lewtun committed
169
170
171
172
173
174
175
176
177
178
```python
>>> from transformers import AutoTokenizer
>>> from onnxruntime import InferenceSession

>>> tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased")
>>> session = InferenceSession("onnx/model.onnx")
>>> # ONNX Runtime expects NumPy arrays as input
>>> inputs = tokenizer("Using DistilBERT with ONNX Runtime!", return_tensors="np")
>>> outputs = session.run(output_names=["last_hidden_state"], input_feed=dict(inputs))
```
Sylvain Gugger's avatar
Sylvain Gugger committed
179

Steven Liu's avatar
Steven Liu committed
180
181
The required output names (like `["last_hidden_state"]`) can be obtained by taking a
look at the ONNX configuration of each model. For example, for DistilBERT we have:
Sylvain Gugger's avatar
Sylvain Gugger committed
182

lewtun's avatar
lewtun committed
183
184
```python
>>> from transformers.models.distilbert import DistilBertConfig, DistilBertOnnxConfig
Sylvain Gugger's avatar
Sylvain Gugger committed
185

lewtun's avatar
lewtun committed
186
187
188
189
>>> config = DistilBertConfig()
>>> onnx_config = DistilBertOnnxConfig(config)
>>> print(list(onnx_config.outputs.keys()))
["last_hidden_state"]
Sylvain Gugger's avatar
Sylvain Gugger committed
190
191
```

Steven Liu's avatar
Steven Liu committed
192
193
The process is identical for TensorFlow checkpoints on the Hub. For example, we can
export a pure TensorFlow checkpoint from the [Keras
194
195
196
197
198
199
organization](https://huggingface.co/keras-io) as follows:

```bash
python -m transformers.onnx --model=keras-io/transformers-qa onnx/
```

Steven Liu's avatar
Steven Liu committed
200
201
202
To export a model that's stored locally, you'll need to have the model's weights and
tokenizer files stored in a directory. For example, we can load and save a checkpoint as
follows:
203

Steven Liu's avatar
Steven Liu committed
204
<frameworkcontent> <pt>
205
206
207
208
```python
>>> from transformers import AutoTokenizer, AutoModelForSequenceClassification

>>> # Load tokenizer and PyTorch weights form the Hub
209
>>> tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased")
210
211
212
213
>>> pt_model = AutoModelForSequenceClassification.from_pretrained("distilbert-base-uncased")
>>> # Save to disk
>>> tokenizer.save_pretrained("local-pt-checkpoint")
>>> pt_model.save_pretrained("local-pt-checkpoint")
Sylvain Gugger's avatar
Sylvain Gugger committed
214
215
216
217
218
219
220
221
```

Once the checkpoint is saved, we can export it to ONNX by pointing the `--model`
argument of the `transformers.onnx` package to the desired directory:

```bash
python -m transformers.onnx --model=local-pt-checkpoint onnx/
```
Steven Liu's avatar
Steven Liu committed
222
</pt> <tf>
Sylvain Gugger's avatar
Sylvain Gugger committed
223
```python
224
225
226
>>> from transformers import AutoTokenizer, TFAutoModelForSequenceClassification

>>> # Load tokenizer and TensorFlow weights from the Hub
227
>>> tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased")
228
229
230
231
232
233
234
235
236
237
238
239
>>> tf_model = TFAutoModelForSequenceClassification.from_pretrained("distilbert-base-uncased")
>>> # Save to disk
>>> tokenizer.save_pretrained("local-tf-checkpoint")
>>> tf_model.save_pretrained("local-tf-checkpoint")
```

Once the checkpoint is saved, we can export it to ONNX by pointing the `--model`
argument of the `transformers.onnx` package to the desired directory:

```bash
python -m transformers.onnx --model=local-tf-checkpoint onnx/
```
Steven Liu's avatar
Steven Liu committed
240
</tf> </frameworkcontent>
241

Steven Liu's avatar
Steven Liu committed
242
## Selecting features for different model tasks
lewtun's avatar
lewtun committed
243

Steven Liu's avatar
Steven Liu committed
244
245
246
Each ready-made configuration comes with a set of _features_ that enable you to export
models for different types of tasks. As shown in the table below, each feature is
associated with a different `AutoClass`:
lewtun's avatar
lewtun committed
247
248
249
250
251
252
253
254
255
256
257
258

| Feature                              | Auto Class                           |
| ------------------------------------ | ------------------------------------ |
| `causal-lm`, `causal-lm-with-past`   | `AutoModelForCausalLM`               |
| `default`, `default-with-past`       | `AutoModel`                          |
| `masked-lm`                          | `AutoModelForMaskedLM`               |
| `question-answering`                 | `AutoModelForQuestionAnswering`      |
| `seq2seq-lm`, `seq2seq-lm-with-past` | `AutoModelForSeq2SeqLM`              |
| `sequence-classification`            | `AutoModelForSequenceClassification` |
| `token-classification`               | `AutoModelForTokenClassification`    |

For each configuration, you can find the list of supported features via the
Steven Liu's avatar
Steven Liu committed
259
[`~transformers.onnx.FeaturesManager`]. For example, for DistilBERT we have:
Sylvain Gugger's avatar
Sylvain Gugger committed
260
261

```python
lewtun's avatar
lewtun committed
262
>>> from transformers.onnx.features import FeaturesManager
Sylvain Gugger's avatar
Sylvain Gugger committed
263

lewtun's avatar
lewtun committed
264
265
266
>>> distilbert_features = list(FeaturesManager.get_supported_features_for_model_type("distilbert").keys())
>>> print(distilbert_features)
["default", "masked-lm", "causal-lm", "sequence-classification", "token-classification", "question-answering"]
Sylvain Gugger's avatar
Sylvain Gugger committed
267
268
```

lewtun's avatar
lewtun committed
269
You can then pass one of these features to the `--feature` argument in the
Steven Liu's avatar
Steven Liu committed
270
271
`transformers.onnx` package. For example, to export a text-classification model we can
pick a fine-tuned model from the Hub and run:
Sylvain Gugger's avatar
Sylvain Gugger committed
272

lewtun's avatar
lewtun committed
273
274
275
276
```bash
python -m transformers.onnx --model=distilbert-base-uncased-finetuned-sst-2-english \
                            --feature=sequence-classification onnx/
```
Sylvain Gugger's avatar
Sylvain Gugger committed
277

Steven Liu's avatar
Steven Liu committed
278
This displays the following logs:
lewtun's avatar
lewtun committed
279
280
281

```bash
Validating ONNX model...
282
        -[鉁揮 ONNX model output names match reference model ({'logits'})
lewtun's avatar
lewtun committed
283
284
285
286
        - Validating ONNX Model output "logits":
                -[鉁揮 (2, 2) matches (2, 2)
                -[鉁揮 all values close (atol: 1e-05)
All good, model saved at: onnx/model.onnx
Sylvain Gugger's avatar
Sylvain Gugger committed
287
288
```

Steven Liu's avatar
Steven Liu committed
289
290
291
Notice that in this case, the output names from the fine-tuned model are `logits`
instead of the `last_hidden_state` we saw with the `distilbert-base-uncased` checkpoint
earlier. This is expected since the fine-tuned model has a sequence classification head.
lewtun's avatar
lewtun committed
292
293
294

<Tip>

Steven Liu's avatar
Steven Liu committed
295
296
297
The features that have a `with-past` suffix (like `causal-lm-with-past`) correspond to
model classes with precomputed hidden states (key and values in the attention blocks)
that can be used for fast autoregressive decoding.
lewtun's avatar
lewtun committed
298
299

</Tip>
Sylvain Gugger's avatar
Sylvain Gugger committed
300

301
302
303
304
305
306
307
<Tip>

For `VisionEncoderDecoder` type models, the encoder and decoder parts are
exported separately as two ONNX files named `encoder_model.onnx` and `decoder_model.onnx` respectively.

</Tip>

Sylvain Gugger's avatar
Sylvain Gugger committed
308

Steven Liu's avatar
Steven Liu committed
309
## Exporting a model for an unsupported architecture
Sylvain Gugger's avatar
Sylvain Gugger committed
310

Steven Liu's avatar
Steven Liu committed
311
312
If you wish to export a model whose architecture is not natively supported by the
library, there are three main steps to follow:
Sylvain Gugger's avatar
Sylvain Gugger committed
313

lewtun's avatar
lewtun committed
314
315
316
1. Implement a custom ONNX configuration.
2. Export the model to ONNX.
3. Validate the outputs of the PyTorch and exported models.
Sylvain Gugger's avatar
Sylvain Gugger committed
317

Steven Liu's avatar
Steven Liu committed
318
319
In this section, we'll look at how DistilBERT was implemented to show what's involved
with each step.
Sylvain Gugger's avatar
Sylvain Gugger committed
320

Steven Liu's avatar
Steven Liu committed
321
### Implementing a custom ONNX configuration
Sylvain Gugger's avatar
Sylvain Gugger committed
322

Steven Liu's avatar
Steven Liu committed
323
324
Let's start with the ONNX configuration object. We provide three abstract classes that
you should inherit from, depending on the type of model architecture you wish to export:
Sylvain Gugger's avatar
Sylvain Gugger committed
325

326
327
328
* Encoder-based models inherit from [`~onnx.config.OnnxConfig`]
* Decoder-based models inherit from [`~onnx.config.OnnxConfigWithPast`]
* Encoder-decoder models inherit from [`~onnx.config.OnnxSeq2SeqConfigWithPast`]
Sylvain Gugger's avatar
Sylvain Gugger committed
329
330
331

<Tip>

lewtun's avatar
lewtun committed
332
333
A good way to implement a custom ONNX configuration is to look at the existing
implementation in the `configuration_<model_name>.py` file of a similar architecture.
Sylvain Gugger's avatar
Sylvain Gugger committed
334
335
336

</Tip>

lewtun's avatar
lewtun committed
337
338
Since DistilBERT is an encoder-based model, its configuration inherits from
`OnnxConfig`:
Sylvain Gugger's avatar
Sylvain Gugger committed
339

lewtun's avatar
lewtun committed
340
341
342
343
344
345
346
347
348
349
350
351
352
353
```python
>>> from typing import Mapping, OrderedDict
>>> from transformers.onnx import OnnxConfig


>>> class DistilBertOnnxConfig(OnnxConfig):
...     @property
...     def inputs(self) -> Mapping[str, Mapping[int, str]]:
...         return OrderedDict(
...             [
...                 ("input_ids", {0: "batch", 1: "sequence"}),
...                 ("attention_mask", {0: "batch", 1: "sequence"}),
...             ]
...         )
Sylvain Gugger's avatar
Sylvain Gugger committed
354
355
```

Steven Liu's avatar
Steven Liu committed
356
357
358
359
360
Every configuration object must implement the `inputs` property and return a mapping,
where each key corresponds to an expected input, and each value indicates the axis of
that input. For DistilBERT, we can see that two inputs are required: `input_ids` and
`attention_mask`. These inputs have the same shape of `(batch_size, sequence_length)`
which is why we see the same axes used in the configuration.
Sylvain Gugger's avatar
Sylvain Gugger committed
361
362
363

<Tip>

Steven Liu's avatar
Steven Liu committed
364
365
366
367
368
Notice that `inputs` property for `DistilBertOnnxConfig` returns an `OrderedDict`. This
ensures that the inputs are matched with their relative position within the
`PreTrainedModel.forward()` method when tracing the graph. We recommend using an
`OrderedDict` for the `inputs` and `outputs` properties when implementing custom ONNX
configurations.
Sylvain Gugger's avatar
Sylvain Gugger committed
369
370
371

</Tip>

Steven Liu's avatar
Steven Liu committed
372
373
Once you have implemented an ONNX configuration, you can instantiate it by providing the
base model's configuration as follows:
Sylvain Gugger's avatar
Sylvain Gugger committed
374

lewtun's avatar
lewtun committed
375
376
```python
>>> from transformers import AutoConfig
Sylvain Gugger's avatar
Sylvain Gugger committed
377

lewtun's avatar
lewtun committed
378
379
380
>>> config = AutoConfig.from_pretrained("distilbert-base-uncased")
>>> onnx_config = DistilBertOnnxConfig(config)
```
Sylvain Gugger's avatar
Sylvain Gugger committed
381

Steven Liu's avatar
Steven Liu committed
382
383
The resulting object has several useful properties. For example, you can view the ONNX
operator set that will be used during the export:
Sylvain Gugger's avatar
Sylvain Gugger committed
384

lewtun's avatar
lewtun committed
385
386
387
388
```python
>>> print(onnx_config.default_onnx_opset)
11
```
Sylvain Gugger's avatar
Sylvain Gugger committed
389

lewtun's avatar
lewtun committed
390
You can also view the outputs associated with the model as follows:
Sylvain Gugger's avatar
Sylvain Gugger committed
391

lewtun's avatar
lewtun committed
392
393
394
395
```python
>>> print(onnx_config.outputs)
OrderedDict([("last_hidden_state", {0: "batch", 1: "sequence"})])
```
Sylvain Gugger's avatar
Sylvain Gugger committed
396

Steven Liu's avatar
Steven Liu committed
397
398
399
400
401
402
403
404
Notice that the outputs property follows the same structure as the inputs; it returns an
`OrderedDict` of named outputs and their shapes. The output structure is linked to the
choice of feature that the configuration is initialised with. By default, the ONNX
configuration is initialized with the `default` feature that corresponds to exporting a
model loaded with the `AutoModel` class. If you want to export a model for another task,
just provide a different feature to the `task` argument when you initialize the ONNX
configuration. For example, if we wished to export DistilBERT with a sequence
classification head, we could use:
Sylvain Gugger's avatar
Sylvain Gugger committed
405

lewtun's avatar
lewtun committed
406
407
```python
>>> from transformers import AutoConfig
Sylvain Gugger's avatar
Sylvain Gugger committed
408

lewtun's avatar
lewtun committed
409
410
411
412
413
>>> config = AutoConfig.from_pretrained("distilbert-base-uncased")
>>> onnx_config_for_seq_clf = DistilBertOnnxConfig(config, task="sequence-classification")
>>> print(onnx_config_for_seq_clf.outputs)
OrderedDict([('logits', {0: 'batch'})])
```
Sylvain Gugger's avatar
Sylvain Gugger committed
414
415
416

<Tip>

Steven Liu's avatar
Steven Liu committed
417
All of the base properties and methods associated with [`~onnx.config.OnnxConfig`] and
418
the other configuration classes can be overridden if needed. Check out [`BartOnnxConfig`]
Steven Liu's avatar
Steven Liu committed
419
for an advanced example.
Sylvain Gugger's avatar
Sylvain Gugger committed
420
421
422

</Tip>

Steven Liu's avatar
Steven Liu committed
423
### Exporting the model
Sylvain Gugger's avatar
Sylvain Gugger committed
424

Steven Liu's avatar
Steven Liu committed
425
426
427
428
Once you have implemented the ONNX configuration, the next step is to export the model.
Here we can use the `export()` function provided by the `transformers.onnx` package.
This function expects the ONNX configuration, along with the base model and tokenizer,
and the path to save the exported file:
Sylvain Gugger's avatar
Sylvain Gugger committed
429

lewtun's avatar
lewtun committed
430
431
432
433
```python
>>> from pathlib import Path
>>> from transformers.onnx import export
>>> from transformers import AutoTokenizer, AutoModel
Sylvain Gugger's avatar
Sylvain Gugger committed
434

lewtun's avatar
lewtun committed
435
436
437
438
>>> onnx_path = Path("model.onnx")
>>> model_ckpt = "distilbert-base-uncased"
>>> base_model = AutoModel.from_pretrained(model_ckpt)
>>> tokenizer = AutoTokenizer.from_pretrained(model_ckpt)
Sylvain Gugger's avatar
Sylvain Gugger committed
439

lewtun's avatar
lewtun committed
440
441
>>> onnx_inputs, onnx_outputs = export(tokenizer, base_model, onnx_config, onnx_config.default_onnx_opset, onnx_path)
```
Sylvain Gugger's avatar
Sylvain Gugger committed
442

Steven Liu's avatar
Steven Liu committed
443
444
445
The `onnx_inputs` and `onnx_outputs` returned by the `export()` function are lists of
the keys defined in the `inputs` and `outputs` properties of the configuration. Once the
model is exported, you can test that the model is well formed as follows:
Sylvain Gugger's avatar
Sylvain Gugger committed
446

lewtun's avatar
lewtun committed
447
448
```python
>>> import onnx
Sylvain Gugger's avatar
Sylvain Gugger committed
449

lewtun's avatar
lewtun committed
450
451
452
>>> onnx_model = onnx.load("model.onnx")
>>> onnx.checker.check_model(onnx_model)
```
Sylvain Gugger's avatar
Sylvain Gugger committed
453
454
455

<Tip>

Steven Liu's avatar
Steven Liu committed
456
457
458
459
460
461
If your model is larger than 2GB, you will see that many additional files are created
during the export. This is _expected_ because ONNX uses [Protocol
Buffers](https://developers.google.com/protocol-buffers/) to store the model and these
have a size limit of 2GB. See the [ONNX
documentation](https://github.com/onnx/onnx/blob/master/docs/ExternalData.md) for
instructions on how to load models with external data.
Sylvain Gugger's avatar
Sylvain Gugger committed
462
463
464

</Tip>

Steven Liu's avatar
Steven Liu committed
465
### Validating the model outputs
Sylvain Gugger's avatar
Sylvain Gugger committed
466

Steven Liu's avatar
Steven Liu committed
467
468
469
The final step is to validate that the outputs from the base and exported model agree
within some absolute tolerance. Here we can use the `validate_model_outputs()` function
provided by the `transformers.onnx` package as follows:
Sylvain Gugger's avatar
Sylvain Gugger committed
470

lewtun's avatar
lewtun committed
471
472
```python
>>> from transformers.onnx import validate_model_outputs
Sylvain Gugger's avatar
Sylvain Gugger committed
473

lewtun's avatar
lewtun committed
474
475
476
>>> validate_model_outputs(
...     onnx_config, tokenizer, base_model, onnx_path, onnx_outputs, onnx_config.atol_for_validation
... )
Sylvain Gugger's avatar
Sylvain Gugger committed
477
478
```

Steven Liu's avatar
Steven Liu committed
479
480
481
482
This function uses the [`~transformers.onnx.OnnxConfig.generate_dummy_inputs`] method to
generate inputs for the base and exported model, and the absolute tolerance can be
defined in the configuration. We generally find numerical agreement in the 1e-6 to 1e-4
range, although anything smaller than 1e-3 is likely to be OK.
Sylvain Gugger's avatar
Sylvain Gugger committed
483

Steven Liu's avatar
Steven Liu committed
484
## Contributing a new configuration to 馃 Transformers
Sylvain Gugger's avatar
Sylvain Gugger committed
485

Steven Liu's avatar
Steven Liu committed
486
487
488
We are looking to expand the set of ready-made configurations and welcome contributions
from the community! If you would like to contribute your addition to the library, you
will need to:
Sylvain Gugger's avatar
Sylvain Gugger committed
489

lewtun's avatar
lewtun committed
490
491
* Implement the ONNX configuration in the corresponding `configuration_<model_name>.py`
file
Steven Liu's avatar
Steven Liu committed
492
493
* Include the model architecture and corresponding features in
  [`~onnx.features.FeatureManager`]
494
* Add your model architecture to the tests in `test_onnx_v2.py`
Sylvain Gugger's avatar
Sylvain Gugger committed
495

lewtun's avatar
lewtun committed
496
Check out how the configuration for [IBERT was
Steven Liu's avatar
Steven Liu committed
497
498
contributed](https://github.com/huggingface/transformers/pull/14868/files) to get an
idea of what's involved.