test_modeling_tf_longformer.py 30.2 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
# coding=utf-8
Sylvain Gugger's avatar
Sylvain Gugger committed
2
# Copyright 2020 The HuggingFace Team. All rights reserved.
Patrick von Platen's avatar
Patrick von Platen committed
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import unittest

from transformers import is_tf_available
20
from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow
Patrick von Platen's avatar
Patrick von Platen committed
21
22
23
24
25
26
27

from .test_configuration_common import ConfigTester
from .test_modeling_tf_common import TFModelTesterMixin, ids_tensor


if is_tf_available():
    import tensorflow as tf
28

Patrick von Platen's avatar
Patrick von Platen committed
29
30
31
    from transformers import (
        LongformerConfig,
        TFLongformerForMaskedLM,
32
        TFLongformerForMultipleChoice,
Patrick von Platen's avatar
Patrick von Platen committed
33
        TFLongformerForQuestionAnswering,
34
35
        TFLongformerForSequenceClassification,
        TFLongformerForTokenClassification,
36
        TFLongformerModel,
Patrick von Platen's avatar
Patrick von Platen committed
37
38
39
40
41
        TFLongformerSelfAttention,
    )

    def shape_list(x):
        """
Lysandre's avatar
Lysandre committed
42
        copied from transformers.modeling_tf_utils
Patrick von Platen's avatar
Patrick von Platen committed
43
44
45
46
47
48
49
50
        """
        static = x.shape.as_list()
        dynamic = tf.shape(x)
        return [dynamic[i] if s is None else s for i, s in enumerate(static)]


class TFLongformerModelTester:
    def __init__(
Lysandre's avatar
Lysandre committed
51
52
        self,
        parent,
Patrick von Platen's avatar
Patrick von Platen committed
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
    ):
        self.parent = parent
        self.batch_size = 13
        self.seq_length = 7
        self.is_training = True
        self.use_input_mask = True
        self.use_token_type_ids = True
        self.use_labels = True
        self.vocab_size = 99
        self.hidden_size = 32
        self.num_hidden_layers = 5
        self.num_attention_heads = 4
        self.intermediate_size = 37
        self.hidden_act = "gelu"
        self.hidden_dropout_prob = 0.1
        self.attention_probs_dropout_prob = 0.1
        self.max_position_embeddings = 512
        self.type_vocab_size = 16
        self.type_sequence_label_size = 2
        self.initializer_range = 0.02
        self.num_labels = 3
        self.num_choices = 4
        self.scope = None
        self.attention_window = 4

        # `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size
        # [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention
        # returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1]
        # because its local attention only attends to `self.attention_window` and one before and one after
        self.key_length = self.attention_window + 2

        # because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for
        # the `test_attention_outputs` and `test_hidden_states_output` tests
        self.encoder_seq_length = (
            self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window
        )

    def prepare_config_and_inputs(self):
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

        input_mask = None
        if self.use_input_mask:
            input_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)

        token_type_ids = None
        if self.use_token_type_ids:
            token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)

        sequence_labels = None
        token_labels = None
        choice_labels = None
        if self.use_labels:
            sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
            token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
            choice_labels = ids_tensor([self.batch_size], self.num_choices)

        config = LongformerConfig(
            vocab_size=self.vocab_size,
            hidden_size=self.hidden_size,
            num_hidden_layers=self.num_hidden_layers,
            num_attention_heads=self.num_attention_heads,
            intermediate_size=self.intermediate_size,
            hidden_act=self.hidden_act,
            hidden_dropout_prob=self.hidden_dropout_prob,
            attention_probs_dropout_prob=self.attention_probs_dropout_prob,
            max_position_embeddings=self.max_position_embeddings,
            type_vocab_size=self.type_vocab_size,
            initializer_range=self.initializer_range,
            attention_window=self.attention_window,
        )

        return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels

    def create_and_check_attention_mask_determinism(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = TFLongformerModel(config=config)

        attention_mask = tf.ones(input_ids.shape, dtype=tf.dtypes.int32)
        output_with_mask = model(input_ids, attention_mask=attention_mask)[0]
        output_without_mask = model(input_ids)[0]
        tf.debugging.assert_near(output_with_mask[0, 0, :5], output_without_mask[0, 0, :5], rtol=1e-4)

136
    def create_and_check_model(
Patrick von Platen's avatar
Patrick von Platen committed
137
138
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
Julien Plu's avatar
Julien Plu committed
139
        config.return_dict = True
Patrick von Platen's avatar
Patrick von Platen committed
140
        model = TFLongformerModel(config=config)
Julien Plu's avatar
Julien Plu committed
141
142
143
        result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids)
        result = model(input_ids, token_type_ids=token_type_ids)
        result = model(input_ids)
Patrick von Platen's avatar
Patrick von Platen committed
144
145

        self.parent.assertListEqual(
Julien Plu's avatar
Julien Plu committed
146
            shape_list(result.last_hidden_state), [self.batch_size, self.seq_length, self.hidden_size]
Patrick von Platen's avatar
Patrick von Platen committed
147
        )
Julien Plu's avatar
Julien Plu committed
148
        self.parent.assertListEqual(shape_list(result.pooler_output), [self.batch_size, self.hidden_size])
Patrick von Platen's avatar
Patrick von Platen committed
149

150
    def create_and_check_model_with_global_attention_mask(
Patrick von Platen's avatar
Patrick von Platen committed
151
152
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
Julien Plu's avatar
Julien Plu committed
153
        config.return_dict = True
Patrick von Platen's avatar
Patrick von Platen committed
154
155
156
157
158
159
160
161
162
163
        model = TFLongformerModel(config=config)
        half_input_mask_length = shape_list(input_mask)[-1] // 2
        global_attention_mask = tf.concat(
            [
                tf.zeros_like(input_mask)[:, :half_input_mask_length],
                tf.ones_like(input_mask)[:, half_input_mask_length:],
            ],
            axis=-1,
        )

Julien Plu's avatar
Julien Plu committed
164
        result = model(
Patrick von Platen's avatar
Patrick von Platen committed
165
166
167
168
169
            input_ids,
            attention_mask=input_mask,
            global_attention_mask=global_attention_mask,
            token_type_ids=token_type_ids,
        )
Julien Plu's avatar
Julien Plu committed
170
171
        result = model(input_ids, token_type_ids=token_type_ids, global_attention_mask=global_attention_mask)
        result = model(input_ids, global_attention_mask=global_attention_mask)
Patrick von Platen's avatar
Patrick von Platen committed
172
173

        self.parent.assertListEqual(
Julien Plu's avatar
Julien Plu committed
174
            shape_list(result.last_hidden_state), [self.batch_size, self.seq_length, self.hidden_size]
Patrick von Platen's avatar
Patrick von Platen committed
175
        )
Julien Plu's avatar
Julien Plu committed
176
        self.parent.assertListEqual(shape_list(result.pooler_output), [self.batch_size, self.hidden_size])
Patrick von Platen's avatar
Patrick von Platen committed
177

178
    def create_and_check_for_masked_lm(
Patrick von Platen's avatar
Patrick von Platen committed
179
180
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
Julien Plu's avatar
Julien Plu committed
181
        config.return_dict = True
Patrick von Platen's avatar
Patrick von Platen committed
182
        model = TFLongformerForMaskedLM(config=config)
Julien Plu's avatar
Julien Plu committed
183
184
        result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels)
        self.parent.assertListEqual(shape_list(result.logits), [self.batch_size, self.seq_length, self.vocab_size])
Patrick von Platen's avatar
Patrick von Platen committed
185

186
    def create_and_check_for_question_answering(
Patrick von Platen's avatar
Patrick von Platen committed
187
188
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
Julien Plu's avatar
Julien Plu committed
189
        config.return_dict = True
Patrick von Platen's avatar
Patrick von Platen committed
190
        model = TFLongformerForQuestionAnswering(config=config)
Julien Plu's avatar
Julien Plu committed
191
        result = model(
Patrick von Platen's avatar
Patrick von Platen committed
192
193
194
195
196
197
            input_ids,
            attention_mask=input_mask,
            token_type_ids=token_type_ids,
            start_positions=sequence_labels,
            end_positions=sequence_labels,
        )
Julien Plu's avatar
Julien Plu committed
198
199
200

        self.parent.assertListEqual(shape_list(result.start_logits), [self.batch_size, self.seq_length])
        self.parent.assertListEqual(shape_list(result.end_logits), [self.batch_size, self.seq_length])
Patrick von Platen's avatar
Patrick von Platen committed
201

202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
    def create_and_check_for_sequence_classification(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        config.num_labels = self.num_labels
        model = TFLongformerForSequenceClassification(config=config)
        output = model(
            input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=sequence_labels
        ).logits
        self.parent.assertListEqual(shape_list(output), [self.batch_size, self.num_labels])

    def create_and_check_for_token_classification(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        config.num_labels = self.num_labels
        model = TFLongformerForTokenClassification(config=config)
        output = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels).logits
        self.parent.assertListEqual(shape_list(output), [self.batch_size, self.seq_length, self.num_labels])

    def create_and_check_for_multiple_choice(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        config.num_choices = self.num_choices
        model = TFLongformerForMultipleChoice(config=config)
        multiple_choice_inputs_ids = tf.tile(tf.expand_dims(input_ids, 1), (1, self.num_choices, 1))
        multiple_choice_token_type_ids = tf.tile(tf.expand_dims(token_type_ids, 1), (1, self.num_choices, 1))
        multiple_choice_input_mask = tf.tile(tf.expand_dims(input_mask, 1), (1, self.num_choices, 1))
        output = model(
            multiple_choice_inputs_ids,
            attention_mask=multiple_choice_input_mask,
            global_attention_mask=multiple_choice_input_mask,
            token_type_ids=multiple_choice_token_type_ids,
            labels=choice_labels,
        ).logits
        self.parent.assertListEqual(list(output.shape), [self.batch_size, self.num_choices])

Patrick von Platen's avatar
Patrick von Platen committed
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        (
            config,
            input_ids,
            token_type_ids,
            input_mask,
            sequence_labels,
            token_labels,
            choice_labels,
        ) = config_and_inputs

        # global attention mask has to be partly defined
        # to trace all weights
        global_attention_mask = tf.concat(
Lysandre's avatar
Lysandre committed
252
253
            [tf.zeros_like(input_ids)[:, :-1], tf.ones_like(input_ids)[:, -1:]],
            axis=-1,
Patrick von Platen's avatar
Patrick von Platen committed
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
        )

        inputs_dict = {
            "input_ids": input_ids,
            "token_type_ids": token_type_ids,
            "attention_mask": input_mask,
            "global_attention_mask": global_attention_mask,
        }
        return config, inputs_dict

    def prepare_config_and_inputs_for_question_answering(self):
        config_and_inputs = self.prepare_config_and_inputs()
        (
            config,
            input_ids,
            token_type_ids,
            input_mask,
            sequence_labels,
            token_labels,
            choice_labels,
        ) = config_and_inputs

        # Replace sep_token_id by some random id
        input_ids = tf.where(input_ids == config.sep_token_id, 0, input_ids)
        # Make sure there are exactly three sep_token_id
        input_ids = tf.concat([input_ids[:, :-3], tf.ones_like(input_ids)[:, -3:] * config.sep_token_id], axis=-1)
        input_mask = tf.ones_like(input_ids)

        return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels


@require_tf
class TFLongformerModelTest(TFModelTesterMixin, unittest.TestCase):

    all_model_classes = (
Lysandre's avatar
Lysandre committed
289
290
291
292
        (
            TFLongformerModel,
            TFLongformerForMaskedLM,
            TFLongformerForQuestionAnswering,
293
294
295
            TFLongformerForSequenceClassification,
            TFLongformerForMultipleChoice,
            TFLongformerForTokenClassification,
Lysandre's avatar
Lysandre committed
296
297
298
        )
        if is_tf_available()
        else ()
Patrick von Platen's avatar
Patrick von Platen committed
299
    )
300
301
    test_head_masking = False
    test_onnx = False
Patrick von Platen's avatar
Patrick von Platen committed
302
303
304
305
306
307
308
309

    def setUp(self):
        self.model_tester = TFLongformerModelTester(self)
        self.config_tester = ConfigTester(self, config_class=LongformerConfig, hidden_size=37)

    def test_config(self):
        self.config_tester.run_common_tests()

310
    def test_model_attention_mask_determinism(self):
Patrick von Platen's avatar
Patrick von Platen committed
311
312
313
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_attention_mask_determinism(*config_and_inputs)

314
    def test_model(self):
Patrick von Platen's avatar
Patrick von Platen committed
315
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
316
        self.model_tester.create_and_check_model(*config_and_inputs)
Patrick von Platen's avatar
Patrick von Platen committed
317

318
    def test_model_global_attention_mask(self):
Patrick von Platen's avatar
Patrick von Platen committed
319
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
320
        self.model_tester.create_and_check_model_with_global_attention_mask(*config_and_inputs)
Patrick von Platen's avatar
Patrick von Platen committed
321

322
    def test_for_masked_lm(self):
Patrick von Platen's avatar
Patrick von Platen committed
323
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
324
        self.model_tester.create_and_check_for_masked_lm(*config_and_inputs)
Patrick von Platen's avatar
Patrick von Platen committed
325

326
    def test_for_question_answering(self):
Patrick von Platen's avatar
Patrick von Platen committed
327
        config_and_inputs = self.model_tester.prepare_config_and_inputs_for_question_answering()
328
329
330
331
332
333
334
335
336
337
338
339
340
        self.model_tester.create_and_check_for_question_answering(*config_and_inputs)

    def test_for_sequence_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_for_sequence_classification(*config_and_inputs)

    def test_for_token_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_for_token_classification(*config_and_inputs)

    def test_for_multiple_choice(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_for_multiple_choice(*config_and_inputs)
Patrick von Platen's avatar
Patrick von Platen committed
341

Julien Plu's avatar
Julien Plu committed
342
343
344
345
    def test_saved_model_creation(self):
        # This test is too long (>30sec) and makes fail the CI
        pass

Julien Plu's avatar
Julien Plu committed
346
    def test_xla_mode(self):
347
        # TODO JP: Make Longformer XLA compliant
Julien Plu's avatar
Julien Plu committed
348
349
        pass

Patrick von Platen's avatar
Patrick von Platen committed
350
351

@require_tf
352
353
@require_sentencepiece
@require_tokenizers
Patrick von Platen's avatar
Patrick von Platen committed
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
class TFLongformerModelIntegrationTest(unittest.TestCase):
    def _get_hidden_states(self):
        return tf.convert_to_tensor(
            [
                [
                    [
                        4.98332758e-01,
                        2.69175139e00,
                        -7.08081422e-03,
                        1.04915401e00,
                        -1.83476661e00,
                        7.67220476e-01,
                        2.98580543e-01,
                        2.84803992e-02,
                    ],
                    [
                        -7.58357372e-01,
                        4.20635998e-01,
                        -4.04739919e-02,
                        1.59924145e-01,
                        2.05135748e00,
                        -1.15997978e00,
                        5.37166397e-01,
                        2.62873606e-01,
                    ],
                    [
                        -1.69438001e00,
                        4.17574660e-01,
                        -1.49196962e00,
                        -1.76483717e00,
                        -1.94566312e-01,
                        -1.71183858e00,
                        7.72903565e-01,
                        -1.11557056e00,
                    ],
                    [
                        5.44028163e-01,
                        2.05466114e-01,
                        -3.63045868e-01,
                        2.41865062e-01,
                        3.20348382e-01,
                        -9.05611176e-01,
                        -1.92690727e-01,
                        -1.19917547e00,
                    ],
                ]
            ],
            dtype=tf.float32,
        )

    def test_diagonalize(self):
        hidden_states = self._get_hidden_states()
        hidden_states = tf.reshape(hidden_states, (1, 8, 4))  # set seq length = 8, hidden dim = 4
        chunked_hidden_states = TFLongformerSelfAttention._chunk(hidden_states, window_overlap=2)
        window_overlap_size = shape_list(chunked_hidden_states)[2]
        self.assertTrue(window_overlap_size == 4)

        padded_hidden_states = TFLongformerSelfAttention._pad_and_diagonalize(chunked_hidden_states)

        self.assertTrue(
            shape_list(padded_hidden_states)[-1] == shape_list(chunked_hidden_states)[-1] + window_overlap_size - 1
        )

        # first row => [0.4983,  2.6918, -0.0071,  1.0492, 0.0000,  0.0000,  0.0000]
        tf.debugging.assert_near(padded_hidden_states[0, 0, 0, :4], chunked_hidden_states[0, 0, 0], rtol=1e-3)
        tf.debugging.assert_near(padded_hidden_states[0, 0, 0, 4:], tf.zeros((3,), dtype=tf.dtypes.float32), rtol=1e-3)

        # last row => [0.0000,  0.0000,  0.0000, 2.0514, -1.1600,  0.5372,  0.2629]
        tf.debugging.assert_near(padded_hidden_states[0, 0, -1, 3:], chunked_hidden_states[0, 0, -1], rtol=1e-3)
        tf.debugging.assert_near(
            padded_hidden_states[0, 0, -1, :3], tf.zeros((3,), dtype=tf.dtypes.float32), rtol=1e-3
        )

    def test_pad_and_transpose_last_two_dims(self):
        hidden_states = self._get_hidden_states()
        self.assertTrue(shape_list(hidden_states), [1, 8, 4])

        # pad along seq length dim
432
        paddings = tf.constant([[0, 0], [0, 0], [0, 1], [0, 0]], dtype=tf.dtypes.int32)
Patrick von Platen's avatar
Patrick von Platen committed
433

434
        hidden_states = TFLongformerSelfAttention._chunk(hidden_states, window_overlap=2)
Patrick von Platen's avatar
Patrick von Platen committed
435
        padded_hidden_states = TFLongformerSelfAttention._pad_and_transpose_last_two_dims(hidden_states, paddings)
436
        self.assertTrue(shape_list(padded_hidden_states) == [1, 1, 8, 5])
Patrick von Platen's avatar
Patrick von Platen committed
437
438

        expected_added_dim = tf.zeros((5,), dtype=tf.dtypes.float32)
439
        tf.debugging.assert_near(expected_added_dim, padded_hidden_states[0, 0, -1, :], rtol=1e-6)
Patrick von Platen's avatar
Patrick von Platen committed
440
        tf.debugging.assert_near(
441
            hidden_states[0, 0, -1, :], tf.reshape(padded_hidden_states, (1, -1))[0, 24:32], rtol=1e-6
Patrick von Platen's avatar
Patrick von Platen committed
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
        )

    def test_mask_invalid_locations(self):
        hidden_states = self._get_hidden_states()
        batch_size = 1
        seq_length = 8
        hidden_size = 4
        hidden_states = tf.reshape(hidden_states, (batch_size, seq_length, hidden_size))
        hidden_states = TFLongformerSelfAttention._chunk(hidden_states, window_overlap=2)

        hid_states_1 = TFLongformerSelfAttention._mask_invalid_locations(hidden_states, 1)
        hid_states_2 = TFLongformerSelfAttention._mask_invalid_locations(hidden_states, 2)
        hid_states_3 = TFLongformerSelfAttention._mask_invalid_locations(hidden_states[:, :, :, :3], 2)
        hid_states_4 = TFLongformerSelfAttention._mask_invalid_locations(hidden_states[:, :, 2:, :], 2)

        self.assertTrue(tf.math.reduce_sum(tf.cast(tf.math.is_inf(hid_states_1), tf.dtypes.int32)) == 8)
        self.assertTrue(tf.math.reduce_sum(tf.cast(tf.math.is_inf(hid_states_2), tf.dtypes.int32)) == 24)
        self.assertTrue(tf.math.reduce_sum(tf.cast(tf.math.is_inf(hid_states_3), tf.dtypes.int32)) == 24)
        self.assertTrue(tf.math.reduce_sum(tf.cast(tf.math.is_inf(hid_states_4), tf.dtypes.int32)) == 12)

    def test_chunk(self):
        hidden_states = self._get_hidden_states()
        batch_size = 1
        seq_length = 8
        hidden_size = 4
        hidden_states = tf.reshape(hidden_states, (batch_size, seq_length, hidden_size))

        chunked_hidden_states = TFLongformerSelfAttention._chunk(hidden_states, window_overlap=2)

        # expected slices across chunk and seq length dim
        expected_slice_along_seq_length = tf.convert_to_tensor([0.4983, -0.7584, -1.6944], dtype=tf.dtypes.float32)
        expected_slice_along_chunk = tf.convert_to_tensor([0.4983, -1.8348, -0.7584, 2.0514], dtype=tf.dtypes.float32)

        self.assertTrue(shape_list(chunked_hidden_states) == [1, 3, 4, 4])
        tf.debugging.assert_near(chunked_hidden_states[0, :, 0, 0], expected_slice_along_seq_length, rtol=1e-3)
        tf.debugging.assert_near(chunked_hidden_states[0, 0, :, 0], expected_slice_along_chunk, rtol=1e-3)

    def test_layer_local_attn(self):
480
        model = TFLongformerModel.from_pretrained("patrickvonplaten/longformer-random-tiny")
Patrick von Platen's avatar
Patrick von Platen committed
481
482
483
484
        layer = model.longformer.encoder.layer[0].attention.self_attention
        hidden_states = self._get_hidden_states()
        batch_size, seq_length, hidden_size = hidden_states.shape

485
486
487
488
489
490
        attention_mask = tf.zeros((batch_size, seq_length), dtype=tf.dtypes.float32)
        is_index_global_attn = tf.math.greater(attention_mask, 1)
        is_global_attn = tf.math.reduce_any(is_index_global_attn)

        attention_mask = tf.where(tf.range(4)[None, :, None, None] > 1, -10000.0, attention_mask[:, :, None, None])
        is_index_masked = tf.math.less(attention_mask[:, :, 0, 0], 0)
Patrick von Platen's avatar
Patrick von Platen committed
491

492
493
        layer_head_mask = None

494
        output_hidden_states = layer(
495
            [hidden_states, attention_mask, layer_head_mask, is_index_masked, is_index_global_attn, is_global_attn]
496
        )[0]
Patrick von Platen's avatar
Patrick von Platen committed
497
498
499
500
501
502
503
504
505

        expected_slice = tf.convert_to_tensor(
            [0.00188, 0.012196, -0.017051, -0.025571, -0.02996, 0.017297, -0.011521, 0.004848], dtype=tf.dtypes.float32
        )

        self.assertTrue(output_hidden_states.shape, (1, 4, 8))
        tf.debugging.assert_near(output_hidden_states[0, 1], expected_slice, rtol=1e-3)

    def test_layer_global_attn(self):
506
        model = TFLongformerModel.from_pretrained("patrickvonplaten/longformer-random-tiny")
Patrick von Platen's avatar
Patrick von Platen committed
507
508
509
510
511
512
513
514
515
516
        layer = model.longformer.encoder.layer[0].attention.self_attention
        hidden_states = self._get_hidden_states()

        hidden_states = tf.concat([self._get_hidden_states(), self._get_hidden_states() - 0.5], axis=0)
        batch_size, seq_length, hidden_size = hidden_states.shape

        # create attn mask
        attention_mask_1 = tf.zeros((1, 1, 1, seq_length), dtype=tf.dtypes.float32)
        attention_mask_2 = tf.zeros((1, 1, 1, seq_length), dtype=tf.dtypes.float32)

517
518
519
        attention_mask_1 = tf.where(tf.range(4)[None, :, None, None] > 1, 10000.0, attention_mask_1)
        attention_mask_1 = tf.where(tf.range(4)[None, :, None, None] > 2, -10000.0, attention_mask_1)
        attention_mask_2 = tf.where(tf.range(4)[None, :, None, None] > 0, 10000.0, attention_mask_2)
Patrick von Platen's avatar
Patrick von Platen committed
520
521
        attention_mask = tf.concat([attention_mask_1, attention_mask_2], axis=0)

522
523
524
525
        is_index_masked = tf.math.less(attention_mask[:, :, 0, 0], 0)
        is_index_global_attn = tf.math.greater(attention_mask[:, :, 0, 0], 0)
        is_global_attn = tf.math.reduce_any(is_index_global_attn)

526
527
        layer_head_mask = None

528
        output_hidden_states = layer(
529
530
531
532
533
534
535
536
            [
                hidden_states,
                -tf.math.abs(attention_mask),
                layer_head_mask,
                is_index_masked,
                is_index_global_attn,
                is_global_attn,
            ]
537
        )[0]
Patrick von Platen's avatar
Patrick von Platen committed
538
539
540
541
542
543
544
545
546
547
548
549
550

        self.assertTrue(output_hidden_states.shape, (2, 4, 8))
        expected_slice_0 = tf.convert_to_tensor(
            [-0.06508, -0.039306, 0.030934, -0.03417, -0.00656, -0.01553, -0.02088, -0.04938], dtype=tf.dtypes.float32
        )

        expected_slice_1 = tf.convert_to_tensor(
            [-0.04055, -0.038399, 0.0396, -0.03735, -0.03415, 0.01357, 0.00145, -0.05709], dtype=tf.dtypes.float32
        )

        tf.debugging.assert_near(output_hidden_states[0, 2], expected_slice_0, rtol=1e-3)
        tf.debugging.assert_near(output_hidden_states[1, -2], expected_slice_1, rtol=1e-3)

551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
    def test_layer_attn_probs(self):
        model = TFLongformerModel.from_pretrained("patrickvonplaten/longformer-random-tiny")
        layer = model.longformer.encoder.layer[0].attention.self_attention
        hidden_states = tf.concat([self._get_hidden_states(), self._get_hidden_states() - 0.5], axis=0)
        batch_size, seq_length, hidden_size = hidden_states.shape

        # create attn mask
        attention_mask_1 = tf.zeros((1, 1, 1, seq_length), dtype=tf.dtypes.float32)
        attention_mask_2 = tf.zeros((1, 1, 1, seq_length), dtype=tf.dtypes.float32)

        attention_mask_1 = tf.where(tf.range(4)[None, :, None, None] > 1, 10000.0, attention_mask_1)
        attention_mask_1 = tf.where(tf.range(4)[None, :, None, None] > 2, -10000.0, attention_mask_1)
        attention_mask_2 = tf.where(tf.range(4)[None, :, None, None] > 0, 10000.0, attention_mask_2)
        attention_mask = tf.concat([attention_mask_1, attention_mask_2], axis=0)

        is_index_masked = tf.math.less(attention_mask[:, :, 0, 0], 0)
        is_index_global_attn = tf.math.greater(attention_mask[:, :, 0, 0], 0)
        is_global_attn = tf.math.reduce_any(is_index_global_attn)

570
571
        layer_head_mask = None

572
        output_hidden_states, local_attentions, global_attentions = layer(
573
574
575
576
577
578
579
580
            [
                hidden_states,
                -tf.math.abs(attention_mask),
                layer_head_mask,
                is_index_masked,
                is_index_global_attn,
                is_global_attn,
            ]
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
        )

        self.assertEqual(local_attentions.shape, (2, 4, 2, 8))
        self.assertEqual(global_attentions.shape, (2, 2, 3, 4))

        self.assertTrue((local_attentions[0, 2:4, :, :] == 0).numpy().tolist())
        self.assertTrue((local_attentions[1, 1:4, :, :] == 0).numpy().tolist())

        #
        # The weight of all tokens with local attention must sum to 1.
        self.assertTrue(
            (tf.math.abs(tf.math.reduce_sum(global_attentions[0, :, :2, :], axis=-1) - 1) < 1e-6).numpy().tolist()
        )
        self.assertTrue(
            (tf.math.abs(tf.math.reduce_sum(global_attentions[1, :, :1, :], axis=-1) - 1) < 1e-6).numpy().tolist()
        )

        tf.debugging.assert_near(
            local_attentions[0, 0, 0, :],
            tf.convert_to_tensor(
                [0.3328, 0.0000, 0.0000, 0.0000, 0.0000, 0.3355, 0.3318, 0.0000], dtype=tf.dtypes.float32
            ),
            rtol=1e-3,
        )

        tf.debugging.assert_near(
            local_attentions[1, 0, 0, :],
            tf.convert_to_tensor(
                [0.2492, 0.2502, 0.2502, 0.0000, 0.0000, 0.2505, 0.0000, 0.0000], dtype=tf.dtypes.float32
            ),
            rtol=1e-3,
        )

        # All the global attention weights must sum to 1.
        self.assertTrue((tf.math.abs(tf.math.reduce_sum(global_attentions, axis=-1) - 1) < 1e-6).numpy().tolist())

        tf.debugging.assert_near(
            global_attentions[0, 0, 1, :],
            tf.convert_to_tensor([0.2500, 0.2500, 0.2500, 0.2500], dtype=tf.dtypes.float32),
            rtol=1e-3,
        )
        tf.debugging.assert_near(
            global_attentions[1, 0, 0, :],
            tf.convert_to_tensor([0.2497, 0.2500, 0.2499, 0.2504], dtype=tf.dtypes.float32),
            rtol=1e-3,
        )

Patrick von Platen's avatar
Patrick von Platen committed
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
    @slow
    def test_inference_no_head(self):
        model = TFLongformerModel.from_pretrained("allenai/longformer-base-4096")

        # 'Hello world!'
        input_ids = tf.convert_to_tensor([[0, 20920, 232, 328, 1437, 2]], dtype=tf.dtypes.int32)
        attention_mask = tf.ones(shape_list(input_ids), dtype=tf.dtypes.int32)

        output = model(input_ids, attention_mask=attention_mask)[0]
        output_without_mask = model(input_ids)[0]

        expected_output_slice = tf.convert_to_tensor(
            [0.0549, 0.1087, -0.1119, -0.0368, 0.0250], dtype=tf.dtypes.float32
        )

        tf.debugging.assert_near(output[0, 0, -5:], expected_output_slice, rtol=1e-3)
        tf.debugging.assert_near(output_without_mask[0, 0, -5:], expected_output_slice, rtol=1e-3)

    @slow
    def test_inference_no_head_long(self):
        model = TFLongformerModel.from_pretrained("allenai/longformer-base-4096")

        # 'Hello world! ' repeated 1000 times
        input_ids = tf.convert_to_tensor([[0] + [20920, 232, 328, 1437] * 1000 + [2]], dtype=tf.dtypes.int32)

        attention_mask = tf.ones(shape_list(input_ids), dtype=tf.dtypes.int32)
        global_attention_mask = tf.zeros(shape_list(input_ids), dtype=tf.dtypes.int32)
        # Set global attention on a few random positions
        global_attention_mask = tf.tensor_scatter_nd_update(
            global_attention_mask, tf.constant([[0, 1], [0, 4], [0, 21]]), tf.constant([1, 1, 1])
        )

        output = model(input_ids, attention_mask=attention_mask, global_attention_mask=global_attention_mask)[0]

        expected_output_sum = tf.constant(74585.875)
        expected_output_mean = tf.constant(0.024267)

        # assert close
        tf.debugging.assert_near(tf.reduce_sum(output), expected_output_sum, rtol=1e-4)
        tf.debugging.assert_near(tf.reduce_mean(output), expected_output_mean, rtol=1e-4)

    @slow
    def test_inference_masked_lm_long(self):
        model = TFLongformerForMaskedLM.from_pretrained("allenai/longformer-base-4096")

        # 'Hello world! ' repeated 1000 times
        input_ids = tf.convert_to_tensor([[0] + [20920, 232, 328, 1437] * 1000 + [2]], dtype=tf.dtypes.int32)

676
677
678
        output = model(input_ids, labels=input_ids)
        loss = output.loss
        prediction_scores = output.logits
Patrick von Platen's avatar
Patrick von Platen committed
679
680
681
682
683
684
685
686
687

        expected_loss = tf.constant(0.0073798)
        expected_prediction_scores_sum = tf.constant(-610476600.0)
        expected_prediction_scores_mean = tf.constant(-3.03477)

        # assert close
        tf.debugging.assert_near(tf.reduce_mean(loss), expected_loss, rtol=1e-4)
        tf.debugging.assert_near(tf.reduce_sum(prediction_scores), expected_prediction_scores_sum, rtol=1e-4)
        tf.debugging.assert_near(tf.reduce_mean(prediction_scores), expected_prediction_scores_mean, rtol=1e-4)
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709

    @slow
    def test_inference_masked_lm(self):
        model = TFLongformerForMaskedLM.from_pretrained("lysandre/tiny-longformer-random")
        input_ids = tf.constant([[0, 1, 2, 3, 4, 5]])
        output = model(input_ids)[0]

        expected_shape = [1, 6, 10]
        self.assertEqual(output.shape, expected_shape)

        print(output[:, :3, :3])

        expected_slice = tf.constant(
            [
                [
                    [-0.04926379, 0.0367098, 0.02099686],
                    [0.03940692, 0.01547744, -0.01448723],
                    [0.03495252, -0.05900355, -0.01675752],
                ]
            ]
        )
        tf.debugging.assert_near(output[:, :3, :3], expected_slice, atol=1e-4)