"examples/research_projects/visual_bert/processing_image.py" did not exist on "83424ade1acfe0893413226ec08eba55275cf4c3"
test_modeling_tf_longformer.py 29.6 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
# coding=utf-8
Sylvain Gugger's avatar
Sylvain Gugger committed
2
# Copyright 2020 The HuggingFace Team. All rights reserved.
Patrick von Platen's avatar
Patrick von Platen committed
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import unittest

from transformers import is_tf_available
20
from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow
Patrick von Platen's avatar
Patrick von Platen committed
21
22
23
24
25
26
27

from .test_configuration_common import ConfigTester
from .test_modeling_tf_common import TFModelTesterMixin, ids_tensor


if is_tf_available():
    import tensorflow as tf
28

Patrick von Platen's avatar
Patrick von Platen committed
29
30
31
    from transformers import (
        LongformerConfig,
        TFLongformerForMaskedLM,
32
        TFLongformerForMultipleChoice,
Patrick von Platen's avatar
Patrick von Platen committed
33
        TFLongformerForQuestionAnswering,
34
35
        TFLongformerForSequenceClassification,
        TFLongformerForTokenClassification,
36
        TFLongformerModel,
Patrick von Platen's avatar
Patrick von Platen committed
37
38
        TFLongformerSelfAttention,
    )
39
    from transformers.tf_utils import shape_list
Patrick von Platen's avatar
Patrick von Platen committed
40
41
42
43


class TFLongformerModelTester:
    def __init__(
Lysandre's avatar
Lysandre committed
44
45
        self,
        parent,
Patrick von Platen's avatar
Patrick von Platen committed
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
    ):
        self.parent = parent
        self.batch_size = 13
        self.seq_length = 7
        self.is_training = True
        self.use_input_mask = True
        self.use_token_type_ids = True
        self.use_labels = True
        self.vocab_size = 99
        self.hidden_size = 32
        self.num_hidden_layers = 5
        self.num_attention_heads = 4
        self.intermediate_size = 37
        self.hidden_act = "gelu"
        self.hidden_dropout_prob = 0.1
        self.attention_probs_dropout_prob = 0.1
        self.max_position_embeddings = 512
        self.type_vocab_size = 16
        self.type_sequence_label_size = 2
        self.initializer_range = 0.02
        self.num_labels = 3
        self.num_choices = 4
        self.scope = None
        self.attention_window = 4

        # `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size
        # [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention
        # returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1]
        # because its local attention only attends to `self.attention_window` and one before and one after
        self.key_length = self.attention_window + 2

    def prepare_config_and_inputs(self):
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

        input_mask = None
        if self.use_input_mask:
            input_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)

        token_type_ids = None
        if self.use_token_type_ids:
            token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)

        sequence_labels = None
        token_labels = None
        choice_labels = None
        if self.use_labels:
            sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
            token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
            choice_labels = ids_tensor([self.batch_size], self.num_choices)

        config = LongformerConfig(
            vocab_size=self.vocab_size,
            hidden_size=self.hidden_size,
            num_hidden_layers=self.num_hidden_layers,
            num_attention_heads=self.num_attention_heads,
            intermediate_size=self.intermediate_size,
            hidden_act=self.hidden_act,
            hidden_dropout_prob=self.hidden_dropout_prob,
            attention_probs_dropout_prob=self.attention_probs_dropout_prob,
            max_position_embeddings=self.max_position_embeddings,
            type_vocab_size=self.type_vocab_size,
            initializer_range=self.initializer_range,
            attention_window=self.attention_window,
        )

        return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels

    def create_and_check_attention_mask_determinism(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = TFLongformerModel(config=config)

        attention_mask = tf.ones(input_ids.shape, dtype=tf.dtypes.int32)
        output_with_mask = model(input_ids, attention_mask=attention_mask)[0]
        output_without_mask = model(input_ids)[0]
        tf.debugging.assert_near(output_with_mask[0, 0, :5], output_without_mask[0, 0, :5], rtol=1e-4)

123
    def create_and_check_model(
Patrick von Platen's avatar
Patrick von Platen committed
124
125
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
Julien Plu's avatar
Julien Plu committed
126
        config.return_dict = True
Patrick von Platen's avatar
Patrick von Platen committed
127
        model = TFLongformerModel(config=config)
Julien Plu's avatar
Julien Plu committed
128
129
130
        result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids)
        result = model(input_ids, token_type_ids=token_type_ids)
        result = model(input_ids)
Patrick von Platen's avatar
Patrick von Platen committed
131
132

        self.parent.assertListEqual(
Julien Plu's avatar
Julien Plu committed
133
            shape_list(result.last_hidden_state), [self.batch_size, self.seq_length, self.hidden_size]
Patrick von Platen's avatar
Patrick von Platen committed
134
        )
Julien Plu's avatar
Julien Plu committed
135
        self.parent.assertListEqual(shape_list(result.pooler_output), [self.batch_size, self.hidden_size])
Patrick von Platen's avatar
Patrick von Platen committed
136

137
    def create_and_check_model_with_global_attention_mask(
Patrick von Platen's avatar
Patrick von Platen committed
138
139
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
Julien Plu's avatar
Julien Plu committed
140
        config.return_dict = True
Patrick von Platen's avatar
Patrick von Platen committed
141
142
143
144
145
146
147
148
149
150
        model = TFLongformerModel(config=config)
        half_input_mask_length = shape_list(input_mask)[-1] // 2
        global_attention_mask = tf.concat(
            [
                tf.zeros_like(input_mask)[:, :half_input_mask_length],
                tf.ones_like(input_mask)[:, half_input_mask_length:],
            ],
            axis=-1,
        )

Julien Plu's avatar
Julien Plu committed
151
        result = model(
Patrick von Platen's avatar
Patrick von Platen committed
152
153
154
155
156
            input_ids,
            attention_mask=input_mask,
            global_attention_mask=global_attention_mask,
            token_type_ids=token_type_ids,
        )
Julien Plu's avatar
Julien Plu committed
157
158
        result = model(input_ids, token_type_ids=token_type_ids, global_attention_mask=global_attention_mask)
        result = model(input_ids, global_attention_mask=global_attention_mask)
Patrick von Platen's avatar
Patrick von Platen committed
159
160

        self.parent.assertListEqual(
Julien Plu's avatar
Julien Plu committed
161
            shape_list(result.last_hidden_state), [self.batch_size, self.seq_length, self.hidden_size]
Patrick von Platen's avatar
Patrick von Platen committed
162
        )
Julien Plu's avatar
Julien Plu committed
163
        self.parent.assertListEqual(shape_list(result.pooler_output), [self.batch_size, self.hidden_size])
Patrick von Platen's avatar
Patrick von Platen committed
164

165
    def create_and_check_for_masked_lm(
Patrick von Platen's avatar
Patrick von Platen committed
166
167
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
Julien Plu's avatar
Julien Plu committed
168
        config.return_dict = True
Patrick von Platen's avatar
Patrick von Platen committed
169
        model = TFLongformerForMaskedLM(config=config)
Julien Plu's avatar
Julien Plu committed
170
171
        result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels)
        self.parent.assertListEqual(shape_list(result.logits), [self.batch_size, self.seq_length, self.vocab_size])
Patrick von Platen's avatar
Patrick von Platen committed
172

173
    def create_and_check_for_question_answering(
Patrick von Platen's avatar
Patrick von Platen committed
174
175
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
Julien Plu's avatar
Julien Plu committed
176
        config.return_dict = True
Patrick von Platen's avatar
Patrick von Platen committed
177
        model = TFLongformerForQuestionAnswering(config=config)
Julien Plu's avatar
Julien Plu committed
178
        result = model(
Patrick von Platen's avatar
Patrick von Platen committed
179
180
181
182
183
184
            input_ids,
            attention_mask=input_mask,
            token_type_ids=token_type_ids,
            start_positions=sequence_labels,
            end_positions=sequence_labels,
        )
Julien Plu's avatar
Julien Plu committed
185
186
187

        self.parent.assertListEqual(shape_list(result.start_logits), [self.batch_size, self.seq_length])
        self.parent.assertListEqual(shape_list(result.end_logits), [self.batch_size, self.seq_length])
Patrick von Platen's avatar
Patrick von Platen committed
188

189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
    def create_and_check_for_sequence_classification(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        config.num_labels = self.num_labels
        model = TFLongformerForSequenceClassification(config=config)
        output = model(
            input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=sequence_labels
        ).logits
        self.parent.assertListEqual(shape_list(output), [self.batch_size, self.num_labels])

    def create_and_check_for_token_classification(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        config.num_labels = self.num_labels
        model = TFLongformerForTokenClassification(config=config)
        output = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels).logits
        self.parent.assertListEqual(shape_list(output), [self.batch_size, self.seq_length, self.num_labels])

    def create_and_check_for_multiple_choice(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        config.num_choices = self.num_choices
        model = TFLongformerForMultipleChoice(config=config)
        multiple_choice_inputs_ids = tf.tile(tf.expand_dims(input_ids, 1), (1, self.num_choices, 1))
        multiple_choice_token_type_ids = tf.tile(tf.expand_dims(token_type_ids, 1), (1, self.num_choices, 1))
        multiple_choice_input_mask = tf.tile(tf.expand_dims(input_mask, 1), (1, self.num_choices, 1))
        output = model(
            multiple_choice_inputs_ids,
            attention_mask=multiple_choice_input_mask,
            global_attention_mask=multiple_choice_input_mask,
            token_type_ids=multiple_choice_token_type_ids,
            labels=choice_labels,
        ).logits
        self.parent.assertListEqual(list(output.shape), [self.batch_size, self.num_choices])

Patrick von Platen's avatar
Patrick von Platen committed
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        (
            config,
            input_ids,
            token_type_ids,
            input_mask,
            sequence_labels,
            token_labels,
            choice_labels,
        ) = config_and_inputs

        # global attention mask has to be partly defined
        # to trace all weights
        global_attention_mask = tf.concat(
Lysandre's avatar
Lysandre committed
239
240
            [tf.zeros_like(input_ids)[:, :-1], tf.ones_like(input_ids)[:, -1:]],
            axis=-1,
Patrick von Platen's avatar
Patrick von Platen committed
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
        )

        inputs_dict = {
            "input_ids": input_ids,
            "token_type_ids": token_type_ids,
            "attention_mask": input_mask,
            "global_attention_mask": global_attention_mask,
        }
        return config, inputs_dict

    def prepare_config_and_inputs_for_question_answering(self):
        config_and_inputs = self.prepare_config_and_inputs()
        (
            config,
            input_ids,
            token_type_ids,
            input_mask,
            sequence_labels,
            token_labels,
            choice_labels,
        ) = config_and_inputs

        # Replace sep_token_id by some random id
        input_ids = tf.where(input_ids == config.sep_token_id, 0, input_ids)
        # Make sure there are exactly three sep_token_id
        input_ids = tf.concat([input_ids[:, :-3], tf.ones_like(input_ids)[:, -3:] * config.sep_token_id], axis=-1)
        input_mask = tf.ones_like(input_ids)

        return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels


@require_tf
class TFLongformerModelTest(TFModelTesterMixin, unittest.TestCase):

    all_model_classes = (
Lysandre's avatar
Lysandre committed
276
277
278
279
        (
            TFLongformerModel,
            TFLongformerForMaskedLM,
            TFLongformerForQuestionAnswering,
280
281
282
            TFLongformerForSequenceClassification,
            TFLongformerForMultipleChoice,
            TFLongformerForTokenClassification,
Lysandre's avatar
Lysandre committed
283
284
285
        )
        if is_tf_available()
        else ()
Patrick von Platen's avatar
Patrick von Platen committed
286
    )
287
288
    test_head_masking = False
    test_onnx = False
Patrick von Platen's avatar
Patrick von Platen committed
289
290
291
292
293
294
295
296

    def setUp(self):
        self.model_tester = TFLongformerModelTester(self)
        self.config_tester = ConfigTester(self, config_class=LongformerConfig, hidden_size=37)

    def test_config(self):
        self.config_tester.run_common_tests()

297
    def test_model_attention_mask_determinism(self):
Patrick von Platen's avatar
Patrick von Platen committed
298
299
300
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_attention_mask_determinism(*config_and_inputs)

301
    def test_model(self):
Patrick von Platen's avatar
Patrick von Platen committed
302
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
303
        self.model_tester.create_and_check_model(*config_and_inputs)
Patrick von Platen's avatar
Patrick von Platen committed
304

305
    def test_model_global_attention_mask(self):
Patrick von Platen's avatar
Patrick von Platen committed
306
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
307
        self.model_tester.create_and_check_model_with_global_attention_mask(*config_and_inputs)
Patrick von Platen's avatar
Patrick von Platen committed
308

309
    def test_for_masked_lm(self):
Patrick von Platen's avatar
Patrick von Platen committed
310
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
311
        self.model_tester.create_and_check_for_masked_lm(*config_and_inputs)
Patrick von Platen's avatar
Patrick von Platen committed
312

313
    def test_for_question_answering(self):
Patrick von Platen's avatar
Patrick von Platen committed
314
        config_and_inputs = self.model_tester.prepare_config_and_inputs_for_question_answering()
315
316
317
318
319
320
321
322
323
324
325
326
327
        self.model_tester.create_and_check_for_question_answering(*config_and_inputs)

    def test_for_sequence_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_for_sequence_classification(*config_and_inputs)

    def test_for_token_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_for_token_classification(*config_and_inputs)

    def test_for_multiple_choice(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_for_multiple_choice(*config_and_inputs)
Patrick von Platen's avatar
Patrick von Platen committed
328

Julien Plu's avatar
Julien Plu committed
329
330
331
332
    def test_saved_model_creation(self):
        # This test is too long (>30sec) and makes fail the CI
        pass

Julien Plu's avatar
Julien Plu committed
333
    def test_xla_mode(self):
334
        # TODO JP: Make Longformer XLA compliant
Julien Plu's avatar
Julien Plu committed
335
336
        pass

Patrick von Platen's avatar
Patrick von Platen committed
337
338

@require_tf
339
340
@require_sentencepiece
@require_tokenizers
Patrick von Platen's avatar
Patrick von Platen committed
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
class TFLongformerModelIntegrationTest(unittest.TestCase):
    def _get_hidden_states(self):
        return tf.convert_to_tensor(
            [
                [
                    [
                        4.98332758e-01,
                        2.69175139e00,
                        -7.08081422e-03,
                        1.04915401e00,
                        -1.83476661e00,
                        7.67220476e-01,
                        2.98580543e-01,
                        2.84803992e-02,
                    ],
                    [
                        -7.58357372e-01,
                        4.20635998e-01,
                        -4.04739919e-02,
                        1.59924145e-01,
                        2.05135748e00,
                        -1.15997978e00,
                        5.37166397e-01,
                        2.62873606e-01,
                    ],
                    [
                        -1.69438001e00,
                        4.17574660e-01,
                        -1.49196962e00,
                        -1.76483717e00,
                        -1.94566312e-01,
                        -1.71183858e00,
                        7.72903565e-01,
                        -1.11557056e00,
                    ],
                    [
                        5.44028163e-01,
                        2.05466114e-01,
                        -3.63045868e-01,
                        2.41865062e-01,
                        3.20348382e-01,
                        -9.05611176e-01,
                        -1.92690727e-01,
                        -1.19917547e00,
                    ],
                ]
            ],
            dtype=tf.float32,
        )

    def test_diagonalize(self):
        hidden_states = self._get_hidden_states()
        hidden_states = tf.reshape(hidden_states, (1, 8, 4))  # set seq length = 8, hidden dim = 4
        chunked_hidden_states = TFLongformerSelfAttention._chunk(hidden_states, window_overlap=2)
        window_overlap_size = shape_list(chunked_hidden_states)[2]
        self.assertTrue(window_overlap_size == 4)

        padded_hidden_states = TFLongformerSelfAttention._pad_and_diagonalize(chunked_hidden_states)

        self.assertTrue(
            shape_list(padded_hidden_states)[-1] == shape_list(chunked_hidden_states)[-1] + window_overlap_size - 1
        )

        # first row => [0.4983,  2.6918, -0.0071,  1.0492, 0.0000,  0.0000,  0.0000]
        tf.debugging.assert_near(padded_hidden_states[0, 0, 0, :4], chunked_hidden_states[0, 0, 0], rtol=1e-3)
        tf.debugging.assert_near(padded_hidden_states[0, 0, 0, 4:], tf.zeros((3,), dtype=tf.dtypes.float32), rtol=1e-3)

        # last row => [0.0000,  0.0000,  0.0000, 2.0514, -1.1600,  0.5372,  0.2629]
        tf.debugging.assert_near(padded_hidden_states[0, 0, -1, 3:], chunked_hidden_states[0, 0, -1], rtol=1e-3)
        tf.debugging.assert_near(
            padded_hidden_states[0, 0, -1, :3], tf.zeros((3,), dtype=tf.dtypes.float32), rtol=1e-3
        )

    def test_pad_and_transpose_last_two_dims(self):
        hidden_states = self._get_hidden_states()
        self.assertTrue(shape_list(hidden_states), [1, 8, 4])

        # pad along seq length dim
419
        paddings = tf.constant([[0, 0], [0, 0], [0, 1], [0, 0]], dtype=tf.dtypes.int32)
Patrick von Platen's avatar
Patrick von Platen committed
420

421
        hidden_states = TFLongformerSelfAttention._chunk(hidden_states, window_overlap=2)
Patrick von Platen's avatar
Patrick von Platen committed
422
        padded_hidden_states = TFLongformerSelfAttention._pad_and_transpose_last_two_dims(hidden_states, paddings)
423
        self.assertTrue(shape_list(padded_hidden_states) == [1, 1, 8, 5])
Patrick von Platen's avatar
Patrick von Platen committed
424
425

        expected_added_dim = tf.zeros((5,), dtype=tf.dtypes.float32)
426
        tf.debugging.assert_near(expected_added_dim, padded_hidden_states[0, 0, -1, :], rtol=1e-6)
Patrick von Platen's avatar
Patrick von Platen committed
427
        tf.debugging.assert_near(
428
            hidden_states[0, 0, -1, :], tf.reshape(padded_hidden_states, (1, -1))[0, 24:32], rtol=1e-6
Patrick von Platen's avatar
Patrick von Platen committed
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
        )

    def test_mask_invalid_locations(self):
        hidden_states = self._get_hidden_states()
        batch_size = 1
        seq_length = 8
        hidden_size = 4
        hidden_states = tf.reshape(hidden_states, (batch_size, seq_length, hidden_size))
        hidden_states = TFLongformerSelfAttention._chunk(hidden_states, window_overlap=2)

        hid_states_1 = TFLongformerSelfAttention._mask_invalid_locations(hidden_states, 1)
        hid_states_2 = TFLongformerSelfAttention._mask_invalid_locations(hidden_states, 2)
        hid_states_3 = TFLongformerSelfAttention._mask_invalid_locations(hidden_states[:, :, :, :3], 2)
        hid_states_4 = TFLongformerSelfAttention._mask_invalid_locations(hidden_states[:, :, 2:, :], 2)

        self.assertTrue(tf.math.reduce_sum(tf.cast(tf.math.is_inf(hid_states_1), tf.dtypes.int32)) == 8)
        self.assertTrue(tf.math.reduce_sum(tf.cast(tf.math.is_inf(hid_states_2), tf.dtypes.int32)) == 24)
        self.assertTrue(tf.math.reduce_sum(tf.cast(tf.math.is_inf(hid_states_3), tf.dtypes.int32)) == 24)
        self.assertTrue(tf.math.reduce_sum(tf.cast(tf.math.is_inf(hid_states_4), tf.dtypes.int32)) == 12)

    def test_chunk(self):
        hidden_states = self._get_hidden_states()
        batch_size = 1
        seq_length = 8
        hidden_size = 4
        hidden_states = tf.reshape(hidden_states, (batch_size, seq_length, hidden_size))

        chunked_hidden_states = TFLongformerSelfAttention._chunk(hidden_states, window_overlap=2)

        # expected slices across chunk and seq length dim
        expected_slice_along_seq_length = tf.convert_to_tensor([0.4983, -0.7584, -1.6944], dtype=tf.dtypes.float32)
        expected_slice_along_chunk = tf.convert_to_tensor([0.4983, -1.8348, -0.7584, 2.0514], dtype=tf.dtypes.float32)

        self.assertTrue(shape_list(chunked_hidden_states) == [1, 3, 4, 4])
        tf.debugging.assert_near(chunked_hidden_states[0, :, 0, 0], expected_slice_along_seq_length, rtol=1e-3)
        tf.debugging.assert_near(chunked_hidden_states[0, 0, :, 0], expected_slice_along_chunk, rtol=1e-3)

    def test_layer_local_attn(self):
467
        model = TFLongformerModel.from_pretrained("patrickvonplaten/longformer-random-tiny")
Patrick von Platen's avatar
Patrick von Platen committed
468
469
470
471
        layer = model.longformer.encoder.layer[0].attention.self_attention
        hidden_states = self._get_hidden_states()
        batch_size, seq_length, hidden_size = hidden_states.shape

472
473
474
475
476
477
        attention_mask = tf.zeros((batch_size, seq_length), dtype=tf.dtypes.float32)
        is_index_global_attn = tf.math.greater(attention_mask, 1)
        is_global_attn = tf.math.reduce_any(is_index_global_attn)

        attention_mask = tf.where(tf.range(4)[None, :, None, None] > 1, -10000.0, attention_mask[:, :, None, None])
        is_index_masked = tf.math.less(attention_mask[:, :, 0, 0], 0)
Patrick von Platen's avatar
Patrick von Platen committed
478

479
480
        layer_head_mask = None

481
        output_hidden_states = layer(
482
            [hidden_states, attention_mask, layer_head_mask, is_index_masked, is_index_global_attn, is_global_attn]
483
        )[0]
Patrick von Platen's avatar
Patrick von Platen committed
484
485
486
487
488
489
490
491
492

        expected_slice = tf.convert_to_tensor(
            [0.00188, 0.012196, -0.017051, -0.025571, -0.02996, 0.017297, -0.011521, 0.004848], dtype=tf.dtypes.float32
        )

        self.assertTrue(output_hidden_states.shape, (1, 4, 8))
        tf.debugging.assert_near(output_hidden_states[0, 1], expected_slice, rtol=1e-3)

    def test_layer_global_attn(self):
493
        model = TFLongformerModel.from_pretrained("patrickvonplaten/longformer-random-tiny")
Patrick von Platen's avatar
Patrick von Platen committed
494
495
496
497
498
499
500
501
502
503
        layer = model.longformer.encoder.layer[0].attention.self_attention
        hidden_states = self._get_hidden_states()

        hidden_states = tf.concat([self._get_hidden_states(), self._get_hidden_states() - 0.5], axis=0)
        batch_size, seq_length, hidden_size = hidden_states.shape

        # create attn mask
        attention_mask_1 = tf.zeros((1, 1, 1, seq_length), dtype=tf.dtypes.float32)
        attention_mask_2 = tf.zeros((1, 1, 1, seq_length), dtype=tf.dtypes.float32)

504
505
506
        attention_mask_1 = tf.where(tf.range(4)[None, :, None, None] > 1, 10000.0, attention_mask_1)
        attention_mask_1 = tf.where(tf.range(4)[None, :, None, None] > 2, -10000.0, attention_mask_1)
        attention_mask_2 = tf.where(tf.range(4)[None, :, None, None] > 0, 10000.0, attention_mask_2)
Patrick von Platen's avatar
Patrick von Platen committed
507
508
        attention_mask = tf.concat([attention_mask_1, attention_mask_2], axis=0)

509
510
511
512
        is_index_masked = tf.math.less(attention_mask[:, :, 0, 0], 0)
        is_index_global_attn = tf.math.greater(attention_mask[:, :, 0, 0], 0)
        is_global_attn = tf.math.reduce_any(is_index_global_attn)

513
514
        layer_head_mask = None

515
        output_hidden_states = layer(
516
517
518
519
520
521
522
523
            [
                hidden_states,
                -tf.math.abs(attention_mask),
                layer_head_mask,
                is_index_masked,
                is_index_global_attn,
                is_global_attn,
            ]
524
        )[0]
Patrick von Platen's avatar
Patrick von Platen committed
525
526
527
528
529
530
531
532
533
534
535
536
537

        self.assertTrue(output_hidden_states.shape, (2, 4, 8))
        expected_slice_0 = tf.convert_to_tensor(
            [-0.06508, -0.039306, 0.030934, -0.03417, -0.00656, -0.01553, -0.02088, -0.04938], dtype=tf.dtypes.float32
        )

        expected_slice_1 = tf.convert_to_tensor(
            [-0.04055, -0.038399, 0.0396, -0.03735, -0.03415, 0.01357, 0.00145, -0.05709], dtype=tf.dtypes.float32
        )

        tf.debugging.assert_near(output_hidden_states[0, 2], expected_slice_0, rtol=1e-3)
        tf.debugging.assert_near(output_hidden_states[1, -2], expected_slice_1, rtol=1e-3)

538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
    def test_layer_attn_probs(self):
        model = TFLongformerModel.from_pretrained("patrickvonplaten/longformer-random-tiny")
        layer = model.longformer.encoder.layer[0].attention.self_attention
        hidden_states = tf.concat([self._get_hidden_states(), self._get_hidden_states() - 0.5], axis=0)
        batch_size, seq_length, hidden_size = hidden_states.shape

        # create attn mask
        attention_mask_1 = tf.zeros((1, 1, 1, seq_length), dtype=tf.dtypes.float32)
        attention_mask_2 = tf.zeros((1, 1, 1, seq_length), dtype=tf.dtypes.float32)

        attention_mask_1 = tf.where(tf.range(4)[None, :, None, None] > 1, 10000.0, attention_mask_1)
        attention_mask_1 = tf.where(tf.range(4)[None, :, None, None] > 2, -10000.0, attention_mask_1)
        attention_mask_2 = tf.where(tf.range(4)[None, :, None, None] > 0, 10000.0, attention_mask_2)
        attention_mask = tf.concat([attention_mask_1, attention_mask_2], axis=0)

        is_index_masked = tf.math.less(attention_mask[:, :, 0, 0], 0)
        is_index_global_attn = tf.math.greater(attention_mask[:, :, 0, 0], 0)
        is_global_attn = tf.math.reduce_any(is_index_global_attn)

557
558
        layer_head_mask = None

559
        output_hidden_states, local_attentions, global_attentions = layer(
560
561
562
563
564
565
566
567
            [
                hidden_states,
                -tf.math.abs(attention_mask),
                layer_head_mask,
                is_index_masked,
                is_index_global_attn,
                is_global_attn,
            ]
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
        )

        self.assertEqual(local_attentions.shape, (2, 4, 2, 8))
        self.assertEqual(global_attentions.shape, (2, 2, 3, 4))

        self.assertTrue((local_attentions[0, 2:4, :, :] == 0).numpy().tolist())
        self.assertTrue((local_attentions[1, 1:4, :, :] == 0).numpy().tolist())

        #
        # The weight of all tokens with local attention must sum to 1.
        self.assertTrue(
            (tf.math.abs(tf.math.reduce_sum(global_attentions[0, :, :2, :], axis=-1) - 1) < 1e-6).numpy().tolist()
        )
        self.assertTrue(
            (tf.math.abs(tf.math.reduce_sum(global_attentions[1, :, :1, :], axis=-1) - 1) < 1e-6).numpy().tolist()
        )

        tf.debugging.assert_near(
            local_attentions[0, 0, 0, :],
            tf.convert_to_tensor(
                [0.3328, 0.0000, 0.0000, 0.0000, 0.0000, 0.3355, 0.3318, 0.0000], dtype=tf.dtypes.float32
            ),
            rtol=1e-3,
        )

        tf.debugging.assert_near(
            local_attentions[1, 0, 0, :],
            tf.convert_to_tensor(
                [0.2492, 0.2502, 0.2502, 0.0000, 0.0000, 0.2505, 0.0000, 0.0000], dtype=tf.dtypes.float32
            ),
            rtol=1e-3,
        )

        # All the global attention weights must sum to 1.
        self.assertTrue((tf.math.abs(tf.math.reduce_sum(global_attentions, axis=-1) - 1) < 1e-6).numpy().tolist())

        tf.debugging.assert_near(
            global_attentions[0, 0, 1, :],
            tf.convert_to_tensor([0.2500, 0.2500, 0.2500, 0.2500], dtype=tf.dtypes.float32),
            rtol=1e-3,
        )
        tf.debugging.assert_near(
            global_attentions[1, 0, 0, :],
            tf.convert_to_tensor([0.2497, 0.2500, 0.2499, 0.2504], dtype=tf.dtypes.float32),
            rtol=1e-3,
        )

Patrick von Platen's avatar
Patrick von Platen committed
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
    @slow
    def test_inference_no_head(self):
        model = TFLongformerModel.from_pretrained("allenai/longformer-base-4096")

        # 'Hello world!'
        input_ids = tf.convert_to_tensor([[0, 20920, 232, 328, 1437, 2]], dtype=tf.dtypes.int32)
        attention_mask = tf.ones(shape_list(input_ids), dtype=tf.dtypes.int32)

        output = model(input_ids, attention_mask=attention_mask)[0]
        output_without_mask = model(input_ids)[0]

        expected_output_slice = tf.convert_to_tensor(
            [0.0549, 0.1087, -0.1119, -0.0368, 0.0250], dtype=tf.dtypes.float32
        )

        tf.debugging.assert_near(output[0, 0, -5:], expected_output_slice, rtol=1e-3)
        tf.debugging.assert_near(output_without_mask[0, 0, -5:], expected_output_slice, rtol=1e-3)

    @slow
    def test_inference_no_head_long(self):
        model = TFLongformerModel.from_pretrained("allenai/longformer-base-4096")

        # 'Hello world! ' repeated 1000 times
        input_ids = tf.convert_to_tensor([[0] + [20920, 232, 328, 1437] * 1000 + [2]], dtype=tf.dtypes.int32)

        attention_mask = tf.ones(shape_list(input_ids), dtype=tf.dtypes.int32)
        global_attention_mask = tf.zeros(shape_list(input_ids), dtype=tf.dtypes.int32)
        # Set global attention on a few random positions
        global_attention_mask = tf.tensor_scatter_nd_update(
            global_attention_mask, tf.constant([[0, 1], [0, 4], [0, 21]]), tf.constant([1, 1, 1])
        )

        output = model(input_ids, attention_mask=attention_mask, global_attention_mask=global_attention_mask)[0]

        expected_output_sum = tf.constant(74585.875)
        expected_output_mean = tf.constant(0.024267)

        # assert close
        tf.debugging.assert_near(tf.reduce_sum(output), expected_output_sum, rtol=1e-4)
        tf.debugging.assert_near(tf.reduce_mean(output), expected_output_mean, rtol=1e-4)

    @slow
    def test_inference_masked_lm_long(self):
        model = TFLongformerForMaskedLM.from_pretrained("allenai/longformer-base-4096")

        # 'Hello world! ' repeated 1000 times
        input_ids = tf.convert_to_tensor([[0] + [20920, 232, 328, 1437] * 1000 + [2]], dtype=tf.dtypes.int32)

663
664
665
        output = model(input_ids, labels=input_ids)
        loss = output.loss
        prediction_scores = output.logits
Patrick von Platen's avatar
Patrick von Platen committed
666
667
668
669
670
671
672
673
674

        expected_loss = tf.constant(0.0073798)
        expected_prediction_scores_sum = tf.constant(-610476600.0)
        expected_prediction_scores_mean = tf.constant(-3.03477)

        # assert close
        tf.debugging.assert_near(tf.reduce_mean(loss), expected_loss, rtol=1e-4)
        tf.debugging.assert_near(tf.reduce_sum(prediction_scores), expected_prediction_scores_sum, rtol=1e-4)
        tf.debugging.assert_near(tf.reduce_mean(prediction_scores), expected_prediction_scores_mean, rtol=1e-4)
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696

    @slow
    def test_inference_masked_lm(self):
        model = TFLongformerForMaskedLM.from_pretrained("lysandre/tiny-longformer-random")
        input_ids = tf.constant([[0, 1, 2, 3, 4, 5]])
        output = model(input_ids)[0]

        expected_shape = [1, 6, 10]
        self.assertEqual(output.shape, expected_shape)

        print(output[:, :3, :3])

        expected_slice = tf.constant(
            [
                [
                    [-0.04926379, 0.0367098, 0.02099686],
                    [0.03940692, 0.01547744, -0.01448723],
                    [0.03495252, -0.05900355, -0.01675752],
                ]
            ]
        )
        tf.debugging.assert_near(output[:, :3, :3], expected_slice, atol=1e-4)