"sgl-router/vscode:/vscode.git/clone" did not exist on "9f5e7018794a6c8ea199e31661f7bf96ea79bc47"
test_processor_clip.py 8.28 KB
Newer Older
Suraj Patil's avatar
Suraj Patil committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import json
import os
import shutil
import tempfile
import unittest

import numpy as np
import pytest

24
from transformers import CLIPTokenizer, CLIPTokenizerFast
Suraj Patil's avatar
Suraj Patil committed
25
26
from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES
from transformers.testing_utils import require_vision
27
from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available
Suraj Patil's avatar
Suraj Patil committed
28

Yih-Dar's avatar
Yih-Dar committed
29
30
from ...test_processing_common import ProcessorTesterMixin

Suraj Patil's avatar
Suraj Patil committed
31
32
33
34

if is_vision_available():
    from PIL import Image

35
    from transformers import CLIPImageProcessor, CLIPProcessor
Suraj Patil's avatar
Suraj Patil committed
36
37
38


@require_vision
Yih-Dar's avatar
Yih-Dar committed
39
40
41
class CLIPProcessorTest(ProcessorTesterMixin, unittest.TestCase):
    processor_class = CLIPProcessor

Suraj Patil's avatar
Suraj Patil committed
42
43
44
    def setUp(self):
        self.tmpdirname = tempfile.mkdtemp()

45
        vocab = ["l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "lo", "l</w>", "w</w>", "r</w>", "t</w>", "low</w>", "er</w>", "lowest</w>", "newer</w>", "wider", "<unk>", "<|startoftext|>", "<|endoftext|>"]  # fmt: skip
Suraj Patil's avatar
Suraj Patil committed
46
47
48
49
50
51
52
53
54
55
56
        vocab_tokens = dict(zip(vocab, range(len(vocab))))
        merges = ["#version: 0.2", "l o", "lo w</w>", "e r</w>", ""]
        self.special_tokens_map = {"unk_token": "<unk>"}

        self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"])
        self.merges_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["merges_file"])
        with open(self.vocab_file, "w", encoding="utf-8") as fp:
            fp.write(json.dumps(vocab_tokens) + "\n")
        with open(self.merges_file, "w", encoding="utf-8") as fp:
            fp.write("\n".join(merges))

57
        image_processor_map = {
Suraj Patil's avatar
Suraj Patil committed
58
59
60
61
62
63
64
65
            "do_resize": True,
            "size": 20,
            "do_center_crop": True,
            "crop_size": 18,
            "do_normalize": True,
            "image_mean": [0.48145466, 0.4578275, 0.40821073],
            "image_std": [0.26862954, 0.26130258, 0.27577711],
        }
66
67
68
        self.image_processor_file = os.path.join(self.tmpdirname, IMAGE_PROCESSOR_NAME)
        with open(self.image_processor_file, "w", encoding="utf-8") as fp:
            json.dump(image_processor_map, fp)
Suraj Patil's avatar
Suraj Patil committed
69
70
71
72

    def get_tokenizer(self, **kwargs):
        return CLIPTokenizer.from_pretrained(self.tmpdirname, **kwargs)

73
74
75
    def get_rust_tokenizer(self, **kwargs):
        return CLIPTokenizerFast.from_pretrained(self.tmpdirname, **kwargs)

76
77
    def get_image_processor(self, **kwargs):
        return CLIPImageProcessor.from_pretrained(self.tmpdirname, **kwargs)
Suraj Patil's avatar
Suraj Patil committed
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93

    def tearDown(self):
        shutil.rmtree(self.tmpdirname)

    def prepare_image_inputs(self):
        """This function prepares a list of PIL images, or a list of numpy arrays if one specifies numpify=True,
        or a list of PyTorch tensors if one specifies torchify=True.
        """

        image_inputs = [np.random.randint(255, size=(3, 30, 400), dtype=np.uint8)]

        image_inputs = [Image.fromarray(np.moveaxis(x, 0, -1)) for x in image_inputs]

        return image_inputs

    def test_save_load_pretrained_default(self):
94
95
        tokenizer_slow = self.get_tokenizer()
        tokenizer_fast = self.get_rust_tokenizer()
96
        image_processor = self.get_image_processor()
Suraj Patil's avatar
Suraj Patil committed
97

98
        processor_slow = CLIPProcessor(tokenizer=tokenizer_slow, image_processor=image_processor)
99
100
        processor_slow.save_pretrained(self.tmpdirname)
        processor_slow = CLIPProcessor.from_pretrained(self.tmpdirname, use_fast=False)
Suraj Patil's avatar
Suraj Patil committed
101

102
        processor_fast = CLIPProcessor(tokenizer=tokenizer_fast, image_processor=image_processor)
103
104
        processor_fast.save_pretrained(self.tmpdirname)
        processor_fast = CLIPProcessor.from_pretrained(self.tmpdirname)
Suraj Patil's avatar
Suraj Patil committed
105

106
107
108
109
110
        self.assertEqual(processor_slow.tokenizer.get_vocab(), tokenizer_slow.get_vocab())
        self.assertEqual(processor_fast.tokenizer.get_vocab(), tokenizer_fast.get_vocab())
        self.assertEqual(tokenizer_slow.get_vocab(), tokenizer_fast.get_vocab())
        self.assertIsInstance(processor_slow.tokenizer, CLIPTokenizer)
        self.assertIsInstance(processor_fast.tokenizer, CLIPTokenizerFast)
Suraj Patil's avatar
Suraj Patil committed
111

112
113
114
115
        self.assertEqual(processor_slow.image_processor.to_json_string(), image_processor.to_json_string())
        self.assertEqual(processor_fast.image_processor.to_json_string(), image_processor.to_json_string())
        self.assertIsInstance(processor_slow.image_processor, CLIPImageProcessor)
        self.assertIsInstance(processor_fast.image_processor, CLIPImageProcessor)
Suraj Patil's avatar
Suraj Patil committed
116
117

    def test_save_load_pretrained_additional_features(self):
118
        processor = CLIPProcessor(tokenizer=self.get_tokenizer(), image_processor=self.get_image_processor())
Suraj Patil's avatar
Suraj Patil committed
119
120
121
        processor.save_pretrained(self.tmpdirname)

        tokenizer_add_kwargs = self.get_tokenizer(bos_token="(BOS)", eos_token="(EOS)")
122
        image_processor_add_kwargs = self.get_image_processor(do_normalize=False, padding_value=1.0)
Suraj Patil's avatar
Suraj Patil committed
123
124
125
126
127
128

        processor = CLIPProcessor.from_pretrained(
            self.tmpdirname, bos_token="(BOS)", eos_token="(EOS)", do_normalize=False, padding_value=1.0
        )

        self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab())
129
        self.assertIsInstance(processor.tokenizer, CLIPTokenizerFast)
Suraj Patil's avatar
Suraj Patil committed
130

131
132
        self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string())
        self.assertIsInstance(processor.image_processor, CLIPImageProcessor)
Suraj Patil's avatar
Suraj Patil committed
133

134
135
    def test_image_processor(self):
        image_processor = self.get_image_processor()
Suraj Patil's avatar
Suraj Patil committed
136
137
        tokenizer = self.get_tokenizer()

138
        processor = CLIPProcessor(tokenizer=tokenizer, image_processor=image_processor)
Suraj Patil's avatar
Suraj Patil committed
139
140
141

        image_input = self.prepare_image_inputs()

142
        input_image_proc = image_processor(image_input, return_tensors="np")
Suraj Patil's avatar
Suraj Patil committed
143
144
        input_processor = processor(images=image_input, return_tensors="np")

145
146
        for key in input_image_proc.keys():
            self.assertAlmostEqual(input_image_proc[key].sum(), input_processor[key].sum(), delta=1e-2)
Suraj Patil's avatar
Suraj Patil committed
147
148

    def test_tokenizer(self):
149
        image_processor = self.get_image_processor()
Suraj Patil's avatar
Suraj Patil committed
150
151
        tokenizer = self.get_tokenizer()

152
        processor = CLIPProcessor(tokenizer=tokenizer, image_processor=image_processor)
Suraj Patil's avatar
Suraj Patil committed
153
154
155
156
157
158
159
160
161
162
163

        input_str = "lower newer"

        encoded_processor = processor(text=input_str)

        encoded_tok = tokenizer(input_str)

        for key in encoded_tok.keys():
            self.assertListEqual(encoded_tok[key], encoded_processor[key])

    def test_processor(self):
164
        image_processor = self.get_image_processor()
Suraj Patil's avatar
Suraj Patil committed
165
166
        tokenizer = self.get_tokenizer()

167
        processor = CLIPProcessor(tokenizer=tokenizer, image_processor=image_processor)
Suraj Patil's avatar
Suraj Patil committed
168
169
170
171
172
173
174
175
176
177
178
179
180

        input_str = "lower newer"
        image_input = self.prepare_image_inputs()

        inputs = processor(text=input_str, images=image_input)

        self.assertListEqual(list(inputs.keys()), ["input_ids", "attention_mask", "pixel_values"])

        # test if it raises when no input is passed
        with pytest.raises(ValueError):
            processor()

    def test_tokenizer_decode(self):
181
        image_processor = self.get_image_processor()
Suraj Patil's avatar
Suraj Patil committed
182
183
        tokenizer = self.get_tokenizer()

184
        processor = CLIPProcessor(tokenizer=tokenizer, image_processor=image_processor)
Suraj Patil's avatar
Suraj Patil committed
185
186
187
188
189
190
191

        predicted_ids = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]

        decoded_processor = processor.batch_decode(predicted_ids)
        decoded_tok = tokenizer.batch_decode(predicted_ids)

        self.assertListEqual(decoded_tok, decoded_processor)
192
193

    def test_model_input_names(self):
194
        image_processor = self.get_image_processor()
195
196
        tokenizer = self.get_tokenizer()

197
        processor = CLIPProcessor(tokenizer=tokenizer, image_processor=image_processor)
198
199
200
201
202
203
204

        input_str = "lower newer"
        image_input = self.prepare_image_inputs()

        inputs = processor(text=input_str, images=image_input)

        self.assertListEqual(list(inputs.keys()), processor.model_input_names)