modeling.py 62.3 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
# coding=utf-8
thomwolf's avatar
thomwolf committed
2
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
3
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
thomwolf's avatar
thomwolf committed
4
5
6
7
8
9
10
11
12
13
14
15
16
17
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch BERT model."""

thomwolf's avatar
thomwolf committed
18
from __future__ import absolute_import, division, print_function, unicode_literals
thomwolf's avatar
thomwolf committed
19
20
21
22

import copy
import json
import logging
thomwolf's avatar
thomwolf committed
23
24
25
import math
import os
import shutil
thomwolf's avatar
thomwolf committed
26
27
import tarfile
import tempfile
thomwolf's avatar
thomwolf committed
28
29
import sys
from io import open
thomwolf's avatar
thomwolf committed
30
31
32
33
34

import torch
from torch import nn
from torch.nn import CrossEntropyLoss

35
from .file_utils import cached_path, WEIGHTS_NAME, CONFIG_NAME
thomwolf's avatar
thomwolf committed
36
37
38
39
40
41
42

logger = logging.getLogger(__name__)

PRETRAINED_MODEL_ARCHIVE_MAP = {
    'bert-base-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-uncased.tar.gz",
    'bert-large-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased.tar.gz",
    'bert-base-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased.tar.gz",
thomwolf's avatar
thomwolf committed
43
44
45
    'bert-large-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased.tar.gz",
    'bert-base-multilingual-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-uncased.tar.gz",
    'bert-base-multilingual-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-cased.tar.gz",
thomwolf's avatar
thomwolf committed
46
47
    'bert-base-chinese': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-chinese.tar.gz",
}
48
BERT_CONFIG_NAME = 'bert_config.json'
49
TF_WEIGHTS_NAME = 'model.ckpt'
thomwolf's avatar
thomwolf committed
50

51
52
53
def load_tf_weights_in_bert(model, tf_checkpoint_path):
    """ Load tf checkpoints in a pytorch model
    """
54
55
56
57
    try:
        import re
        import numpy as np
        import tensorflow as tf
thomwolf's avatar
thomwolf committed
58
    except ImportError:
59
60
61
        print("Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see "
            "https://www.tensorflow.org/install/ for installation instructions.")
        raise
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
    tf_path = os.path.abspath(tf_checkpoint_path)
    print("Converting TensorFlow checkpoint from {}".format(tf_path))
    # Load weights from TF model
    init_vars = tf.train.list_variables(tf_path)
    names = []
    arrays = []
    for name, shape in init_vars:
        print("Loading TF weight {} with shape {}".format(name, shape))
        array = tf.train.load_variable(tf_path, name)
        names.append(name)
        arrays.append(array)

    for name, array in zip(names, arrays):
        name = name.split('/')
        # adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v
        # which are not required for using pretrained model
78
        if any(n in ["adam_v", "adam_m", "global_step"] for n in name):
79
80
81
82
83
84
85
86
87
88
89
90
91
92
            print("Skipping {}".format("/".join(name)))
            continue
        pointer = model
        for m_name in name:
            if re.fullmatch(r'[A-Za-z]+_\d+', m_name):
                l = re.split(r'_(\d+)', m_name)
            else:
                l = [m_name]
            if l[0] == 'kernel' or l[0] == 'gamma':
                pointer = getattr(pointer, 'weight')
            elif l[0] == 'output_bias' or l[0] == 'beta':
                pointer = getattr(pointer, 'bias')
            elif l[0] == 'output_weights':
                pointer = getattr(pointer, 'weight')
thomwolf's avatar
thomwolf committed
93
94
            elif l[0] == 'squad':
                pointer = getattr(pointer, 'classifier')
95
            else:
96
97
98
99
100
                try:
                    pointer = getattr(pointer, l[0])
                except AttributeError:
                    print("Skipping {}".format("/".join(name)))
                    continue
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
            if len(l) >= 2:
                num = int(l[1])
                pointer = pointer[num]
        if m_name[-11:] == '_embeddings':
            pointer = getattr(pointer, 'weight')
        elif m_name == 'kernel':
            array = np.transpose(array)
        try:
            assert pointer.shape == array.shape
        except AssertionError as e:
            e.args += (pointer.shape, array.shape)
            raise
        print("Initialize PyTorch weight {}".format(name))
        pointer.data = torch.from_numpy(array)
    return model


thomwolf's avatar
thomwolf committed
118
119
120
121
def gelu(x):
    """Implementation of the gelu activation function.
        For information: OpenAI GPT's gelu is slightly different (and gives slightly different results):
        0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))
122
        Also see https://arxiv.org/abs/1606.08415
thomwolf's avatar
thomwolf committed
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
    """
    return x * 0.5 * (1.0 + torch.erf(x / math.sqrt(2.0)))


def swish(x):
    return x * torch.sigmoid(x)


ACT2FN = {"gelu": gelu, "relu": torch.nn.functional.relu, "swish": swish}


class BertConfig(object):
    """Configuration class to store the configuration of a `BertModel`.
    """
    def __init__(self,
                 vocab_size_or_config_json_file,
                 hidden_size=768,
                 num_hidden_layers=12,
                 num_attention_heads=12,
                 intermediate_size=3072,
                 hidden_act="gelu",
                 hidden_dropout_prob=0.1,
                 attention_probs_dropout_prob=0.1,
                 max_position_embeddings=512,
                 type_vocab_size=2,
148
149
                 initializer_range=0.02,
                 layer_norm_eps=1e-12):
thomwolf's avatar
thomwolf committed
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
        """Constructs BertConfig.

        Args:
            vocab_size_or_config_json_file: Vocabulary size of `inputs_ids` in `BertModel`.
            hidden_size: Size of the encoder layers and the pooler layer.
            num_hidden_layers: Number of hidden layers in the Transformer encoder.
            num_attention_heads: Number of attention heads for each attention layer in
                the Transformer encoder.
            intermediate_size: The size of the "intermediate" (i.e., feed-forward)
                layer in the Transformer encoder.
            hidden_act: The non-linear activation function (function or string) in the
                encoder and pooler. If string, "gelu", "relu" and "swish" are supported.
            hidden_dropout_prob: The dropout probabilitiy for all fully connected
                layers in the embeddings, encoder, and pooler.
            attention_probs_dropout_prob: The dropout ratio for the attention
                probabilities.
            max_position_embeddings: The maximum sequence length that this model might
                ever be used with. Typically set this to something large just in case
                (e.g., 512 or 1024 or 2048).
            type_vocab_size: The vocabulary size of the `token_type_ids` passed into
                `BertModel`.
            initializer_range: The sttdev of the truncated_normal_initializer for
                initializing all weight matrices.
173
            layer_norm_eps: The epsilon used by LayerNorm.
thomwolf's avatar
thomwolf committed
174
        """
thomwolf's avatar
thomwolf committed
175
176
        if isinstance(vocab_size_or_config_json_file, str) or (sys.version_info[0] == 2
                        and isinstance(vocab_size_or_config_json_file, unicode)):
177
            with open(vocab_size_or_config_json_file, "r", encoding='utf-8') as reader:
thomwolf's avatar
thomwolf committed
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
                json_config = json.loads(reader.read())
            for key, value in json_config.items():
                self.__dict__[key] = value
        elif isinstance(vocab_size_or_config_json_file, int):
            self.vocab_size = vocab_size_or_config_json_file
            self.hidden_size = hidden_size
            self.num_hidden_layers = num_hidden_layers
            self.num_attention_heads = num_attention_heads
            self.hidden_act = hidden_act
            self.intermediate_size = intermediate_size
            self.hidden_dropout_prob = hidden_dropout_prob
            self.attention_probs_dropout_prob = attention_probs_dropout_prob
            self.max_position_embeddings = max_position_embeddings
            self.type_vocab_size = type_vocab_size
            self.initializer_range = initializer_range
193
            self.layer_norm_eps = layer_norm_eps
thomwolf's avatar
thomwolf committed
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
        else:
            raise ValueError("First argument must be either a vocabulary size (int)"
                             "or the path to a pretrained model config file (str)")

    @classmethod
    def from_dict(cls, json_object):
        """Constructs a `BertConfig` from a Python dictionary of parameters."""
        config = BertConfig(vocab_size_or_config_json_file=-1)
        for key, value in json_object.items():
            config.__dict__[key] = value
        return config

    @classmethod
    def from_json_file(cls, json_file):
        """Constructs a `BertConfig` from a json file of parameters."""
209
        with open(json_file, "r", encoding='utf-8') as reader:
thomwolf's avatar
thomwolf committed
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
            text = reader.read()
        return cls.from_dict(json.loads(text))

    def __repr__(self):
        return str(self.to_json_string())

    def to_dict(self):
        """Serializes this instance to a Python dictionary."""
        output = copy.deepcopy(self.__dict__)
        return output

    def to_json_string(self):
        """Serializes this instance to a JSON string."""
        return json.dumps(self.to_dict(), indent=2, sort_keys=True) + "\n"

225
226
227
228
229
    def to_json_file(self, json_file_path):
        """ Save this instance to a json file."""
        with open(json_file_path, "w", encoding='utf-8') as writer:
            writer.write(self.to_json_string())

230
231
232
try:
    from apex.normalization.fused_layer_norm import FusedLayerNorm as BertLayerNorm
except ImportError:
233
    logger.info("Better speed can be achieved with apex installed from https://www.github.com/nvidia/apex .")
234
235
236
237
238
239
240
241
242
243
244
245
246
247
    class BertLayerNorm(nn.Module):
        def __init__(self, hidden_size, eps=1e-12):
            """Construct a layernorm module in the TF style (epsilon inside the square root).
            """
            super(BertLayerNorm, self).__init__()
            self.weight = nn.Parameter(torch.ones(hidden_size))
            self.bias = nn.Parameter(torch.zeros(hidden_size))
            self.variance_epsilon = eps

        def forward(self, x):
            u = x.mean(-1, keepdim=True)
            s = (x - u).pow(2).mean(-1, keepdim=True)
            x = (x - u) / torch.sqrt(s + self.variance_epsilon)
            return self.weight * x + self.bias
thomwolf's avatar
thomwolf committed
248
249
250
251
252
253

class BertEmbeddings(nn.Module):
    """Construct the embeddings from word, position and token_type embeddings.
    """
    def __init__(self, config):
        super(BertEmbeddings, self).__init__()
254
        self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=0)
255
256
        self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
        self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
thomwolf's avatar
thomwolf committed
257
258
259

        # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
        # any TensorFlow checkpoint file
260
        self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps)
thomwolf's avatar
thomwolf committed
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
        self.dropout = nn.Dropout(config.hidden_dropout_prob)

    def forward(self, input_ids, token_type_ids=None):
        seq_length = input_ids.size(1)
        position_ids = torch.arange(seq_length, dtype=torch.long, device=input_ids.device)
        position_ids = position_ids.unsqueeze(0).expand_as(input_ids)
        if token_type_ids is None:
            token_type_ids = torch.zeros_like(input_ids)

        words_embeddings = self.word_embeddings(input_ids)
        position_embeddings = self.position_embeddings(position_ids)
        token_type_embeddings = self.token_type_embeddings(token_type_ids)

        embeddings = words_embeddings + position_embeddings + token_type_embeddings
        embeddings = self.LayerNorm(embeddings)
        embeddings = self.dropout(embeddings)
        return embeddings


class BertSelfAttention(nn.Module):
thomwolf's avatar
thomwolf committed
281
    def __init__(self, config, output_attentions=False):
thomwolf's avatar
thomwolf committed
282
283
284
285
286
        super(BertSelfAttention, self).__init__()
        if config.hidden_size % config.num_attention_heads != 0:
            raise ValueError(
                "The hidden size (%d) is not a multiple of the number of attention "
                "heads (%d)" % (config.hidden_size, config.num_attention_heads))
thomwolf's avatar
thomwolf committed
287
        self.output_attentions = output_attentions
thomwolf's avatar
thomwolf committed
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
        self.num_attention_heads = config.num_attention_heads
        self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
        self.all_head_size = self.num_attention_heads * self.attention_head_size

        self.query = nn.Linear(config.hidden_size, self.all_head_size)
        self.key = nn.Linear(config.hidden_size, self.all_head_size)
        self.value = nn.Linear(config.hidden_size, self.all_head_size)

        self.dropout = nn.Dropout(config.attention_probs_dropout_prob)

    def transpose_for_scores(self, x):
        new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
        x = x.view(*new_x_shape)
        return x.permute(0, 2, 1, 3)

    def forward(self, hidden_states, attention_mask):
        mixed_query_layer = self.query(hidden_states)
        mixed_key_layer = self.key(hidden_states)
        mixed_value_layer = self.value(hidden_states)

        query_layer = self.transpose_for_scores(mixed_query_layer)
        key_layer = self.transpose_for_scores(mixed_key_layer)
        value_layer = self.transpose_for_scores(mixed_value_layer)

        # Take the dot product between "query" and "key" to get the raw attention scores.
        attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
        attention_scores = attention_scores / math.sqrt(self.attention_head_size)
        # Apply the attention mask is (precomputed for all layers in BertModel forward() function)
        attention_scores = attention_scores + attention_mask

        # Normalize the attention scores to probabilities.
        attention_probs = nn.Softmax(dim=-1)(attention_scores)

        # This is actually dropping out entire tokens to attend to, which might
        # seem a bit unusual, but is taken from the original Transformer paper.
        attention_probs = self.dropout(attention_probs)

        context_layer = torch.matmul(attention_probs, value_layer)
        context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
        new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
        context_layer = context_layer.view(*new_context_layer_shape)
thomwolf's avatar
thomwolf committed
329
330
        if self.output_attentions:
            return attention_probs, context_layer
331
        return context_layer
thomwolf's avatar
thomwolf committed
332
333
334
335
336
337


class BertSelfOutput(nn.Module):
    def __init__(self, config):
        super(BertSelfOutput, self).__init__()
        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
338
        self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps)
thomwolf's avatar
thomwolf committed
339
340
341
342
343
344
345
346
347
348
        self.dropout = nn.Dropout(config.hidden_dropout_prob)

    def forward(self, hidden_states, input_tensor):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.dropout(hidden_states)
        hidden_states = self.LayerNorm(hidden_states + input_tensor)
        return hidden_states


class BertAttention(nn.Module):
thomwolf's avatar
thomwolf committed
349
    def __init__(self, config, output_attentions=False):
thomwolf's avatar
thomwolf committed
350
        super(BertAttention, self).__init__()
thomwolf's avatar
thomwolf committed
351
352
        self.output_attentions = output_attentions
        self.self = BertSelfAttention(config, output_attentions=output_attentions)
thomwolf's avatar
thomwolf committed
353
354
355
356
        self.output = BertSelfOutput(config)

    def forward(self, input_tensor, attention_mask):
        self_output = self.self(input_tensor, attention_mask)
thomwolf's avatar
thomwolf committed
357
358
        if self.output_attentions:
            attentions, self_output = self_output
thomwolf's avatar
thomwolf committed
359
        attention_output = self.output(self_output, input_tensor)
thomwolf's avatar
thomwolf committed
360
361
        if self.output_attentions:
            return attentions, attention_output
thomwolf's avatar
thomwolf committed
362
363
364
365
366
367
368
        return attention_output


class BertIntermediate(nn.Module):
    def __init__(self, config):
        super(BertIntermediate, self).__init__()
        self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
thomwolf's avatar
thomwolf committed
369
370
371
372
        if isinstance(config.hidden_act, str) or (sys.version_info[0] == 2 and isinstance(config.hidden_act, unicode)):
            self.intermediate_act_fn = ACT2FN[config.hidden_act]
        else:
            self.intermediate_act_fn = config.hidden_act
thomwolf's avatar
thomwolf committed
373
374
375
376
377
378
379
380
381
382
383

    def forward(self, hidden_states):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.intermediate_act_fn(hidden_states)
        return hidden_states


class BertOutput(nn.Module):
    def __init__(self, config):
        super(BertOutput, self).__init__()
        self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
384
        self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps)
thomwolf's avatar
thomwolf committed
385
386
387
388
389
390
391
392
393
394
        self.dropout = nn.Dropout(config.hidden_dropout_prob)

    def forward(self, hidden_states, input_tensor):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.dropout(hidden_states)
        hidden_states = self.LayerNorm(hidden_states + input_tensor)
        return hidden_states


class BertLayer(nn.Module):
thomwolf's avatar
thomwolf committed
395
    def __init__(self, config, output_attentions=False):
thomwolf's avatar
thomwolf committed
396
        super(BertLayer, self).__init__()
thomwolf's avatar
thomwolf committed
397
398
        self.output_attentions = output_attentions
        self.attention = BertAttention(config, output_attentions=output_attentions)
thomwolf's avatar
thomwolf committed
399
400
401
402
403
        self.intermediate = BertIntermediate(config)
        self.output = BertOutput(config)

    def forward(self, hidden_states, attention_mask):
        attention_output = self.attention(hidden_states, attention_mask)
thomwolf's avatar
thomwolf committed
404
405
        if self.output_attentions:
            attentions, attention_output = attention_output
thomwolf's avatar
thomwolf committed
406
407
        intermediate_output = self.intermediate(attention_output)
        layer_output = self.output(intermediate_output, attention_output)
thomwolf's avatar
thomwolf committed
408
409
        if self.output_attentions:
            return attentions, layer_output
thomwolf's avatar
thomwolf committed
410
411
412
413
        return layer_output


class BertEncoder(nn.Module):
thomwolf's avatar
thomwolf committed
414
    def __init__(self, config, output_attentions=False):
thomwolf's avatar
thomwolf committed
415
        super(BertEncoder, self).__init__()
thomwolf's avatar
thomwolf committed
416
417
        self.output_attentions = output_attentions
        layer = BertLayer(config, output_attentions=output_attentions)
418
        self.layer = nn.ModuleList([copy.deepcopy(layer) for _ in range(config.num_hidden_layers)])
thomwolf's avatar
thomwolf committed
419
420
421

    def forward(self, hidden_states, attention_mask, output_all_encoded_layers=True):
        all_encoder_layers = []
thomwolf's avatar
thomwolf committed
422
        all_attentions = []
thomwolf's avatar
thomwolf committed
423
424
        for layer_module in self.layer:
            hidden_states = layer_module(hidden_states, attention_mask)
thomwolf's avatar
thomwolf committed
425
426
427
            if self.output_attentions:
                attentions, hidden_states = hidden_states
                all_attentions.append(attentions)
thomwolf's avatar
thomwolf committed
428
429
430
431
            if output_all_encoded_layers:
                all_encoder_layers.append(hidden_states)
        if not output_all_encoded_layers:
            all_encoder_layers.append(hidden_states)
thomwolf's avatar
thomwolf committed
432
433
        if self.output_attentions:
            return all_attentions, all_encoder_layers
thomwolf's avatar
thomwolf committed
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
        return all_encoder_layers


class BertPooler(nn.Module):
    def __init__(self, config):
        super(BertPooler, self).__init__()
        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
        self.activation = nn.Tanh()

    def forward(self, hidden_states):
        # We "pool" the model by simply taking the hidden state corresponding
        # to the first token.
        first_token_tensor = hidden_states[:, 0]
        pooled_output = self.dense(first_token_tensor)
        pooled_output = self.activation(pooled_output)
        return pooled_output


class BertPredictionHeadTransform(nn.Module):
    def __init__(self, config):
        super(BertPredictionHeadTransform, self).__init__()
        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
thomwolf's avatar
thomwolf committed
456
457
458
459
        if isinstance(config.hidden_act, str) or (sys.version_info[0] == 2 and isinstance(config.hidden_act, unicode)):
            self.transform_act_fn = ACT2FN[config.hidden_act]
        else:
            self.transform_act_fn = config.hidden_act
460
        self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps)
thomwolf's avatar
thomwolf committed
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519

    def forward(self, hidden_states):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.transform_act_fn(hidden_states)
        hidden_states = self.LayerNorm(hidden_states)
        return hidden_states


class BertLMPredictionHead(nn.Module):
    def __init__(self, config, bert_model_embedding_weights):
        super(BertLMPredictionHead, self).__init__()
        self.transform = BertPredictionHeadTransform(config)

        # The output weights are the same as the input embeddings, but there is
        # an output-only bias for each token.
        self.decoder = nn.Linear(bert_model_embedding_weights.size(1),
                                 bert_model_embedding_weights.size(0),
                                 bias=False)
        self.decoder.weight = bert_model_embedding_weights
        self.bias = nn.Parameter(torch.zeros(bert_model_embedding_weights.size(0)))

    def forward(self, hidden_states):
        hidden_states = self.transform(hidden_states)
        hidden_states = self.decoder(hidden_states) + self.bias
        return hidden_states


class BertOnlyMLMHead(nn.Module):
    def __init__(self, config, bert_model_embedding_weights):
        super(BertOnlyMLMHead, self).__init__()
        self.predictions = BertLMPredictionHead(config, bert_model_embedding_weights)

    def forward(self, sequence_output):
        prediction_scores = self.predictions(sequence_output)
        return prediction_scores


class BertOnlyNSPHead(nn.Module):
    def __init__(self, config):
        super(BertOnlyNSPHead, self).__init__()
        self.seq_relationship = nn.Linear(config.hidden_size, 2)

    def forward(self, pooled_output):
        seq_relationship_score = self.seq_relationship(pooled_output)
        return seq_relationship_score


class BertPreTrainingHeads(nn.Module):
    def __init__(self, config, bert_model_embedding_weights):
        super(BertPreTrainingHeads, self).__init__()
        self.predictions = BertLMPredictionHead(config, bert_model_embedding_weights)
        self.seq_relationship = nn.Linear(config.hidden_size, 2)

    def forward(self, sequence_output, pooled_output):
        prediction_scores = self.predictions(sequence_output)
        seq_relationship_score = self.seq_relationship(pooled_output)
        return prediction_scores, seq_relationship_score


thomwolf's avatar
thomwolf committed
520
class BertPreTrainedModel(nn.Module):
thomwolf's avatar
thomwolf committed
521
522
523
524
    """ An abstract class to handle weights initialization and
        a simple interface for dowloading and loading pretrained models.
    """
    def __init__(self, config, *inputs, **kwargs):
thomwolf's avatar
thomwolf committed
525
        super(BertPreTrainedModel, self).__init__()
thomwolf's avatar
thomwolf committed
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
        if not isinstance(config, BertConfig):
            raise ValueError(
                "Parameter config in `{}(config)` should be an instance of class `BertConfig`. "
                "To create a model from a Google pretrained model use "
                "`model = {}.from_pretrained(PRETRAINED_MODEL_NAME)`".format(
                    self.__class__.__name__, self.__class__.__name__
                ))
        self.config = config

    def init_bert_weights(self, module):
        """ Initialize the weights.
        """
        if isinstance(module, (nn.Linear, nn.Embedding)):
            # Slightly different from the TF version which uses truncated_normal for initialization
            # cf https://github.com/pytorch/pytorch/pull/5617
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
        elif isinstance(module, BertLayerNorm):
Li Dong's avatar
Li Dong committed
543
544
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)
thomwolf's avatar
thomwolf committed
545
546
547
548
        if isinstance(module, nn.Linear) and module.bias is not None:
            module.bias.data.zero_()

    @classmethod
549
    def from_pretrained(cls, pretrained_model_name_or_path, *inputs, **kwargs):
thomwolf's avatar
thomwolf committed
550
        """
thomwolf's avatar
thomwolf committed
551
        Instantiate a BertPreTrainedModel from a pre-trained model file or a pytorch state dict.
thomwolf's avatar
thomwolf committed
552
        Download and cache the pre-trained model file if needed.
553

thomwolf's avatar
thomwolf committed
554
        Params:
thomwolf's avatar
thomwolf committed
555
            pretrained_model_name_or_path: either:
thomwolf's avatar
thomwolf committed
556
557
558
559
                - a str with the name of a pre-trained model to load selected in the list of:
                    . `bert-base-uncased`
                    . `bert-large-uncased`
                    . `bert-base-cased`
560
561
562
                    . `bert-large-cased`
                    . `bert-base-multilingual-uncased`
                    . `bert-base-multilingual-cased`
thomwolf's avatar
thomwolf committed
563
564
565
566
                    . `bert-base-chinese`
                - a path or url to a pretrained model archive containing:
                    . `bert_config.json` a configuration file for the model
                    . `pytorch_model.bin` a PyTorch dump of a BertForPreTraining instance
567
568
569
570
                - a path or url to a pretrained model archive containing:
                    . `bert_config.json` a configuration file for the model
                    . `model.chkpt` a TensorFlow checkpoint
            from_tf: should we load the weights from a locally saved TensorFlow checkpoint
571
572
            cache_dir: an optional path to a folder in which the pre-trained models will be cached.
            state_dict: an optional state dictionnary (collections.OrderedDict object) to use instead of Google pre-trained models
thomwolf's avatar
thomwolf committed
573
574
575
            *inputs, **kwargs: additional input for the specific Bert class
                (ex: num_labels for BertForSequenceClassification)
        """
576
577
578
579
580
581
582
        state_dict = kwargs.get('state_dict', None)
        kwargs.pop('state_dict', None)
        cache_dir = kwargs.get('cache_dir', None)
        kwargs.pop('cache_dir', None)
        from_tf = kwargs.get('from_tf', False)
        kwargs.pop('from_tf', None)

thomwolf's avatar
thomwolf committed
583
584
        if pretrained_model_name_or_path in PRETRAINED_MODEL_ARCHIVE_MAP:
            archive_file = PRETRAINED_MODEL_ARCHIVE_MAP[pretrained_model_name_or_path]
thomwolf's avatar
thomwolf committed
585
        else:
thomwolf's avatar
thomwolf committed
586
            archive_file = pretrained_model_name_or_path
thomwolf's avatar
thomwolf committed
587
588
        # redirect to the cache, if necessary
        try:
589
            resolved_archive_file = cached_path(archive_file, cache_dir=cache_dir)
thomwolf's avatar
thomwolf committed
590
        except EnvironmentError:
thomwolf's avatar
thomwolf committed
591
592
593
594
            logger.error(
                "Model name '{}' was not found in model name list ({}). "
                "We assumed '{}' was a path or url but couldn't find any file "
                "associated to this path or url.".format(
thomwolf's avatar
thomwolf committed
595
                    pretrained_model_name_or_path,
thomwolf's avatar
thomwolf committed
596
                    ', '.join(PRETRAINED_MODEL_ARCHIVE_MAP.keys()),
597
                    archive_file))
thomwolf's avatar
thomwolf committed
598
599
600
601
602
603
604
            return None
        if resolved_archive_file == archive_file:
            logger.info("loading archive file {}".format(archive_file))
        else:
            logger.info("loading archive file {} from cache at {}".format(
                archive_file, resolved_archive_file))
        tempdir = None
605
        if os.path.isdir(resolved_archive_file) or from_tf:
thomwolf's avatar
thomwolf committed
606
607
608
609
610
611
612
613
614
615
616
            serialization_dir = resolved_archive_file
        else:
            # Extract archive to temp dir
            tempdir = tempfile.mkdtemp()
            logger.info("extracting archive file {} to temp dir {}".format(
                resolved_archive_file, tempdir))
            with tarfile.open(resolved_archive_file, 'r:gz') as archive:
                archive.extractall(tempdir)
            serialization_dir = tempdir
        # Load config
        config_file = os.path.join(serialization_dir, CONFIG_NAME)
617
618
619
        if not os.path.exists(config_file):
            # Backward compatibility with old naming format
            config_file = os.path.join(serialization_dir, BERT_CONFIG_NAME)
thomwolf's avatar
thomwolf committed
620
621
622
623
        config = BertConfig.from_json_file(config_file)
        logger.info("Model config {}".format(config))
        # Instantiate model.
        model = cls(config, *inputs, **kwargs)
624
        if state_dict is None and not from_tf:
625
            weights_path = os.path.join(serialization_dir, WEIGHTS_NAME)
thomwolf's avatar
thomwolf committed
626
            state_dict = torch.load(weights_path, map_location='cpu')
627
628
629
630
631
632
633
634
        if tempdir:
            # Clean up temp dir
            shutil.rmtree(tempdir)
        if from_tf:
            # Directly load from a TensorFlow checkpoint
            weights_path = os.path.join(serialization_dir, TF_WEIGHTS_NAME)
            return load_tf_weights_in_bert(model, weights_path)
        # Load from a PyTorch state_dict
635
636
637
638
639
        old_keys = []
        new_keys = []
        for key in state_dict.keys():
            new_key = None
            if 'gamma' in key:
thomwolf's avatar
thomwolf committed
640
                new_key = key.replace('gamma', 'weight')
641
            if 'beta' in key:
thomwolf's avatar
thomwolf committed
642
                new_key = key.replace('beta', 'bias')
643
644
645
646
            if new_key:
                old_keys.append(key)
                new_keys.append(new_key)
        for old_key, new_key in zip(old_keys, new_keys):
thomwolf's avatar
thomwolf committed
647
            state_dict[new_key] = state_dict.pop(old_key)
648

thomwolf's avatar
thomwolf committed
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
        missing_keys = []
        unexpected_keys = []
        error_msgs = []
        # copy state_dict so _load_from_state_dict can modify it
        metadata = getattr(state_dict, '_metadata', None)
        state_dict = state_dict.copy()
        if metadata is not None:
            state_dict._metadata = metadata

        def load(module, prefix=''):
            local_metadata = {} if metadata is None else metadata.get(prefix[:-1], {})
            module._load_from_state_dict(
                state_dict, prefix, local_metadata, True, missing_keys, unexpected_keys, error_msgs)
            for name, child in module._modules.items():
                if child is not None:
                    load(child, prefix + name + '.')
thomwolf's avatar
thomwolf committed
665
666
667
        start_prefix = ''
        if not hasattr(model, 'bert') and any(s.startswith('bert.') for s in state_dict.keys()):
            start_prefix = 'bert.'
thomwolf's avatar
update  
thomwolf committed
668
        load(model, prefix=start_prefix)
thomwolf's avatar
thomwolf committed
669
670
671
672
673
674
        if len(missing_keys) > 0:
            logger.info("Weights of {} not initialized from pretrained model: {}".format(
                model.__class__.__name__, missing_keys))
        if len(unexpected_keys) > 0:
            logger.info("Weights from pretrained model not used in {}: {}".format(
                model.__class__.__name__, unexpected_keys))
thomwolf's avatar
thomwolf committed
675
676
        if len(error_msgs) > 0:
            raise RuntimeError('Error(s) in loading state_dict for {}:\n\t{}'.format(
thomwolf's avatar
thomwolf committed
677
                               model.__class__.__name__, "\n\t".join(error_msgs)))
thomwolf's avatar
thomwolf committed
678
679
680
        return model


thomwolf's avatar
thomwolf committed
681
class BertModel(BertPreTrainedModel):
thomwolf's avatar
thomwolf committed
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
    """BERT model ("Bidirectional Embedding Representations from a Transformer").

    Params:
        config: a BertConfig class instance with the configuration to build a new model

    Inputs:
        `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length]
            with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts
            `extract_features.py`, `run_classifier.py` and `run_squad.py`)
        `token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token
            types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to
            a `sentence B` token (see BERT paper for more details).
        `attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices
            selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
            input sequence length in the current batch. It's the mask that we typically use for attention when
            a batch has varying length sentences.
        `output_all_encoded_layers`: boolean which controls the content of the `encoded_layers` output as described below. Default: `True`.

    Outputs: Tuple of (encoded_layers, pooled_output)
        `encoded_layers`: controled by `output_all_encoded_layers` argument:
            - `output_all_encoded_layers=True`: outputs a list of the full sequences of encoded-hidden-states at the end
                of each attention block (i.e. 12 full sequences for BERT-base, 24 for BERT-large), each
                encoded-hidden-state is a torch.FloatTensor of size [batch_size, sequence_length, hidden_size],
            - `output_all_encoded_layers=False`: outputs only the full sequence of hidden-states corresponding
706
                to the last attention block of shape [batch_size, sequence_length, hidden_size],
thomwolf's avatar
thomwolf committed
707
708
        `pooled_output`: a torch.FloatTensor of size [batch_size, hidden_size] which is the output of a
            classifier pretrained on top of the hidden state associated to the first character of the
thomwolf's avatar
thomwolf committed
709
            input (`CLS`) to train on the Next-Sentence task (see BERT's paper).
thomwolf's avatar
thomwolf committed
710
711
712
713
714
715

    Example usage:
    ```python
    # Already been converted into WordPiece token ids
    input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
    input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
thomwolf's avatar
thomwolf committed
716
    token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])
thomwolf's avatar
thomwolf committed
717

thomwolf's avatar
thomwolf committed
718
719
    config = modeling.BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
        num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)
thomwolf's avatar
thomwolf committed
720
721
722
723
724

    model = modeling.BertModel(config=config)
    all_encoder_layers, pooled_output = model(input_ids, token_type_ids, input_mask)
    ```
    """
thomwolf's avatar
thomwolf committed
725
    def __init__(self, config, output_attentions=False):
thomwolf's avatar
thomwolf committed
726
        super(BertModel, self).__init__(config)
thomwolf's avatar
thomwolf committed
727
        self.output_attentions = output_attentions
thomwolf's avatar
thomwolf committed
728
        self.embeddings = BertEmbeddings(config)
thomwolf's avatar
thomwolf committed
729
        self.encoder = BertEncoder(config, output_attentions=output_attentions)
thomwolf's avatar
thomwolf committed
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
        self.pooler = BertPooler(config)
        self.apply(self.init_bert_weights)

    def forward(self, input_ids, token_type_ids=None, attention_mask=None, output_all_encoded_layers=True):
        if attention_mask is None:
            attention_mask = torch.ones_like(input_ids)
        if token_type_ids is None:
            token_type_ids = torch.zeros_like(input_ids)

        # We create a 3D attention mask from a 2D tensor mask.
        # Sizes are [batch_size, 1, 1, to_seq_length]
        # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
        # this attention mask is more simple than the triangular masking of causal attention
        # used in OpenAI GPT, we just need to prepare the broadcast dimension here.
        extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)

        # Since attention_mask is 1.0 for positions we want to attend and 0.0 for
        # masked positions, this operation will create a tensor which is 0.0 for
        # positions we want to attend and -10000.0 for masked positions.
        # Since we are adding it to the raw scores before the softmax, this is
        # effectively the same as removing these entirely.
        extended_attention_mask = extended_attention_mask.to(dtype=next(self.parameters()).dtype) # fp16 compatibility
        extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0

        embedding_output = self.embeddings(input_ids, token_type_ids)
        encoded_layers = self.encoder(embedding_output,
                                      extended_attention_mask,
                                      output_all_encoded_layers=output_all_encoded_layers)
thomwolf's avatar
thomwolf committed
758
759
        if self.output_attentions:
            all_attentions, encoded_layers = encoded_layers
thomwolf's avatar
thomwolf committed
760
761
762
763
        sequence_output = encoded_layers[-1]
        pooled_output = self.pooler(sequence_output)
        if not output_all_encoded_layers:
            encoded_layers = encoded_layers[-1]
thomwolf's avatar
thomwolf committed
764
765
        if self.output_attentions:
            return all_attentions, encoded_layers, pooled_output
thomwolf's avatar
thomwolf committed
766
767
768
        return encoded_layers, pooled_output


thomwolf's avatar
thomwolf committed
769
class BertForPreTraining(BertPreTrainedModel):
thomwolf's avatar
thomwolf committed
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
    """BERT model with pre-training heads.
    This module comprises the BERT model followed by the two pre-training heads:
        - the masked language modeling head, and
        - the next sentence classification head.

    Params:
        config: a BertConfig class instance with the configuration to build a new model.

    Inputs:
        `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length]
            with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts
            `extract_features.py`, `run_classifier.py` and `run_squad.py`)
        `token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token
            types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to
            a `sentence B` token (see BERT paper for more details).
        `attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices
            selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
            input sequence length in the current batch. It's the mask that we typically use for attention when
            a batch has varying length sentences.
789
        `masked_lm_labels`: optional masked language modeling labels: torch.LongTensor of shape [batch_size, sequence_length]
thomwolf's avatar
thomwolf committed
790
791
            with indices selected in [-1, 0, ..., vocab_size]. All labels set to -1 are ignored (masked), the loss
            is only computed for the labels set in [0, ..., vocab_size]
792
        `next_sentence_label`: optional next sentence classification loss: torch.LongTensor of shape [batch_size]
thomwolf's avatar
thomwolf committed
793
794
795
796
797
798
799
800
801
            with indices selected in [0, 1].
            0 => next sentence is the continuation, 1 => next sentence is a random sentence.

    Outputs:
        if `masked_lm_labels` and `next_sentence_label` are not `None`:
            Outputs the total_loss which is the sum of the masked language modeling loss and the next
            sentence classification loss.
        if `masked_lm_labels` or `next_sentence_label` is `None`:
            Outputs a tuple comprising
802
803
            - the masked language modeling logits of shape [batch_size, sequence_length, vocab_size], and
            - the next sentence classification logits of shape [batch_size, 2].
thomwolf's avatar
thomwolf committed
804
805
806
807
808
809

    Example usage:
    ```python
    # Already been converted into WordPiece token ids
    input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
    input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
thomwolf's avatar
thomwolf committed
810
    token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])
thomwolf's avatar
thomwolf committed
811

thomwolf's avatar
thomwolf committed
812
813
    config = BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
        num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)
thomwolf's avatar
thomwolf committed
814
815
816
817
818

    model = BertForPreTraining(config)
    masked_lm_logits_scores, seq_relationship_logits = model(input_ids, token_type_ids, input_mask)
    ```
    """
819
    def __init__(self, config, output_attentions=False):
thomwolf's avatar
thomwolf committed
820
        super(BertForPreTraining, self).__init__(config)
821
822
        self.output_attentions = output_attentions
        self.bert = BertModel(config, output_attentions=output_attentions)
thomwolf's avatar
thomwolf committed
823
824
825
826
        self.cls = BertPreTrainingHeads(config, self.bert.embeddings.word_embeddings.weight)
        self.apply(self.init_bert_weights)

    def forward(self, input_ids, token_type_ids=None, attention_mask=None, masked_lm_labels=None, next_sentence_label=None):
827
        outputs = self.bert(input_ids, token_type_ids, attention_mask,
thomwolf's avatar
thomwolf committed
828
                                                   output_all_encoded_layers=False)
829
830
831
832
        if self.output_attentions:
            all_attentions, sequence_output, pooled_output = outputs
        else:
            sequence_output, pooled_output = outputs
thomwolf's avatar
thomwolf committed
833
834
835
836
        prediction_scores, seq_relationship_score = self.cls(sequence_output, pooled_output)

        if masked_lm_labels is not None and next_sentence_label is not None:
            loss_fct = CrossEntropyLoss(ignore_index=-1)
837
            masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), masked_lm_labels.view(-1))
838
            next_sentence_loss = loss_fct(seq_relationship_score.view(-1, 2), next_sentence_label.view(-1))
thomwolf's avatar
thomwolf committed
839
840
            total_loss = masked_lm_loss + next_sentence_loss
            return total_loss
841
842
843
        elif self.output_attentions:
            return all_attentions, prediction_scores, seq_relationship_score
        return prediction_scores, seq_relationship_score
thomwolf's avatar
thomwolf committed
844
845


thomwolf's avatar
thomwolf committed
846
class BertForMaskedLM(BertPreTrainedModel):
thomwolf's avatar
thomwolf committed
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
    """BERT model with the masked language modeling head.
    This module comprises the BERT model followed by the masked language modeling head.

    Params:
        config: a BertConfig class instance with the configuration to build a new model.

    Inputs:
        `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length]
            with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts
            `extract_features.py`, `run_classifier.py` and `run_squad.py`)
        `token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token
            types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to
            a `sentence B` token (see BERT paper for more details).
        `attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices
            selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
            input sequence length in the current batch. It's the mask that we typically use for attention when
            a batch has varying length sentences.
        `masked_lm_labels`: masked language modeling labels: torch.LongTensor of shape [batch_size, sequence_length]
            with indices selected in [-1, 0, ..., vocab_size]. All labels set to -1 are ignored (masked), the loss
            is only computed for the labels set in [0, ..., vocab_size]

    Outputs:
wlhgtc's avatar
wlhgtc committed
869
        if `masked_lm_labels` is  not `None`:
thomwolf's avatar
thomwolf committed
870
871
            Outputs the masked language modeling loss.
        if `masked_lm_labels` is `None`:
872
            Outputs the masked language modeling logits of shape [batch_size, sequence_length, vocab_size].
thomwolf's avatar
thomwolf committed
873
874
875
876
877
878

    Example usage:
    ```python
    # Already been converted into WordPiece token ids
    input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
    input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
thomwolf's avatar
thomwolf committed
879
    token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])
thomwolf's avatar
thomwolf committed
880

thomwolf's avatar
thomwolf committed
881
882
    config = BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
        num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)
thomwolf's avatar
thomwolf committed
883
884
885
886
887

    model = BertForMaskedLM(config)
    masked_lm_logits_scores = model(input_ids, token_type_ids, input_mask)
    ```
    """
888
    def __init__(self, config, output_attentions=False):
thomwolf's avatar
thomwolf committed
889
        super(BertForMaskedLM, self).__init__(config)
890
891
        self.output_attentions = output_attentions
        self.bert = BertModel(config, output_attentions=output_attentions)
thomwolf's avatar
thomwolf committed
892
893
894
895
        self.cls = BertOnlyMLMHead(config, self.bert.embeddings.word_embeddings.weight)
        self.apply(self.init_bert_weights)

    def forward(self, input_ids, token_type_ids=None, attention_mask=None, masked_lm_labels=None):
896
        outputs = self.bert(input_ids, token_type_ids, attention_mask,
thomwolf's avatar
thomwolf committed
897
                                       output_all_encoded_layers=False)
898
899
900
901
        if self.output_attentions:
            all_attentions, sequence_output, _ = outputs
        else:
            sequence_output, _ = outputs
thomwolf's avatar
thomwolf committed
902
903
904
905
        prediction_scores = self.cls(sequence_output)

        if masked_lm_labels is not None:
            loss_fct = CrossEntropyLoss(ignore_index=-1)
906
            masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), masked_lm_labels.view(-1))
thomwolf's avatar
thomwolf committed
907
            return masked_lm_loss
908
909
910
        elif self.output_attentions:
            return all_attentions, prediction_scores
        return prediction_scores
thomwolf's avatar
thomwolf committed
911
912


thomwolf's avatar
thomwolf committed
913
class BertForNextSentencePrediction(BertPreTrainedModel):
thomwolf's avatar
thomwolf committed
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
    """BERT model with next sentence prediction head.
    This module comprises the BERT model followed by the next sentence classification head.

    Params:
        config: a BertConfig class instance with the configuration to build a new model.

    Inputs:
        `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length]
            with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts
            `extract_features.py`, `run_classifier.py` and `run_squad.py`)
        `token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token
            types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to
            a `sentence B` token (see BERT paper for more details).
        `attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices
            selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
            input sequence length in the current batch. It's the mask that we typically use for attention when
            a batch has varying length sentences.
        `next_sentence_label`: next sentence classification loss: torch.LongTensor of shape [batch_size]
            with indices selected in [0, 1].
            0 => next sentence is the continuation, 1 => next sentence is a random sentence.

    Outputs:
        if `next_sentence_label` is not `None`:
            Outputs the total_loss which is the sum of the masked language modeling loss and the next
            sentence classification loss.
        if `next_sentence_label` is `None`:
940
            Outputs the next sentence classification logits of shape [batch_size, 2].
thomwolf's avatar
thomwolf committed
941
942
943
944
945
946

    Example usage:
    ```python
    # Already been converted into WordPiece token ids
    input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
    input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
thomwolf's avatar
thomwolf committed
947
    token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])
thomwolf's avatar
thomwolf committed
948

thomwolf's avatar
thomwolf committed
949
950
    config = BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
        num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)
thomwolf's avatar
thomwolf committed
951
952
953
954
955

    model = BertForNextSentencePrediction(config)
    seq_relationship_logits = model(input_ids, token_type_ids, input_mask)
    ```
    """
956
    def __init__(self, config, output_attentions=False):
thomwolf's avatar
thomwolf committed
957
        super(BertForNextSentencePrediction, self).__init__(config)
958
959
        self.output_attentions = output_attentions
        self.bert = BertModel(config, output_attentions=output_attentions)
thomwolf's avatar
thomwolf committed
960
961
962
963
        self.cls = BertOnlyNSPHead(config)
        self.apply(self.init_bert_weights)

    def forward(self, input_ids, token_type_ids=None, attention_mask=None, next_sentence_label=None):
964
        outputs = self.bert(input_ids, token_type_ids, attention_mask,
thomwolf's avatar
thomwolf committed
965
                                     output_all_encoded_layers=False)
966
967
968
969
970
        if self.output_attentions:
            all_attentions, _, pooled_output = outputs
        else:
            _, pooled_output = outputs
        seq_relationship_score = self.cls(pooled_output)
thomwolf's avatar
thomwolf committed
971
972
973

        if next_sentence_label is not None:
            loss_fct = CrossEntropyLoss(ignore_index=-1)
974
            next_sentence_loss = loss_fct(seq_relationship_score.view(-1, 2), next_sentence_label.view(-1))
thomwolf's avatar
thomwolf committed
975
            return next_sentence_loss
976
977
978
        elif self.output_attentions:
            return all_attentions, seq_relationship_score
        return seq_relationship_score
thomwolf's avatar
thomwolf committed
979
980


thomwolf's avatar
thomwolf committed
981
class BertForSequenceClassification(BertPreTrainedModel):
thomwolf's avatar
thomwolf committed
982
983
984
985
986
987
988
989
990
991
    """BERT model for classification.
    This module is composed of the BERT model with a linear layer on top of
    the pooled output.

    Params:
        `config`: a BertConfig class instance with the configuration to build a new model.
        `num_labels`: the number of classes for the classifier. Default = 2.

    Inputs:
        `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length]
992
            with the word token indices in the vocabulary. Items in the batch should begin with the special "CLS" token. (see the tokens preprocessing logic in the scripts
thomwolf's avatar
thomwolf committed
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
            `extract_features.py`, `run_classifier.py` and `run_squad.py`)
        `token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token
            types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to
            a `sentence B` token (see BERT paper for more details).
        `attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices
            selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
            input sequence length in the current batch. It's the mask that we typically use for attention when
            a batch has varying length sentences.
        `labels`: labels for the classification output: torch.LongTensor of shape [batch_size]
            with indices selected in [0, ..., num_labels].

    Outputs:
        if `labels` is not `None`:
            Outputs the CrossEntropy classification loss of the output with the labels.
        if `labels` is `None`:
1008
            Outputs the classification logits of shape [batch_size, num_labels].
thomwolf's avatar
thomwolf committed
1009
1010
1011
1012
1013
1014

    Example usage:
    ```python
    # Already been converted into WordPiece token ids
    input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
    input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
thomwolf's avatar
thomwolf committed
1015
    token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])
thomwolf's avatar
thomwolf committed
1016

thomwolf's avatar
thomwolf committed
1017
1018
    config = BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
        num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)
thomwolf's avatar
thomwolf committed
1019
1020
1021
1022
1023
1024
1025

    num_labels = 2

    model = BertForSequenceClassification(config, num_labels)
    logits = model(input_ids, token_type_ids, input_mask)
    ```
    """
1026
    def __init__(self, config, num_labels=2, output_attentions=False):
thomwolf's avatar
thomwolf committed
1027
        super(BertForSequenceClassification, self).__init__(config)
1028
        self.output_attentions = output_attentions
1029
        self.num_labels = num_labels
1030
        self.bert = BertModel(config, output_attentions=output_attentions)
thomwolf's avatar
thomwolf committed
1031
1032
1033
1034
1035
        self.dropout = nn.Dropout(config.hidden_dropout_prob)
        self.classifier = nn.Linear(config.hidden_size, num_labels)
        self.apply(self.init_bert_weights)

    def forward(self, input_ids, token_type_ids=None, attention_mask=None, labels=None):
1036
1037
1038
1039
1040
        outputs = self.bert(input_ids, token_type_ids, attention_mask, output_all_encoded_layers=False)
        if self.output_attentions:
            all_attentions, _, pooled_output = outputs
        else:
            _, pooled_output = outputs
thomwolf's avatar
thomwolf committed
1041
1042
1043
1044
1045
        pooled_output = self.dropout(pooled_output)
        logits = self.classifier(pooled_output)

        if labels is not None:
            loss_fct = CrossEntropyLoss()
1046
            loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
1047
            return loss
1048
1049
1050
        elif self.output_attentions:
            return all_attentions, logits
        return logits
1051
1052


thomwolf's avatar
thomwolf committed
1053
class BertForMultipleChoice(BertPreTrainedModel):
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
    """BERT model for multiple choice tasks.
    This module is composed of the BERT model with a linear layer on top of
    the pooled output.

    Params:
        `config`: a BertConfig class instance with the configuration to build a new model.
        `num_choices`: the number of classes for the classifier. Default = 2.

    Inputs:
        `input_ids`: a torch.LongTensor of shape [batch_size, num_choices, sequence_length]
            with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts
            `extract_features.py`, `run_classifier.py` and `run_squad.py`)
        `token_type_ids`: an optional torch.LongTensor of shape [batch_size, num_choices, sequence_length]
            with the token types indices selected in [0, 1]. Type 0 corresponds to a `sentence A`
            and type 1 corresponds to a `sentence B` token (see BERT paper for more details).
        `attention_mask`: an optional torch.LongTensor of shape [batch_size, num_choices, sequence_length] with indices
            selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
            input sequence length in the current batch. It's the mask that we typically use for attention when
            a batch has varying length sentences.
        `labels`: labels for the classification output: torch.LongTensor of shape [batch_size]
            with indices selected in [0, ..., num_choices].

    Outputs:
        if `labels` is not `None`:
            Outputs the CrossEntropy classification loss of the output with the labels.
        if `labels` is `None`:
            Outputs the classification logits of shape [batch_size, num_labels].

    Example usage:
    ```python
    # Already been converted into WordPiece token ids
    input_ids = torch.LongTensor([[[31, 51, 99], [15, 5, 0]], [[12, 16, 42], [14, 28, 57]]])
    input_mask = torch.LongTensor([[[1, 1, 1], [1, 1, 0]],[[1,1,0], [1, 0, 0]]])
    token_type_ids = torch.LongTensor([[[0, 0, 1], [0, 1, 0]],[[0, 1, 1], [0, 0, 1]]])
    config = BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
        num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)

    num_choices = 2

    model = BertForMultipleChoice(config, num_choices)
    logits = model(input_ids, token_type_ids, input_mask)
    ```
    """
1097
    def __init__(self, config, num_choices=2, output_attentions=False):
1098
        super(BertForMultipleChoice, self).__init__(config)
1099
        self.output_attentions = output_attentions
1100
        self.num_choices = num_choices
1101
        self.bert = BertModel(config, output_attentions=output_attentions)
1102
1103
1104
1105
1106
1107
        self.dropout = nn.Dropout(config.hidden_dropout_prob)
        self.classifier = nn.Linear(config.hidden_size, 1)
        self.apply(self.init_bert_weights)

    def forward(self, input_ids, token_type_ids=None, attention_mask=None, labels=None):
        flat_input_ids = input_ids.view(-1, input_ids.size(-1))
1108
1109
        flat_token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
        flat_attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
1110
1111
1112
1113
1114
        outputs = self.bert(flat_input_ids, flat_token_type_ids, flat_attention_mask, output_all_encoded_layers=False)
        if self.output_attentions:
            all_attentions, _, pooled_output = outputs
        else:
            _, pooled_output = outputs
1115
1116
1117
1118
1119
1120
1121
1122
        pooled_output = self.dropout(pooled_output)
        logits = self.classifier(pooled_output)
        reshaped_logits = logits.view(-1, self.num_choices)

        if labels is not None:
            loss_fct = CrossEntropyLoss()
            loss = loss_fct(reshaped_logits, labels)
            return loss
1123
1124
1125
        elif self.output_attentions:
            return all_attentions, reshaped_logits
        return reshaped_logits
1126
1127


thomwolf's avatar
thomwolf committed
1128
class BertForTokenClassification(BertPreTrainedModel):
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
    """BERT model for token-level classification.
    This module is composed of the BERT model with a linear layer on top of
    the full hidden state of the last layer.

    Params:
        `config`: a BertConfig class instance with the configuration to build a new model.
        `num_labels`: the number of classes for the classifier. Default = 2.

    Inputs:
        `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length]
            with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts
            `extract_features.py`, `run_classifier.py` and `run_squad.py`)
        `token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token
            types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to
            a `sentence B` token (see BERT paper for more details).
        `attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices
            selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
            input sequence length in the current batch. It's the mask that we typically use for attention when
            a batch has varying length sentences.
thomwolf's avatar
thomwolf committed
1148
        `labels`: labels for the classification output: torch.LongTensor of shape [batch_size, sequence_length]
1149
1150
1151
1152
1153
1154
            with indices selected in [0, ..., num_labels].

    Outputs:
        if `labels` is not `None`:
            Outputs the CrossEntropy classification loss of the output with the labels.
        if `labels` is `None`:
1155
            Outputs the classification logits of shape [batch_size, sequence_length, num_labels].
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172

    Example usage:
    ```python
    # Already been converted into WordPiece token ids
    input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
    input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
    token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])

    config = BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
        num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)

    num_labels = 2

    model = BertForTokenClassification(config, num_labels)
    logits = model(input_ids, token_type_ids, input_mask)
    ```
    """
1173
    def __init__(self, config, num_labels=2, output_attentions=False):
1174
        super(BertForTokenClassification, self).__init__(config)
1175
        self.output_attentions = output_attentions
1176
        self.num_labels = num_labels
1177
        self.bert = BertModel(config, output_attentions=output_attentions)
1178
1179
1180
1181
1182
        self.dropout = nn.Dropout(config.hidden_dropout_prob)
        self.classifier = nn.Linear(config.hidden_size, num_labels)
        self.apply(self.init_bert_weights)

    def forward(self, input_ids, token_type_ids=None, attention_mask=None, labels=None):
1183
1184
1185
1186
1187
        outputs = self.bert(input_ids, token_type_ids, attention_mask, output_all_encoded_layers=False)
        if self.output_attentions:
            all_attentions, sequence_output, _ = outputs
        else:
            sequence_output, _ = outputs
1188
1189
        sequence_output = self.dropout(sequence_output)
        logits = self.classifier(sequence_output)
1190
1191
1192

        if labels is not None:
            loss_fct = CrossEntropyLoss()
1193
1194
1195
1196
1197
1198
1199
1200
            # Only keep active parts of the loss
            if attention_mask is not None:
                active_loss = attention_mask.view(-1) == 1
                active_logits = logits.view(-1, self.num_labels)[active_loss]
                active_labels = labels.view(-1)[active_loss]
                loss = loss_fct(active_logits, active_labels)
            else:
                loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
1201
            return loss
1202
1203
1204
        elif self.output_attentions:
            return all_attentions, logits
        return logits
thomwolf's avatar
thomwolf committed
1205
1206


thomwolf's avatar
thomwolf committed
1207
class BertForQuestionAnswering(BertPreTrainedModel):
thomwolf's avatar
thomwolf committed
1208
1209
1210
1211
1212
    """BERT model for Question Answering (span extraction).
    This module is composed of the BERT model with a linear layer on top of
    the sequence output that computes start_logits and end_logits

    Params:
1213
        `config`: a BertConfig class instance with the configuration to build a new model.
thomwolf's avatar
thomwolf committed
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237

    Inputs:
        `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length]
            with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts
            `extract_features.py`, `run_classifier.py` and `run_squad.py`)
        `token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token
            types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to
            a `sentence B` token (see BERT paper for more details).
        `attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices
            selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
            input sequence length in the current batch. It's the mask that we typically use for attention when
            a batch has varying length sentences.
        `start_positions`: position of the first token for the labeled span: torch.LongTensor of shape [batch_size].
            Positions are clamped to the length of the sequence and position outside of the sequence are not taken
            into account for computing the loss.
        `end_positions`: position of the last token for the labeled span: torch.LongTensor of shape [batch_size].
            Positions are clamped to the length of the sequence and position outside of the sequence are not taken
            into account for computing the loss.

    Outputs:
        if `start_positions` and `end_positions` are not `None`:
            Outputs the total_loss which is the sum of the CrossEntropy loss for the start and end token positions.
        if `start_positions` or `end_positions` is `None`:
            Outputs a tuple of start_logits, end_logits which are the logits respectively for the start and end
1238
            position tokens of shape [batch_size, sequence_length].
thomwolf's avatar
thomwolf committed
1239
1240
1241
1242
1243
1244

    Example usage:
    ```python
    # Already been converted into WordPiece token ids
    input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
    input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
thomwolf's avatar
thomwolf committed
1245
    token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])
thomwolf's avatar
thomwolf committed
1246

thomwolf's avatar
thomwolf committed
1247
1248
    config = BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
        num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)
thomwolf's avatar
thomwolf committed
1249
1250
1251
1252
1253

    model = BertForQuestionAnswering(config)
    start_logits, end_logits = model(input_ids, token_type_ids, input_mask)
    ```
    """
1254
    def __init__(self, config, output_attentions=False):
thomwolf's avatar
thomwolf committed
1255
        super(BertForQuestionAnswering, self).__init__(config)
1256
1257
        self.output_attentions = output_attentions
        self.bert = BertModel(config, output_attentions=output_attentions)
thomwolf's avatar
thomwolf committed
1258
1259
1260
1261
        self.qa_outputs = nn.Linear(config.hidden_size, 2)
        self.apply(self.init_bert_weights)

    def forward(self, input_ids, token_type_ids=None, attention_mask=None, start_positions=None, end_positions=None):
1262
1263
1264
1265
1266
        outputs = self.bert(input_ids, token_type_ids, attention_mask, output_all_encoded_layers=False)
        if self.output_attentions:
            all_attentions, sequence_output, _ = outputs
        else:
            sequence_output, _ = outputs
thomwolf's avatar
thomwolf committed
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
        logits = self.qa_outputs(sequence_output)
        start_logits, end_logits = logits.split(1, dim=-1)
        start_logits = start_logits.squeeze(-1)
        end_logits = end_logits.squeeze(-1)

        if start_positions is not None and end_positions is not None:
            # If we are on multi-GPU, split add a dimension
            if len(start_positions.size()) > 1:
                start_positions = start_positions.squeeze(-1)
            if len(end_positions.size()) > 1:
                end_positions = end_positions.squeeze(-1)
            # sometimes the start/end positions are outside our model inputs, we ignore these terms
            ignored_index = start_logits.size(1)
            start_positions.clamp_(0, ignored_index)
            end_positions.clamp_(0, ignored_index)

            loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
            start_loss = loss_fct(start_logits, start_positions)
            end_loss = loss_fct(end_logits, end_positions)
            total_loss = (start_loss + end_loss) / 2
            return total_loss
1288
1289
1290
        elif self.output_attentions:
            return all_attentions, start_logits, end_logits
        return start_logits, end_logits