test_tokenization_common.py 34.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2019 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

16

thomwolf's avatar
thomwolf committed
17
import os
18
import pickle
Aymeric Augustin's avatar
Aymeric Augustin committed
19
import shutil
20
import tempfile
21
22
from collections import OrderedDict
from typing import Dict, Tuple, Union
Aymeric Augustin's avatar
Aymeric Augustin committed
23

24
25
from tests.utils import require_tf, require_torch

26

27
def merge_model_tokenizer_mappings(
LysandreJik's avatar
LysandreJik committed
28
29
30
31
32
33
    model_mapping: Dict["PretrainedConfig", Union["PreTrainedModel", "TFPreTrainedModel"]],
    tokenizer_mapping: Dict["PretrainedConfig", Tuple["PreTrainedTokenizer", "PreTrainedTokenizerFast"]],
) -> Dict[
    Union["PreTrainedTokenizer", "PreTrainedTokenizerFast"],
    Tuple["PretrainedConfig", Union["PreTrainedModel", "TFPreTrainedModel"]],
]:
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
    configurations = list(model_mapping.keys())
    model_tokenizer_mapping = OrderedDict([])

    for configuration in configurations:
        model = model_mapping[configuration]
        tokenizer = tokenizer_mapping[configuration][0]
        tokenizer_fast = tokenizer_mapping[configuration][1]

        model_tokenizer_mapping.update({tokenizer: (configuration, model)})
        if tokenizer_fast is not None:
            model_tokenizer_mapping.update({tokenizer_fast: (configuration, model)})

    return model_tokenizer_mapping


49
class TokenizerTesterMixin:
50

51
    tokenizer_class = None
Anthony MOI's avatar
Anthony MOI committed
52
    test_rust_tokenizer = False
53

54
55
    def setUp(self):
        self.tmpdirname = tempfile.mkdtemp()
56

57
58
    def tearDown(self):
        shutil.rmtree(self.tmpdirname)
59

60
61
    def get_tokenizer(self, **kwargs):
        raise NotImplementedError
62

Anthony MOI's avatar
Anthony MOI committed
63
64
    def get_rust_tokenizer(self, **kwargs):
        raise NotImplementedError
65

66
67
    def get_input_output_texts(self):
        raise NotImplementedError
thomwolf's avatar
thomwolf committed
68

69
70
71
72
73
74
    @staticmethod
    def convert_batch_encode_plus_format_to_encode_plus(batch_encode_plus_sequences):
        # Switch from batch_encode_plus format:   {'input_ids': [[...], [...]], ...}
        # to the concatenated encode_plus format: [{'input_ids': [...], ...}, {'input_ids': [...], ...}]
        return [
            {value: batch_encode_plus_sequences[value][i] for value in batch_encode_plus_sequences.keys()}
Lysandre Debut's avatar
Lysandre Debut committed
75
            for i in range(len(batch_encode_plus_sequences["input_ids"]))
76
77
        ]

78
79
80
81
82
83
84
85
86
87
88
89
90
91
    def test_tokenizers_common_properties(self):
        tokenizer = self.get_tokenizer()
        attributes_list = [
            "bos_token",
            "eos_token",
            "unk_token",
            "sep_token",
            "pad_token",
            "cls_token",
            "mask_token",
        ]
        for attr in attributes_list:
            self.assertTrue(hasattr(tokenizer, attr))
            self.assertTrue(hasattr(tokenizer, attr + "_id"))
92

93
94
        self.assertTrue(hasattr(tokenizer, "additional_special_tokens"))
        self.assertTrue(hasattr(tokenizer, "additional_special_tokens_ids"))
95

96
97
98
        attributes_list = ["max_len", "init_inputs", "init_kwargs", "added_tokens_encoder", "added_tokens_decoder"]
        for attr in attributes_list:
            self.assertTrue(hasattr(tokenizer, attr))
99

100
101
102
103
    def test_save_and_load_tokenizer(self):
        # safety check on max_len default value so we are sure the test works
        tokenizer = self.get_tokenizer()
        self.assertNotEqual(tokenizer.max_len, 42)
104

105
106
        # Now let's start the test
        tokenizer = self.get_tokenizer(max_len=42)
thomwolf's avatar
thomwolf committed
107

108
        before_tokens = tokenizer.encode("He is very happy, UNwant\u00E9d,running", add_special_tokens=False)
109

110
        with tempfile.TemporaryDirectory() as tmpdirname:
111
112
            tokenizer.save_pretrained(tmpdirname)
            tokenizer = self.tokenizer_class.from_pretrained(tmpdirname)
113

114
115
            after_tokens = tokenizer.encode("He is very happy, UNwant\u00E9d,running", add_special_tokens=False)
            self.assertListEqual(before_tokens, after_tokens)
116

117
118
119
            self.assertEqual(tokenizer.max_len, 42)
            tokenizer = self.tokenizer_class.from_pretrained(tmpdirname, max_len=43)
            self.assertEqual(tokenizer.max_len, 43)
120

121
122
123
    def test_pickle_tokenizer(self):
        tokenizer = self.get_tokenizer()
        self.assertIsNotNone(tokenizer)
124

125
126
        text = "Munich and Berlin are nice cities"
        subwords = tokenizer.tokenize(text)
127

128
        with tempfile.TemporaryDirectory() as tmpdirname:
129

130
131
132
            filename = os.path.join(tmpdirname, "tokenizer.bin")
            with open(filename, "wb") as handle:
                pickle.dump(tokenizer, handle)
133

134
135
            with open(filename, "rb") as handle:
                tokenizer_new = pickle.load(handle)
136

137
        subwords_loaded = tokenizer_new.tokenize(text)
138

139
        self.assertListEqual(subwords, subwords_loaded)
140

141
142
    def test_added_tokens_do_lower_case(self):
        tokenizer = self.get_tokenizer(do_lower_case=True)
143

144
        special_token = tokenizer.all_special_tokens[0]
145

146
147
        text = special_token + " aaaaa bbbbbb low cccccccccdddddddd l " + special_token
        text2 = special_token + " AAAAA BBBBBB low CCCCCCCCCDDDDDDDD l " + special_token
148

149
        toks0 = tokenizer.tokenize(text)  # toks before adding new_toks
150

151
152
153
        new_toks = ["aaaaa bbbbbb", "cccccccccdddddddd", "AAAAA BBBBBB", "CCCCCCCCCDDDDDDDD"]
        added = tokenizer.add_tokens(new_toks)
        self.assertEqual(added, 2)
154

155
156
        toks = tokenizer.tokenize(text)
        toks2 = tokenizer.tokenize(text2)
157

158
159
160
        self.assertEqual(len(toks), len(toks2))
        self.assertNotEqual(len(toks), len(toks0))  # toks0 should be longer
        self.assertListEqual(toks, toks2)
161

162
163
164
        # Check that none of the special tokens are lowercased
        sequence_with_special_tokens = "A " + " yEs ".join(tokenizer.all_special_tokens) + " B"
        tokenized_sequence = tokenizer.tokenize(sequence_with_special_tokens)
Lysandre's avatar
Lysandre committed
165

166
167
        for special_token in tokenizer.all_special_tokens:
            self.assertTrue(special_token in tokenized_sequence)
Lysandre's avatar
Lysandre committed
168

169
        tokenizer = self.get_tokenizer(do_lower_case=False)
170

171
172
        added = tokenizer.add_tokens(new_toks)
        self.assertEqual(added, 4)
173

174
175
        toks = tokenizer.tokenize(text)
        toks2 = tokenizer.tokenize(text2)
176

177
178
179
        self.assertEqual(len(toks), len(toks2))  # Length should still be the same
        self.assertNotEqual(len(toks), len(toks0))
        self.assertNotEqual(toks[1], toks2[1])  # But at least the first non-special tokens should differ
180

181
182
    def test_add_tokens_tokenizer(self):
        tokenizer = self.get_tokenizer()
183

184
185
        vocab_size = tokenizer.vocab_size
        all_size = len(tokenizer)
186

187
188
        self.assertNotEqual(vocab_size, 0)
        self.assertEqual(vocab_size, all_size)
189

190
191
192
193
        new_toks = ["aaaaa bbbbbb", "cccccccccdddddddd"]
        added_toks = tokenizer.add_tokens(new_toks)
        vocab_size_2 = tokenizer.vocab_size
        all_size_2 = len(tokenizer)
194

195
196
197
198
        self.assertNotEqual(vocab_size_2, 0)
        self.assertEqual(vocab_size, vocab_size_2)
        self.assertEqual(added_toks, len(new_toks))
        self.assertEqual(all_size_2, all_size + len(new_toks))
199

200
        tokens = tokenizer.encode("aaaaa bbbbbb low cccccccccdddddddd l", add_special_tokens=False)
thomwolf's avatar
thomwolf committed
201

202
203
204
        self.assertGreaterEqual(len(tokens), 4)
        self.assertGreater(tokens[0], tokenizer.vocab_size - 1)
        self.assertGreater(tokens[-2], tokenizer.vocab_size - 1)
205

206
207
208
209
        new_toks_2 = {"eos_token": ">>>>|||<||<<|<<", "pad_token": "<<<<<|||>|>>>>|>"}
        added_toks_2 = tokenizer.add_special_tokens(new_toks_2)
        vocab_size_3 = tokenizer.vocab_size
        all_size_3 = len(tokenizer)
210

211
212
213
214
        self.assertNotEqual(vocab_size_3, 0)
        self.assertEqual(vocab_size, vocab_size_3)
        self.assertEqual(added_toks_2, len(new_toks_2))
        self.assertEqual(all_size_3, all_size_2 + len(new_toks_2))
215

216
217
218
        tokens = tokenizer.encode(
            ">>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l", add_special_tokens=False
        )
219

220
221
222
223
224
225
226
        self.assertGreaterEqual(len(tokens), 6)
        self.assertGreater(tokens[0], tokenizer.vocab_size - 1)
        self.assertGreater(tokens[0], tokens[1])
        self.assertGreater(tokens[-2], tokenizer.vocab_size - 1)
        self.assertGreater(tokens[-2], tokens[-3])
        self.assertEqual(tokens[0], tokenizer.eos_token_id)
        self.assertEqual(tokens[-2], tokenizer.pad_token_id)
227

228
229
230
    def test_add_special_tokens(self):
        tokenizer = self.get_tokenizer()
        input_text, output_text = self.get_input_output_texts()
231

232
        special_token = "[SPECIAL TOKEN]"
233

234
235
236
        tokenizer.add_special_tokens({"cls_token": special_token})
        encoded_special_token = tokenizer.encode(special_token, add_special_tokens=False)
        assert len(encoded_special_token) == 1
237

238
239
        text = " ".join([input_text, special_token, output_text])
        encoded = tokenizer.encode(text, add_special_tokens=False)
240

241
        input_encoded = tokenizer.encode(input_text, add_special_tokens=False)
242
        output_encoded = tokenizer.encode(" " + output_text, add_special_tokens=False)
243
244
        special_token_id = tokenizer.encode(special_token, add_special_tokens=False)
        assert encoded == input_encoded + special_token_id + output_encoded
245

246
247
        decoded = tokenizer.decode(encoded, skip_special_tokens=True)
        assert special_token not in decoded
248

249
250
251
    def test_required_methods_tokenizer(self):
        tokenizer = self.get_tokenizer()
        input_text, output_text = self.get_input_output_texts()
252

253
254
255
256
        tokens = tokenizer.tokenize(input_text)
        ids = tokenizer.convert_tokens_to_ids(tokens)
        ids_2 = tokenizer.encode(input_text, add_special_tokens=False)
        self.assertListEqual(ids, ids_2)
257

258
259
        tokens_2 = tokenizer.convert_ids_to_tokens(ids)
        text_2 = tokenizer.decode(ids)
260

261
        self.assertEqual(text_2, output_text)
262

263
        self.assertNotEqual(len(tokens_2), 0)
264
        self.assertIsInstance(text_2, str)
265

266
267
    def test_encode_decode_with_spaces(self):
        tokenizer = self.get_tokenizer()
LysandreJik's avatar
LysandreJik committed
268

269
270
271
272
273
274
        new_toks = ["[ABC]", "[DEF]", "GHI IHG"]
        tokenizer.add_tokens(new_toks)
        input = "[ABC] [DEF] [ABC] GHI IHG [DEF]"
        encoded = tokenizer.encode(input, add_special_tokens=False)
        decoded = tokenizer.decode(encoded)
        self.assertEqual(decoded, input)
275

276
277
278
279
280
    def test_pretrained_model_lists(self):
        weights_list = list(self.tokenizer_class.max_model_input_sizes.keys())
        weights_lists_2 = []
        for file_id, map_list in self.tokenizer_class.pretrained_vocab_files_map.items():
            weights_lists_2.append(list(map_list.keys()))
281

282
283
        for weights_list_2 in weights_lists_2:
            self.assertListEqual(weights_list, weights_list_2)
LysandreJik's avatar
LysandreJik committed
284

285
286
    def test_mask_output(self):
        tokenizer = self.get_tokenizer()
287

Lysandre Debut's avatar
Lysandre Debut committed
288
289
290
291
        if (
            tokenizer.build_inputs_with_special_tokens.__qualname__.split(".")[0] != "PreTrainedTokenizer"
            and "token_type_ids" in tokenizer.model_input_names
        ):
292
293
            seq_0 = "Test this method."
            seq_1 = "With these inputs."
294
295
296
297
298
299
300
301
302
303
304
            information = tokenizer.encode_plus(seq_0, seq_1, add_special_tokens=True)
            sequences, mask = information["input_ids"], information["token_type_ids"]
            self.assertEqual(len(sequences), len(mask))

    def test_number_of_added_tokens(self):
        tokenizer = self.get_tokenizer()

        seq_0 = "Test this method."
        seq_1 = "With these inputs."

        sequences = tokenizer.encode(seq_0, seq_1, add_special_tokens=False)
305
        attached_sequences = tokenizer.encode(seq_0, seq_1, add_special_tokens=True, add_prefix_space=False)
306
307
308

        # Method is implemented (e.g. not GPT-2)
        if len(attached_sequences) != 2:
Funtowicz Morgan's avatar
Funtowicz Morgan committed
309
            self.assertEqual(tokenizer.num_special_tokens_to_add(pair=True), len(attached_sequences) - len(sequences))
310
311
312
313
314
315
316
317

    def test_maximum_encoding_length_single_input(self):
        tokenizer = self.get_tokenizer()

        seq_0 = "This is a sentence to be encoded."
        stride = 2

        sequence = tokenizer.encode(seq_0, add_special_tokens=False)
Funtowicz Morgan's avatar
Funtowicz Morgan committed
318
        num_added_tokens = tokenizer.num_special_tokens_to_add()
319
320
        total_length = len(sequence) + num_added_tokens
        information = tokenizer.encode_plus(
321
322
323
324
325
326
            seq_0,
            max_length=total_length - 2,
            add_special_tokens=True,
            stride=stride,
            return_overflowing_tokens=True,
            add_prefix_space=False,
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
        )

        truncated_sequence = information["input_ids"]
        overflowing_tokens = information["overflowing_tokens"]

        self.assertEqual(len(overflowing_tokens), 2 + stride)
        self.assertEqual(overflowing_tokens, sequence[-(2 + stride) :])
        self.assertEqual(len(truncated_sequence), total_length - 2)
        self.assertEqual(truncated_sequence, tokenizer.build_inputs_with_special_tokens(sequence[:-2]))

    def test_maximum_encoding_length_pair_input(self):
        tokenizer = self.get_tokenizer()

        seq_0 = "This is a sentence to be encoded."
        seq_1 = "This is another sentence to be encoded."
        stride = 2

        sequence_0_no_special_tokens = tokenizer.encode(seq_0, add_special_tokens=False)
        sequence_1_no_special_tokens = tokenizer.encode(seq_1, add_special_tokens=False)

347
        sequence = tokenizer.encode(seq_0, seq_1, add_special_tokens=True, add_prefix_space=False)
348
349
350
351
352
353
354
355
356
357
358
359
        truncated_second_sequence = tokenizer.build_inputs_with_special_tokens(
            tokenizer.encode(seq_0, add_special_tokens=False), tokenizer.encode(seq_1, add_special_tokens=False)[:-2],
        )

        information = tokenizer.encode_plus(
            seq_0,
            seq_1,
            max_length=len(sequence) - 2,
            add_special_tokens=True,
            stride=stride,
            truncation_strategy="only_second",
            return_overflowing_tokens=True,
360
            add_prefix_space=False,
361
362
363
364
365
366
367
368
369
        )
        information_first_truncated = tokenizer.encode_plus(
            seq_0,
            seq_1,
            max_length=len(sequence) - 2,
            add_special_tokens=True,
            stride=stride,
            truncation_strategy="only_first",
            return_overflowing_tokens=True,
370
            add_prefix_space=False,
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
        )

        truncated_sequence = information["input_ids"]
        overflowing_tokens = information["overflowing_tokens"]
        overflowing_tokens_first_truncated = information_first_truncated["overflowing_tokens"]

        self.assertEqual(len(overflowing_tokens), 2 + stride)
        self.assertEqual(overflowing_tokens, sequence_1_no_special_tokens[-(2 + stride) :])
        self.assertEqual(overflowing_tokens_first_truncated, sequence_0_no_special_tokens[-(2 + stride) :])
        self.assertEqual(len(truncated_sequence), len(sequence) - 2)
        self.assertEqual(truncated_sequence, truncated_second_sequence)

    def test_encode_input_type(self):
        tokenizer = self.get_tokenizer()

        sequence = "Let's encode this sequence"

        tokens = tokenizer.tokenize(sequence)
        input_ids = tokenizer.convert_tokens_to_ids(tokens)
390
        formatted_input = tokenizer.encode(sequence, add_special_tokens=True, add_prefix_space=False)
391
392
393
394

        self.assertEqual(tokenizer.encode(tokens, add_special_tokens=True), formatted_input)
        self.assertEqual(tokenizer.encode(input_ids, add_special_tokens=True), formatted_input)

395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
    def test_swap_special_token(self):
        tokenizer = self.get_tokenizer()

        mask = "<mask>"
        sequence = "Encode this sequence"
        sequence_masked_0 = "Encode <mask> sequence"
        sequence_masked_1 = "<mask> this sequence"

        # Add tokens so that masked token isn't split
        tokenizer.add_tokens(sequence.split())
        tokenizer.add_special_tokens({"mask_token": mask})
        mask_ind = tokenizer.convert_tokens_to_ids(mask)
        encoded = tokenizer.encode(sequence, add_special_tokens=False)

        # Test first masked sequence
        encoded_masked = tokenizer.encode(sequence_masked_0, add_special_tokens=False)
        mask_loc = encoded_masked.index(mask_ind)
        encoded_masked[mask_loc] = encoded[mask_loc]

        self.assertEqual(encoded_masked, encoded)

        # Test second masked sequence
        encoded_masked = tokenizer.encode(sequence_masked_1, add_special_tokens=False)
        mask_loc = encoded_masked.index(mask_ind)
        encoded_masked[mask_loc] = encoded[mask_loc]

        self.assertEqual(encoded_masked, encoded)

423
424
425
426
427
428
429
430
431
    def test_special_tokens_mask(self):
        tokenizer = self.get_tokenizer()

        sequence_0 = "Encode this."
        sequence_1 = "This one too please."

        # Testing single inputs
        encoded_sequence = tokenizer.encode(sequence_0, add_special_tokens=False)
        encoded_sequence_dict = tokenizer.encode_plus(
432
            sequence_0, add_special_tokens=True, return_special_tokens_mask=True, add_prefix_space=False
433
434
435
436
437
438
439
440
441
442
443
444
        )
        encoded_sequence_w_special = encoded_sequence_dict["input_ids"]
        special_tokens_mask = encoded_sequence_dict["special_tokens_mask"]
        self.assertEqual(len(special_tokens_mask), len(encoded_sequence_w_special))

        filtered_sequence = [
            (x if not special_tokens_mask[i] else None) for i, x in enumerate(encoded_sequence_w_special)
        ]
        filtered_sequence = [x for x in filtered_sequence if x is not None]
        self.assertEqual(encoded_sequence, filtered_sequence)

        # Testing inputs pairs
445
446
        encoded_sequence = tokenizer.encode(sequence_0, add_special_tokens=False)
        encoded_sequence += tokenizer.encode(sequence_1, add_special_tokens=False)
447
        encoded_sequence_dict = tokenizer.encode_plus(
448
            sequence_0, sequence_1, add_special_tokens=True, return_special_tokens_mask=True, add_prefix_space=False
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
        )
        encoded_sequence_w_special = encoded_sequence_dict["input_ids"]
        special_tokens_mask = encoded_sequence_dict["special_tokens_mask"]
        self.assertEqual(len(special_tokens_mask), len(encoded_sequence_w_special))

        filtered_sequence = [
            (x if not special_tokens_mask[i] else None) for i, x in enumerate(encoded_sequence_w_special)
        ]
        filtered_sequence = [x for x in filtered_sequence if x is not None]
        self.assertEqual(encoded_sequence, filtered_sequence)

        # Testing with already existing special tokens
        if tokenizer.cls_token_id == tokenizer.unk_token_id and tokenizer.cls_token_id == tokenizer.unk_token_id:
            tokenizer.add_special_tokens({"cls_token": "</s>", "sep_token": "<s>"})
        encoded_sequence_dict = tokenizer.encode_plus(
            sequence_0, add_special_tokens=True, return_special_tokens_mask=True
        )
        encoded_sequence_w_special = encoded_sequence_dict["input_ids"]
        special_tokens_mask_orig = encoded_sequence_dict["special_tokens_mask"]
        special_tokens_mask = tokenizer.get_special_tokens_mask(
            encoded_sequence_w_special, already_has_special_tokens=True
        )
        self.assertEqual(len(special_tokens_mask), len(encoded_sequence_w_special))
        self.assertEqual(special_tokens_mask_orig, special_tokens_mask)

    def test_padding_to_max_length(self):
        tokenizer = self.get_tokenizer()

        sequence = "Sequence"
        padding_size = 10
479
480
481
482

        # check correct behaviour if no pad_token_id exists and add it eventually
        self._check_no_pad_token_padding(tokenizer, sequence)

483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
        padding_idx = tokenizer.pad_token_id

        # RIGHT PADDING - Check that it correctly pads when a maximum length is specified along with the padding flag set to True
        tokenizer.padding_side = "right"
        encoded_sequence = tokenizer.encode(sequence)
        sequence_length = len(encoded_sequence)
        padded_sequence = tokenizer.encode(sequence, max_length=sequence_length + padding_size, pad_to_max_length=True)
        padded_sequence_length = len(padded_sequence)
        assert sequence_length + padding_size == padded_sequence_length
        assert encoded_sequence + [padding_idx] * padding_size == padded_sequence

        # LEFT PADDING - Check that it correctly pads when a maximum length is specified along with the padding flag set to True
        tokenizer.padding_side = "left"
        encoded_sequence = tokenizer.encode(sequence)
        sequence_length = len(encoded_sequence)
        padded_sequence = tokenizer.encode(sequence, max_length=sequence_length + padding_size, pad_to_max_length=True)
        padded_sequence_length = len(padded_sequence)
        assert sequence_length + padding_size == padded_sequence_length
        assert [padding_idx] * padding_size + encoded_sequence == padded_sequence

        # RIGHT & LEFT PADDING - Check that nothing is done when a maximum length is not specified
        encoded_sequence = tokenizer.encode(sequence)
        sequence_length = len(encoded_sequence)

        tokenizer.padding_side = "right"
        padded_sequence_right = tokenizer.encode(sequence, pad_to_max_length=True)
        padded_sequence_right_length = len(padded_sequence_right)

        tokenizer.padding_side = "left"
        padded_sequence_left = tokenizer.encode(sequence, pad_to_max_length=True)
        padded_sequence_left_length = len(padded_sequence_left)

        assert sequence_length == padded_sequence_right_length
        assert encoded_sequence == padded_sequence_right
        assert sequence_length == padded_sequence_left_length
        assert encoded_sequence == padded_sequence_left

    def test_encode_plus_with_padding(self):
        tokenizer = self.get_tokenizer()

        sequence = "Sequence"
524
525
526
527

        # check correct behaviour if no pad_token_id exists and add it eventually
        self._check_no_pad_token_padding(tokenizer, sequence)

528
529
530
531
532
533
534
535
536
537
538
        padding_size = 10
        padding_idx = tokenizer.pad_token_id
        token_type_padding_idx = tokenizer.pad_token_type_id

        encoded_sequence = tokenizer.encode_plus(sequence, return_special_tokens_mask=True)
        input_ids = encoded_sequence["input_ids"]
        special_tokens_mask = encoded_sequence["special_tokens_mask"]
        sequence_length = len(input_ids)

        # Test right padding
        tokenizer.padding_side = "right"
539

Lysandre Debut's avatar
Lysandre Debut committed
540
        right_padded_sequence = tokenizer.encode_plus(
541
542
543
544
545
            sequence,
            max_length=sequence_length + padding_size,
            pad_to_max_length=True,
            return_special_tokens_mask=True,
        )
Lysandre Debut's avatar
Lysandre Debut committed
546
        right_padded_input_ids = right_padded_sequence["input_ids"]
547

Lysandre Debut's avatar
Lysandre Debut committed
548
549
550
551
552
553
        right_padded_special_tokens_mask = right_padded_sequence["special_tokens_mask"]
        right_padded_sequence_length = len(right_padded_input_ids)

        assert sequence_length + padding_size == right_padded_sequence_length
        assert input_ids + [padding_idx] * padding_size == right_padded_input_ids
        assert special_tokens_mask + [1] * padding_size == right_padded_special_tokens_mask
554
555
556

        # Test left padding
        tokenizer.padding_side = "left"
Lysandre Debut's avatar
Lysandre Debut committed
557
        left_padded_sequence = tokenizer.encode_plus(
558
559
560
561
562
            sequence,
            max_length=sequence_length + padding_size,
            pad_to_max_length=True,
            return_special_tokens_mask=True,
        )
Lysandre Debut's avatar
Lysandre Debut committed
563
564
565
        left_padded_input_ids = left_padded_sequence["input_ids"]
        left_padded_special_tokens_mask = left_padded_sequence["special_tokens_mask"]
        left_padded_sequence_length = len(left_padded_input_ids)
566

Lysandre Debut's avatar
Lysandre Debut committed
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
        assert sequence_length + padding_size == left_padded_sequence_length
        assert [padding_idx] * padding_size + input_ids == left_padded_input_ids
        assert [1] * padding_size + special_tokens_mask == left_padded_special_tokens_mask

        if "token_type_ids" in tokenizer.model_input_names:
            token_type_ids = encoded_sequence["token_type_ids"]
            left_padded_token_type_ids = left_padded_sequence["token_type_ids"]
            right_padded_token_type_ids = right_padded_sequence["token_type_ids"]

            assert token_type_ids + [token_type_padding_idx] * padding_size == right_padded_token_type_ids
            assert [token_type_padding_idx] * padding_size + token_type_ids == left_padded_token_type_ids

        if "attention_mask" in tokenizer.model_input_names:
            attention_mask = encoded_sequence["attention_mask"]
            right_padded_attention_mask = right_padded_sequence["attention_mask"]
            left_padded_attention_mask = left_padded_sequence["attention_mask"]

            assert attention_mask + [0] * padding_size == right_padded_attention_mask
            assert [0] * padding_size + attention_mask == left_padded_attention_mask
586
587
588
589
590
591

    def test_separate_tokenizers(self):
        # This tests that tokenizers don't impact others. Unfortunately the case where it fails is when
        # we're loading an S3 configuration from a pre-trained identifier, and we have no way of testing those today.

        tokenizer = self.get_tokenizer(random_argument=True)
Lysandre's avatar
Style  
Lysandre committed
592
        assert tokenizer.init_kwargs["random_argument"] is True
593
        new_tokenizer = self.get_tokenizer(random_argument=False)
Lysandre's avatar
Style  
Lysandre committed
594
595
        assert tokenizer.init_kwargs["random_argument"] is True
        assert new_tokenizer.init_kwargs["random_argument"] is False
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615

    def test_get_vocab(self):
        tokenizer = self.get_tokenizer()
        vocab = tokenizer.get_vocab()

        self.assertIsInstance(vocab, dict)
        self.assertEqual(len(vocab), len(tokenizer))

        for word, ind in vocab.items():
            self.assertEqual(tokenizer.convert_tokens_to_ids(word), ind)
            self.assertEqual(tokenizer.convert_ids_to_tokens(ind), word)

        tokenizer.add_tokens(["asdfasdfasdfasdf"])
        vocab = tokenizer.get_vocab()
        self.assertIsInstance(vocab, dict)
        self.assertEqual(len(vocab), len(tokenizer))

        for word, ind in vocab.items():
            self.assertEqual(tokenizer.convert_tokens_to_ids(word), ind)
            self.assertEqual(tokenizer.convert_ids_to_tokens(ind), word)
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633

    def test_batch_encode_plus_batch_sequence_length(self):
        # Tests that all encoded values have the correct size
        tokenizer = self.get_tokenizer()
        sequences = [
            "Testing batch encode plus",
            "Testing batch encode plus with different sequence lengths",
            "Testing batch encode plus with different sequence lengths correctly pads",
        ]

        encoded_sequences = [tokenizer.encode_plus(sequence, pad_to_max_length=False) for sequence in sequences]
        encoded_sequences_batch = tokenizer.batch_encode_plus(sequences)
        self.assertListEqual(
            encoded_sequences, self.convert_batch_encode_plus_format_to_encode_plus(encoded_sequences_batch)
        )

        maximum_length = len(max([encoded_sequence["input_ids"] for encoded_sequence in encoded_sequences], key=len))

634
635
636
        # check correct behaviour if no pad_token_id exists and add it eventually
        self._check_no_pad_token_padding(tokenizer, sequences)

637
638
639
640
        encoded_sequences_padded = [
            tokenizer.encode_plus(sequence, pad_to_max_length=True, max_length=maximum_length)
            for sequence in sequences
        ]
641

642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
        encoded_sequences_batch_padded = tokenizer.batch_encode_plus(sequences, pad_to_max_length=True)
        self.assertListEqual(
            encoded_sequences_padded,
            self.convert_batch_encode_plus_format_to_encode_plus(encoded_sequences_batch_padded),
        )

    def test_batch_encode_plus_padding(self):
        # Test that padded sequences are equivalent between batch_encode_plus and encode_plus

        # Right padding tests
        tokenizer = self.get_tokenizer()
        sequences = [
            "Testing batch encode plus",
            "Testing batch encode plus with different sequence lengths",
            "Testing batch encode plus with different sequence lengths correctly pads",
        ]

        max_length = 100
660
661
662
663

        # check correct behaviour if no pad_token_id exists and add it eventually
        self._check_no_pad_token_padding(tokenizer, sequences)

664
665
666
667
668
669
670
671
672
673
        encoded_sequences = [
            tokenizer.encode_plus(sequence, pad_to_max_length=True, max_length=max_length) for sequence in sequences
        ]
        encoded_sequences_batch = tokenizer.batch_encode_plus(sequences, pad_to_max_length=True, max_length=max_length)
        self.assertListEqual(
            encoded_sequences, self.convert_batch_encode_plus_format_to_encode_plus(encoded_sequences_batch)
        )

        # Left padding tests
        tokenizer = self.get_tokenizer()
674

675
676
677
678
679
680
681
682
        tokenizer.padding_side = "left"
        sequences = [
            "Testing batch encode plus",
            "Testing batch encode plus with different sequence lengths",
            "Testing batch encode plus with different sequence lengths correctly pads",
        ]

        max_length = 100
683
684
685
686

        # check correct behaviour if no pad_token_id exists and add it eventually
        self._check_no_pad_token_padding(tokenizer, sequences)

687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
        encoded_sequences = [
            tokenizer.encode_plus(sequence, pad_to_max_length=True, max_length=max_length) for sequence in sequences
        ]
        encoded_sequences_batch = tokenizer.batch_encode_plus(sequences, pad_to_max_length=True, max_length=max_length)
        self.assertListEqual(
            encoded_sequences, self.convert_batch_encode_plus_format_to_encode_plus(encoded_sequences_batch)
        )

    @require_torch
    @require_tf
    def test_batch_encode_plus_tensors(self):
        tokenizer = self.get_tokenizer()
        sequences = [
            "Testing batch encode plus",
            "Testing batch encode plus with different sequence lengths",
            "Testing batch encode plus with different sequence lengths correctly pads",
        ]

        # A Tensor cannot be build by sequences which are not the same size
        self.assertRaises(ValueError, tokenizer.batch_encode_plus, sequences, return_tensors="pt")
        self.assertRaises(ValueError, tokenizer.batch_encode_plus, sequences, return_tensors="tf")

        if tokenizer.pad_token_id is None:
            self.assertRaises(
                ValueError, tokenizer.batch_encode_plus, sequences, pad_to_max_length=True, return_tensors="pt"
            )
            self.assertRaises(
                ValueError, tokenizer.batch_encode_plus, sequences, pad_to_max_length=True, return_tensors="tf"
            )
        else:
            pytorch_tensor = tokenizer.batch_encode_plus(sequences, pad_to_max_length=True, return_tensors="pt")
            tensorflow_tensor = tokenizer.batch_encode_plus(sequences, pad_to_max_length=True, return_tensors="tf")
            encoded_sequences = tokenizer.batch_encode_plus(sequences, pad_to_max_length=True)

            for key in encoded_sequences.keys():
                pytorch_value = pytorch_tensor[key].tolist()
                tensorflow_value = tensorflow_tensor[key].numpy().tolist()
                encoded_value = encoded_sequences[key]

                self.assertEqual(pytorch_value, tensorflow_value, encoded_value)
727
728
729
730
731
732
733
734
735
736
737
738

    def _check_no_pad_token_padding(self, tokenizer, sequences):
        # if tokenizer does not have pad_token_id, an error should be thrown
        if tokenizer.pad_token_id is None:
            with self.assertRaises(ValueError):
                if isinstance(sequences, list):
                    tokenizer.batch_encode_plus(sequences, pad_to_max_length=True)
                else:
                    tokenizer.encode_plus(sequences, pad_to_max_length=True)

            # add pad_token_id to pass subsequent tests
            tokenizer.add_special_tokens({"pad_token": "<PAD>"})
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818

    @require_torch
    def test_torch_encode_plus_sent_to_model(self):
        from transformers import MODEL_MAPPING, TOKENIZER_MAPPING

        MODEL_TOKENIZER_MAPPING = merge_model_tokenizer_mappings(MODEL_MAPPING, TOKENIZER_MAPPING)

        tokenizer = self.get_tokenizer()

        if tokenizer.__class__ not in MODEL_TOKENIZER_MAPPING:
            return

        config_class, model_class = MODEL_TOKENIZER_MAPPING[tokenizer.__class__]
        config = config_class()

        if config.is_encoder_decoder or config.pad_token_id is None:
            return

        model = model_class(config)

        # Make sure the model contains at least the full vocabulary size in its embedding matrix
        is_using_common_embeddings = hasattr(model.get_input_embeddings(), "weight")
        assert (model.get_input_embeddings().weight.shape[0] >= len(tokenizer)) if is_using_common_embeddings else True

        # Build sequence
        first_ten_tokens = list(tokenizer.get_vocab().keys())[:10]
        sequence = " ".join(first_ten_tokens)
        encoded_sequence = tokenizer.encode_plus(sequence, return_tensors="pt")
        batch_encoded_sequence = tokenizer.batch_encode_plus([sequence, sequence], return_tensors="pt")
        # This should not fail
        model(**encoded_sequence)
        model(**batch_encoded_sequence)

        if self.test_rust_tokenizer:
            fast_tokenizer = self.get_rust_tokenizer()
            encoded_sequence_fast = fast_tokenizer.encode_plus(sequence, return_tensors="pt")
            batch_encoded_sequence_fast = fast_tokenizer.batch_encode_plus([sequence, sequence], return_tensors="pt")
            # This should not fail
            model(**encoded_sequence_fast)
            model(**batch_encoded_sequence_fast)

    @require_tf
    def test_tf_encode_plus_sent_to_model(self):
        from transformers import TF_MODEL_MAPPING, TOKENIZER_MAPPING

        MODEL_TOKENIZER_MAPPING = merge_model_tokenizer_mappings(TF_MODEL_MAPPING, TOKENIZER_MAPPING)

        tokenizer = self.get_tokenizer()

        if tokenizer.__class__ not in MODEL_TOKENIZER_MAPPING:
            return

        config_class, model_class = MODEL_TOKENIZER_MAPPING[tokenizer.__class__]
        config = config_class()

        if config.is_encoder_decoder or config.pad_token_id is None:
            return

        model = model_class(config)

        # Make sure the model contains at least the full vocabulary size in its embedding matrix
        assert model.config.vocab_size >= len(tokenizer)

        # Build sequence
        first_ten_tokens = list(tokenizer.get_vocab().keys())[:10]
        sequence = " ".join(first_ten_tokens)
        encoded_sequence = tokenizer.encode_plus(sequence, return_tensors="tf")
        batch_encoded_sequence = tokenizer.batch_encode_plus([sequence, sequence], return_tensors="tf")

        # This should not fail
        model(encoded_sequence)
        model(batch_encoded_sequence)

        if self.test_rust_tokenizer:
            fast_tokenizer = self.get_rust_tokenizer()
            encoded_sequence_fast = fast_tokenizer.encode_plus(sequence, return_tensors="tf")
            batch_encoded_sequence_fast = fast_tokenizer.batch_encode_plus([sequence, sequence], return_tensors="tf")
            # This should not fail
            model(encoded_sequence_fast)
            model(batch_encoded_sequence_fast)