pipelines.mdx 14.3 KB
Newer Older
Sylvain Gugger's avatar
Sylvain Gugger committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
<!--Copyright 2020 The HuggingFace Team. All rights reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->

# Pipelines

The pipelines are a great and easy way to use models for inference. These pipelines are objects that abstract most of
the complex code from the library, offering a simple API dedicated to several tasks, including Named Entity
Recognition, Masked Language Modeling, Sentiment Analysis, Feature Extraction and Question Answering. See the
[task summary](../task_summary) for examples of use.

There are two categories of pipeline abstractions to be aware about:

- The [`pipeline`] which is the most powerful object encapsulating all other pipelines.
- The other task-specific pipelines:

  - [`AudioClassificationPipeline`]
  - [`AutomaticSpeechRecognitionPipeline`]
  - [`ConversationalPipeline`]
28
  - [`DocumentQuestionAnsweringPipeline`]
Sylvain Gugger's avatar
Sylvain Gugger committed
29
30
31
32
  - [`FeatureExtractionPipeline`]
  - [`FillMaskPipeline`]
  - [`ImageClassificationPipeline`]
  - [`ImageSegmentationPipeline`]
33
  - [`ImageToTextPipeline`]
Sylvain Gugger's avatar
Sylvain Gugger committed
34
35
36
37
38
39
40
41
42
  - [`ObjectDetectionPipeline`]
  - [`QuestionAnsweringPipeline`]
  - [`SummarizationPipeline`]
  - [`TableQuestionAnsweringPipeline`]
  - [`TextClassificationPipeline`]
  - [`TextGenerationPipeline`]
  - [`Text2TextGenerationPipeline`]
  - [`TokenClassificationPipeline`]
  - [`TranslationPipeline`]
43
  - [`VisualQuestionAnsweringPipeline`]
Sylvain Gugger's avatar
Sylvain Gugger committed
44
  - [`ZeroShotClassificationPipeline`]
45
  - [`ZeroShotImageClassificationPipeline`]
Sylvain Gugger's avatar
Sylvain Gugger committed
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84

## The pipeline abstraction

The *pipeline* abstraction is a wrapper around all the other available pipelines. It is instantiated as any other
pipeline but can provide additional quality of life.

Simple call on one item:

```python
>>> pipe = pipeline("text-classification")
>>> pipe("This restaurant is awesome")
[{'label': 'POSITIVE', 'score': 0.9998743534088135}]
```

If you want to use a specific model from the [hub](https://huggingface.co) you can ignore the task if the model on
the hub already defines it:

```python
>>> pipe = pipeline(model="roberta-large-mnli")
>>> pipe("This restaurant is awesome")
[{'label': 'POSITIVE', 'score': 0.9998743534088135}]
```

To call a pipeline on many items, you can either call with a *list*.

```python
>>> pipe = pipeline("text-classification")
>>> pipe(["This restaurant is awesome", "This restaurant is aweful"])
[{'label': 'POSITIVE', 'score': 0.9998743534088135},
 {'label': 'NEGATIVE', 'score': 0.9996669292449951}]
```

To iterate of full datasets it is recommended to use a `dataset` directly. This means you don't need to allocate
the whole dataset at once, nor do you need to do batching yourself. This should work just as fast as custom loops on
GPU. If it doesn't don't hesitate to create an issue.

```python
import datasets
from transformers import pipeline
85
from transformers.pipelines.pt_utils import KeyDataset
86
from tqdm.auto import tqdm
Sylvain Gugger's avatar
Sylvain Gugger committed
87
88
89
90
91
92

pipe = pipeline("automatic-speech-recognition", model="facebook/wav2vec2-base-960h", device=0)
dataset = datasets.load_dataset("superb", name="asr", split="test")

# KeyDataset (only *pt*) will simply return the item in the dict returned by the dataset item
# as we're not interested in the *target* part of the dataset.
93
for out in tqdm(pipe(KeyDataset(dataset, "file"))):
Sylvain Gugger's avatar
Sylvain Gugger committed
94
95
96
97
98
99
    print(out)
    # {"text": "NUMBER TEN FRESH NELLY IS WAITING ON YOU GOOD NIGHT HUSBAND"}
    # {"text": ....}
    # ....
```

100
101
102
103
104
105
106
107
For ease of use, a generator is also possible:


```python
from transformers import pipeline

pipe = pipeline("text-classification")

Sylvain Gugger's avatar
Sylvain Gugger committed
108

109
110
111
112
113
114
115
116
117
def data():
    while True:
        # This could come from a dataset, a database, a queue or HTTP request
        # in a server
        # Caveat: because this is iterative, you cannot use `num_workers > 1` variable
        # to use multiple threads to preprocess data. You can still have 1 thread that
        # does the preprocessing while the main runs the big inference
        yield "This is a test"

Sylvain Gugger's avatar
Sylvain Gugger committed
118

119
120
121
122
123
124
125
for out in pipe(data()):
    print(out)
    # {"text": "NUMBER TEN FRESH NELLY IS WAITING ON YOU GOOD NIGHT HUSBAND"}
    # {"text": ....}
    # ....
```

Sylvain Gugger's avatar
Sylvain Gugger committed
126
127
128
129
[[autodoc]] pipeline

## Pipeline batching

130
131
All pipelines can use batching. This will work
whenever the pipeline uses its streaming ability (so when passing lists or `Dataset` or `generator`).
Sylvain Gugger's avatar
Sylvain Gugger committed
132
133

```python
Sylvain Gugger's avatar
Sylvain Gugger committed
134
from transformers import pipeline
135
from transformers.pipelines.pt_utils import KeyDataset
Sylvain Gugger's avatar
Sylvain Gugger committed
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
import datasets

dataset = datasets.load_dataset("imdb", name="plain_text", split="unsupervised")
pipe = pipeline("text-classification", device=0)
for out in pipe(KeyDataset(dataset, "text"), batch_size=8, truncation="only_first"):
    print(out)
    # [{'label': 'POSITIVE', 'score': 0.9998743534088135}]
    # Exactly the same output as before, but the content are passed
    # as batches to the model
```

<Tip warning={true}>

However, this is not automatically a win for performance. It can be either a 10x speedup or 5x slowdown depending
on hardware, data and the actual model being used.

152
Example where it's mostly a speedup:
Sylvain Gugger's avatar
Sylvain Gugger committed
153
154
155
156

</Tip>

```python
Sylvain Gugger's avatar
Sylvain Gugger committed
157
158
from transformers import pipeline
from torch.utils.data import Dataset
159
from tqdm.auto import tqdm
Sylvain Gugger's avatar
Sylvain Gugger committed
160

Sylvain Gugger's avatar
Sylvain Gugger committed
161
pipe = pipeline("text-classification", device=0)
Sylvain Gugger's avatar
Sylvain Gugger committed
162
163


Sylvain Gugger's avatar
Sylvain Gugger committed
164
165
166
class MyDataset(Dataset):
    def __len__(self):
        return 5000
Sylvain Gugger's avatar
Sylvain Gugger committed
167

Sylvain Gugger's avatar
Sylvain Gugger committed
168
169
    def __getitem__(self, i):
        return "This is a test"
Sylvain Gugger's avatar
Sylvain Gugger committed
170
171


Sylvain Gugger's avatar
Sylvain Gugger committed
172
dataset = MyDataset()
Sylvain Gugger's avatar
Sylvain Gugger committed
173
174

for batch_size in [1, 8, 64, 256]:
Sylvain Gugger's avatar
Sylvain Gugger committed
175
176
    print("-" * 30)
    print(f"Streaming batch_size={batch_size}")
177
    for out in tqdm(pipe(dataset, batch_size=batch_size), total=len(dataset)):
Sylvain Gugger's avatar
Sylvain Gugger committed
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
        pass
```

```
# On GTX 970
------------------------------
Streaming no batching
100%|鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅| 5000/5000 [00:26<00:00, 187.52it/s]
------------------------------
Streaming batch_size=8
100%|鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻坾 5000/5000 [00:04<00:00, 1205.95it/s]
------------------------------
Streaming batch_size=64
100%|鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻坾 5000/5000 [00:02<00:00, 2478.24it/s]
------------------------------
Streaming batch_size=256
100%|鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻坾 5000/5000 [00:01<00:00, 2554.43it/s]
(diminishing returns, saturated the GPU)
```

Example where it's most a slowdown:

```python
Sylvain Gugger's avatar
Sylvain Gugger committed
201
202
203
204
205
206
207
208
209
class MyDataset(Dataset):
    def __len__(self):
        return 5000

    def __getitem__(self, i):
        if i % 64 == 0:
            n = 100
        else:
            n = 1
Sylvain Gugger's avatar
Sylvain Gugger committed
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
        return "This is a test" * n
```

This is a occasional very long sentence compared to the other. In that case, the **whole** batch will need to be 400
tokens long, so the whole batch will be [64, 400] instead of [64, 4], leading to the high slowdown. Even worse, on
bigger batches, the program simply crashes.


```
------------------------------
Streaming no batching
100%|鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻坾 1000/1000 [00:05<00:00, 183.69it/s]
------------------------------
Streaming batch_size=8
100%|鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻坾 1000/1000 [00:03<00:00, 265.74it/s]
------------------------------
Streaming batch_size=64
100%|鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅鈻堚枅| 1000/1000 [00:26<00:00, 37.80it/s]
------------------------------
Streaming batch_size=256
  0%|                                                                                 | 0/1000 [00:00<?, ?it/s]
Traceback (most recent call last):
  File "/home/nicolas/src/transformers/test.py", line 42, in <module>
233
    for out in tqdm(pipe(dataset, batch_size=256), total=len(dataset)):
Sylvain Gugger's avatar
Sylvain Gugger committed
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
....
    q = q / math.sqrt(dim_per_head)  # (bs, n_heads, q_length, dim_per_head)
RuntimeError: CUDA out of memory. Tried to allocate 376.00 MiB (GPU 0; 3.95 GiB total capacity; 1.72 GiB already allocated; 354.88 MiB free; 2.46 GiB reserved in total by PyTorch)
```

There are no good (general) solutions for this problem, and your mileage may vary depending on your use cases. Rule of
thumb:

For users, a rule of thumb is:

- **Measure performance on your load, with your hardware. Measure, measure, and keep measuring. Real numbers are the
  only way to go.**
- If you are latency constrained (live product doing inference), don't batch
- If you are using CPU, don't batch.
- If you are using throughput (you want to run your model on a bunch of static data), on GPU, then:

  - If you have no clue about the size of the sequence_length ("natural" data), by default don't batch, measure and
    try tentatively to add it, add OOM checks to recover when it will fail (and it will at some point if you don't
    control the sequence_length.)
  - If your sequence_length is super regular, then batching is more likely to be VERY interesting, measure and push
    it until you get OOMs.
  - The larger the GPU the more likely batching is going to be more interesting
- As soon as you enable batching, make sure you can handle OOMs nicely.

258
259
260
## Pipeline chunk batching

`zero-shot-classification` and `question-answering` are slightly specific in the sense, that a single input might yield
Kamal Raj's avatar
Kamal Raj committed
261
multiple forward pass of a model. Under normal circumstances, this would yield issues with `batch_size` argument.
262
263
264
265
266
267
268
269

In order to circumvent this issue, both of these pipelines are a bit specific, they are `ChunkPipeline` instead of
regular `Pipeline`. In short:


```python
preprocessed = pipe.preprocess(inputs)
model_outputs = pipe.forward(preprocessed)
Kamal Raj's avatar
Kamal Raj committed
270
outputs = pipe.postprocess(model_outputs)
271
272
273
274
275
276
277
278
279
280
```

Now becomes:


```python
all_model_outputs = []
for preprocessed in pipe.preprocess(inputs):
    model_outputs = pipe.forward(preprocessed)
    all_model_outputs.append(model_outputs)
Kamal Raj's avatar
Kamal Raj committed
281
outputs = pipe.postprocess(all_model_outputs)
282
283
284
285
286
287
288
```

This should be very transparent to your code because the pipelines are used in
the same way.

This is a simplified view, since the pipeline can handle automatically the batch to ! Meaning you don't have to care
about how many forward passes you inputs are actually going to trigger, you can optimize the `batch_size`
Kamal Raj's avatar
Kamal Raj committed
289
independently of the inputs. The caveats from the previous section still apply.
290

Sylvain Gugger's avatar
Sylvain Gugger committed
291
292
293
294
295
296
297
298
299
300
301
302
303
304
## Pipeline custom code

If you want to override a specific pipeline.

Don't hesitate to create an issue for your task at hand, the goal of the pipeline is to be easy to use and support most
cases, so `transformers` could maybe support your use case.


If you want to try simply you can:

- Subclass your pipeline of choice

```python
class MyPipeline(TextClassificationPipeline):
Sylvain Gugger's avatar
Sylvain Gugger committed
305
306
    def postprocess():
        # Your code goes here
Sylvain Gugger's avatar
Sylvain Gugger committed
307
        scores = scores * 100
Sylvain Gugger's avatar
Sylvain Gugger committed
308
309
        # And here

Sylvain Gugger's avatar
Sylvain Gugger committed
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345

my_pipeline = MyPipeline(model=model, tokenizer=tokenizer, ...)
# or if you use *pipeline* function, then:
my_pipeline = pipeline(model="xxxx", pipeline_class=MyPipeline)
```

That should enable you to do all the custom code you want.


## Implementing a pipeline

[Implementing a new pipeline](../add_new_pipeline)

## The task specific pipelines


### AudioClassificationPipeline

[[autodoc]] AudioClassificationPipeline
    - __call__
    - all

### AutomaticSpeechRecognitionPipeline

[[autodoc]] AutomaticSpeechRecognitionPipeline
    - __call__
    - all

### ConversationalPipeline

[[autodoc]] Conversation

[[autodoc]] ConversationalPipeline
    - __call__
    - all

346
347
348
349
350
351
### DocumentQuestionAnsweringPipeline

[[autodoc]] DocumentQuestionAnsweringPipeline
    - __call__
    - all

Sylvain Gugger's avatar
Sylvain Gugger committed
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
### FeatureExtractionPipeline

[[autodoc]] FeatureExtractionPipeline
    - __call__
    - all

### FillMaskPipeline

[[autodoc]] FillMaskPipeline
    - __call__
    - all

### ImageClassificationPipeline

[[autodoc]] ImageClassificationPipeline
    - __call__
    - all

### ImageSegmentationPipeline

[[autodoc]] ImageSegmentationPipeline
    - __call__
    - all

376
### ImageToTextPipeline
377

378
[[autodoc]] ImageToTextPipeline
379
380
381
    - __call__
    - all

Sylvain Gugger's avatar
Sylvain Gugger committed
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
### NerPipeline

[[autodoc]] NerPipeline

See [`TokenClassificationPipeline`] for all details.

### ObjectDetectionPipeline

[[autodoc]] ObjectDetectionPipeline
    - __call__
    - all

### QuestionAnsweringPipeline

[[autodoc]] QuestionAnsweringPipeline
    - __call__
    - all

### SummarizationPipeline

[[autodoc]] SummarizationPipeline
    - __call__
    - all

### TableQuestionAnsweringPipeline

[[autodoc]] TableQuestionAnsweringPipeline
    - __call__

### TextClassificationPipeline

[[autodoc]] TextClassificationPipeline
    - __call__
    - all

### TextGenerationPipeline

[[autodoc]] TextGenerationPipeline
    - __call__
    - all

### Text2TextGenerationPipeline

[[autodoc]] Text2TextGenerationPipeline
    - __call__
    - all

### TokenClassificationPipeline

[[autodoc]] TokenClassificationPipeline
    - __call__
    - all

### TranslationPipeline

[[autodoc]] TranslationPipeline
    - __call__
    - all

441
442
443
444
445
446
### VisualQuestionAnsweringPipeline

[[autodoc]] VisualQuestionAnsweringPipeline
    - __call__
    - all

Sylvain Gugger's avatar
Sylvain Gugger committed
447
448
449
450
451
452
### ZeroShotClassificationPipeline

[[autodoc]] ZeroShotClassificationPipeline
    - __call__
    - all

453
454
455
456
457
458
### ZeroShotImageClassificationPipeline

[[autodoc]] ZeroShotImageClassificationPipeline
    - __call__
    - all

Sylvain Gugger's avatar
Sylvain Gugger committed
459
460
461
## Parent class: `Pipeline`

[[autodoc]] Pipeline