test_pipelines_image_to_text.py 8.74 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest

17
18
import requests

19
20
from transformers import MODEL_FOR_VISION_2_SEQ_MAPPING, TF_MODEL_FOR_VISION_2_SEQ_MAPPING, is_vision_available
from transformers.pipelines import pipeline
21
from transformers.testing_utils import is_pipeline_test, require_tf, require_torch, require_vision, slow
22

23
from .test_pipelines_common import ANY
24
25
26
27
28
29
30
31
32
33
34
35


if is_vision_available():
    from PIL import Image
else:

    class Image:
        @staticmethod
        def open(*args, **kwargs):
            pass


36
@is_pipeline_test
37
@require_vision
38
class ImageToTextPipelineTests(unittest.TestCase):
39
40
41
    model_mapping = MODEL_FOR_VISION_2_SEQ_MAPPING
    tf_model_mapping = TF_MODEL_FOR_VISION_2_SEQ_MAPPING

42
    def get_test_pipeline(self, model, tokenizer, processor):
Yih-Dar's avatar
Yih-Dar committed
43
        pipe = pipeline("image-to-text", model=model, tokenizer=tokenizer, image_processor=processor)
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
        examples = [
            Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png"),
            "./tests/fixtures/tests_samples/COCO/000000039769.png",
        ]
        return pipe, examples

    def run_pipeline_test(self, pipe, examples):
        outputs = pipe(examples)
        self.assertEqual(
            outputs,
            [
                [{"generated_text": ANY(str)}],
                [{"generated_text": ANY(str)}],
            ],
        )

    @require_tf
    def test_small_model_tf(self):
62
        pipe = pipeline("image-to-text", model="hf-internal-testing/tiny-random-vit-gpt2", framework="tf")
63
64
65
66
67
68
69
        image = "./tests/fixtures/tests_samples/COCO/000000039769.png"

        outputs = pipe(image)
        self.assertEqual(
            outputs,
            [
                {
70
                    "generated_text": "growthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthGOGO"
71
72
73
74
75
76
77
78
79
80
                },
            ],
        )

        outputs = pipe([image, image])
        self.assertEqual(
            outputs,
            [
                [
                    {
81
82
                        "generated_text": "growthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthGOGO"
                    }
83
84
85
                ],
                [
                    {
86
87
                        "generated_text": "growthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthGOGO"
                    }
88
89
90
91
                ],
            ],
        )

92
93
94
95
96
97
        outputs = pipe(image, max_new_tokens=1)
        self.assertEqual(
            outputs,
            [{"generated_text": "growth"}],
        )

98
99
    @require_torch
    def test_small_model_pt(self):
100
        pipe = pipeline("image-to-text", model="hf-internal-testing/tiny-random-vit-gpt2")
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
        image = "./tests/fixtures/tests_samples/COCO/000000039769.png"

        outputs = pipe(image)
        self.assertEqual(
            outputs,
            [
                {
                    "generated_text": "growthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthGOGO"
                },
            ],
        )

        outputs = pipe([image, image])
        self.assertEqual(
            outputs,
            [
                [
                    {
                        "generated_text": "growthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthGOGO"
                    }
                ],
                [
                    {
                        "generated_text": "growthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthGOGO"
                    }
                ],
            ],
        )

130
131
132
133
134
135
136
137
138
    @require_torch
    def test_small_model_pt_conditional(self):
        pipe = pipeline("image-to-text", model="hf-internal-testing/tiny-random-BlipForConditionalGeneration")
        image = "./tests/fixtures/tests_samples/COCO/000000039769.png"
        prompt = "a photo of"

        outputs = pipe(image, prompt=prompt)
        self.assertTrue(outputs[0]["generated_text"].startswith(prompt))

139
140
141
    @slow
    @require_torch
    def test_large_model_pt(self):
142
        pipe = pipeline("image-to-text", model="ydshieh/vit-gpt2-coco-en")
143
144
145
146
147
148
149
150
151
152
153
154
155
156
        image = "./tests/fixtures/tests_samples/COCO/000000039769.png"

        outputs = pipe(image)
        self.assertEqual(outputs, [{"generated_text": "a cat laying on a blanket next to a cat laying on a bed "}])

        outputs = pipe([image, image])
        self.assertEqual(
            outputs,
            [
                [{"generated_text": "a cat laying on a blanket next to a cat laying on a bed "}],
                [{"generated_text": "a cat laying on a blanket next to a cat laying on a bed "}],
            ],
        )

157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
    @slow
    @require_torch
    def test_generation_pt_blip(self):
        pipe = pipeline("image-to-text", model="Salesforce/blip-image-captioning-base")
        url = "https://huggingface.co/datasets/sayakpaul/sample-datasets/resolve/main/pokemon.png"
        image = Image.open(requests.get(url, stream=True).raw)

        outputs = pipe(image)
        self.assertEqual(outputs, [{"generated_text": "a pink pokemon pokemon with a blue shirt and a blue shirt"}])

    @slow
    @require_torch
    def test_generation_pt_git(self):
        pipe = pipeline("image-to-text", model="microsoft/git-base-coco")
        url = "https://huggingface.co/datasets/sayakpaul/sample-datasets/resolve/main/pokemon.png"
        image = Image.open(requests.get(url, stream=True).raw)

        outputs = pipe(image)
        self.assertEqual(outputs, [{"generated_text": "a cartoon of a purple character."}])

    @slow
    @require_torch
    def test_conditional_generation_pt_blip(self):
        pipe = pipeline("image-to-text", model="Salesforce/blip-image-captioning-base")
        url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/ai2d-demo.jpg"
        image = Image.open(requests.get(url, stream=True).raw)

        prompt = "a photography of"

        outputs = pipe(image, prompt=prompt)
        self.assertEqual(outputs, [{"generated_text": "a photography of a volcano"}])

        with self.assertRaises(ValueError):
            outputs = pipe([image, image], prompt=[prompt, prompt])

    @slow
    @require_torch
    def test_conditional_generation_pt_git(self):
        pipe = pipeline("image-to-text", model="microsoft/git-base-coco")
        url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/ai2d-demo.jpg"
        image = Image.open(requests.get(url, stream=True).raw)

        prompt = "a photo of a"

        outputs = pipe(image, prompt=prompt)
        self.assertEqual(outputs, [{"generated_text": "a photo of a tent with a tent and a tent in the background."}])

        with self.assertRaises(ValueError):
            outputs = pipe([image, image], prompt=[prompt, prompt])

    @slow
    @require_torch
    def test_conditional_generation_pt_pix2struct(self):
        pipe = pipeline("image-to-text", model="google/pix2struct-ai2d-base")
        url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/ai2d-demo.jpg"
        image = Image.open(requests.get(url, stream=True).raw)

        prompt = "What does the label 15 represent? (1) lava (2) core (3) tunnel (4) ash cloud"

        outputs = pipe(image, prompt=prompt)
        self.assertEqual(outputs, [{"generated_text": "ash cloud"}])

        with self.assertRaises(ValueError):
            outputs = pipe([image, image], prompt=[prompt, prompt])

222
223
224
    @slow
    @require_tf
    def test_large_model_tf(self):
225
        pipe = pipeline("image-to-text", model="ydshieh/vit-gpt2-coco-en", framework="tf")
226
227
228
229
230
231
232
233
234
235
236
237
238
        image = "./tests/fixtures/tests_samples/COCO/000000039769.png"

        outputs = pipe(image)
        self.assertEqual(outputs, [{"generated_text": "a cat laying on a blanket next to a cat laying on a bed "}])

        outputs = pipe([image, image])
        self.assertEqual(
            outputs,
            [
                [{"generated_text": "a cat laying on a blanket next to a cat laying on a bed "}],
                [{"generated_text": "a cat laying on a blanket next to a cat laying on a bed "}],
            ],
        )