test_modeling_auto.py 15.9 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
# coding=utf-8
Sylvain Gugger's avatar
Sylvain Gugger committed
2
# Copyright 2020 The HuggingFace Team. All rights reserved.
thomwolf's avatar
thomwolf committed
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

16
import copy
17
import os
18
import tempfile
Aymeric Augustin's avatar
Aymeric Augustin committed
19
import unittest
thomwolf's avatar
thomwolf committed
20

21
22
from transformers import BertConfig, is_torch_available
from transformers.models.auto.configuration_auto import CONFIG_MAPPING
23
from transformers.testing_utils import (
24
    DUMMY_UNKNOWN_IDENTIFIER,
25
26
27
28
29
    SMALL_MODEL_IDENTIFIER,
    require_scatter,
    require_torch,
    slow,
)
Aymeric Augustin's avatar
Aymeric Augustin committed
30

31
32
from .test_modeling_bert import BertModelTester

33

34
if is_torch_available():
35
36
    import torch

37
38
39
    from transformers import (
        AutoConfig,
        AutoModel,
40
41
        AutoModelForCausalLM,
        AutoModelForMaskedLM,
42
43
        AutoModelForPreTraining,
        AutoModelForQuestionAnswering,
44
        AutoModelForSeq2SeqLM,
45
        AutoModelForSequenceClassification,
46
        AutoModelForTableQuestionAnswering,
47
        AutoModelForTokenClassification,
48
49
50
51
52
        AutoModelWithLMHead,
        BertForMaskedLM,
        BertForPreTraining,
        BertForQuestionAnswering,
        BertForSequenceClassification,
53
        BertForTokenClassification,
54
        BertModel,
55
56
        FunnelBaseModel,
        FunnelModel,
57
58
        GPT2Config,
        GPT2LMHeadModel,
59
        PreTrainedModel,
60
61
62
        RobertaForMaskedLM,
        T5Config,
        T5ForConditionalGeneration,
63
64
        TapasConfig,
        TapasForQuestionAnswering,
65
    )
Sylvain Gugger's avatar
Sylvain Gugger committed
66
    from transformers.models.auto.modeling_auto import (
67
68
        MODEL_FOR_CAUSAL_LM_MAPPING,
        MODEL_FOR_MASKED_LM_MAPPING,
Lysandre's avatar
Lysandre committed
69
70
        MODEL_FOR_PRETRAINING_MAPPING,
        MODEL_FOR_QUESTION_ANSWERING_MAPPING,
71
        MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
Lysandre's avatar
Lysandre committed
72
        MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
73
        MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING,
Lysandre's avatar
Lysandre committed
74
        MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
75
        MODEL_MAPPING,
Lysandre's avatar
Lysandre committed
76
77
        MODEL_WITH_LM_HEAD_MAPPING,
    )
Sylvain Gugger's avatar
Sylvain Gugger committed
78
79
80
    from transformers.models.bert.modeling_bert import BERT_PRETRAINED_MODEL_ARCHIVE_LIST
    from transformers.models.gpt2.modeling_gpt2 import GPT2_PRETRAINED_MODEL_ARCHIVE_LIST
    from transformers.models.t5.modeling_t5 import T5_PRETRAINED_MODEL_ARCHIVE_LIST
81
    from transformers.models.tapas.modeling_tapas import TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST
thomwolf's avatar
thomwolf committed
82
83


84
85
86
87
class NewModelConfig(BertConfig):
    model_type = "new-model"


88
89
if is_torch_available():

90
91
92
    class NewModel(BertModel):
        config_class = NewModelConfig

93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
    class FakeModel(PreTrainedModel):
        config_class = BertConfig
        base_model_prefix = "fake"

        def __init__(self, config):
            super().__init__(config)
            self.linear = torch.nn.Linear(config.hidden_size, config.hidden_size)

        def forward(self, x):
            return self.linear(x)

        def _init_weights(self, module):
            pass


# Make sure this is synchronized with the model above.
FAKE_MODEL_CODE = """
import torch
from transformers import BertConfig, PreTrainedModel

class FakeModel(PreTrainedModel):
    config_class = BertConfig
    base_model_prefix = "fake"

    def __init__(self, config):
        super().__init__(config)
        self.linear = torch.nn.Linear(config.hidden_size, config.hidden_size)

    def forward(self, x):
        return self.linear(x)

    def _init_weights(self, module):
        pass
"""


129
@require_torch
thomwolf's avatar
thomwolf committed
130
class AutoModelTest(unittest.TestCase):
131
    @slow
thomwolf's avatar
thomwolf committed
132
    def test_model_from_pretrained(self):
133
        for model_name in BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
thomwolf's avatar
thomwolf committed
134
135
136
137
138
139
140
141
            config = AutoConfig.from_pretrained(model_name)
            self.assertIsNotNone(config)
            self.assertIsInstance(config, BertConfig)

            model = AutoModel.from_pretrained(model_name)
            model, loading_info = AutoModel.from_pretrained(model_name, output_loading_info=True)
            self.assertIsNotNone(model)
            self.assertIsInstance(model, BertModel)
Lysandre Debut's avatar
Lysandre Debut committed
142
143
144
145
146

            self.assertEqual(len(loading_info["missing_keys"]), 0)
            self.assertEqual(len(loading_info["unexpected_keys"]), 8)
            self.assertEqual(len(loading_info["mismatched_keys"]), 0)
            self.assertEqual(len(loading_info["error_msgs"]), 0)
thomwolf's avatar
thomwolf committed
147

thomwolf's avatar
thomwolf committed
148
149
    @slow
    def test_model_for_pretraining_from_pretrained(self):
150
        for model_name in BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
thomwolf's avatar
thomwolf committed
151
152
153
154
155
156
157
158
            config = AutoConfig.from_pretrained(model_name)
            self.assertIsNotNone(config)
            self.assertIsInstance(config, BertConfig)

            model = AutoModelForPreTraining.from_pretrained(model_name)
            model, loading_info = AutoModelForPreTraining.from_pretrained(model_name, output_loading_info=True)
            self.assertIsNotNone(model)
            self.assertIsInstance(model, BertForPreTraining)
159
160
161
            # Only one value should not be initialized and in the missing keys.
            missing_keys = loading_info.pop("missing_keys")
            self.assertListEqual(["cls.predictions.decoder.bias"], missing_keys)
162
            for key, value in loading_info.items():
163
                self.assertEqual(len(value), 0)
thomwolf's avatar
thomwolf committed
164

165
    @slow
LysandreJik's avatar
LysandreJik committed
166
    def test_lmhead_model_from_pretrained(self):
167
        for model_name in BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
LysandreJik's avatar
LysandreJik committed
168
169
170
171
172
173
174
175
176
            config = AutoConfig.from_pretrained(model_name)
            self.assertIsNotNone(config)
            self.assertIsInstance(config, BertConfig)

            model = AutoModelWithLMHead.from_pretrained(model_name)
            model, loading_info = AutoModelWithLMHead.from_pretrained(model_name, output_loading_info=True)
            self.assertIsNotNone(model)
            self.assertIsInstance(model, BertForMaskedLM)

177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
    @slow
    def test_model_for_causal_lm(self):
        for model_name in GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
            config = AutoConfig.from_pretrained(model_name)
            self.assertIsNotNone(config)
            self.assertIsInstance(config, GPT2Config)

            model = AutoModelForCausalLM.from_pretrained(model_name)
            model, loading_info = AutoModelForCausalLM.from_pretrained(model_name, output_loading_info=True)
            self.assertIsNotNone(model)
            self.assertIsInstance(model, GPT2LMHeadModel)

    @slow
    def test_model_for_masked_lm(self):
        for model_name in BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
            config = AutoConfig.from_pretrained(model_name)
            self.assertIsNotNone(config)
            self.assertIsInstance(config, BertConfig)

            model = AutoModelForMaskedLM.from_pretrained(model_name)
            model, loading_info = AutoModelForMaskedLM.from_pretrained(model_name, output_loading_info=True)
            self.assertIsNotNone(model)
            self.assertIsInstance(model, BertForMaskedLM)

    @slow
    def test_model_for_encoder_decoder_lm(self):
        for model_name in T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
            config = AutoConfig.from_pretrained(model_name)
            self.assertIsNotNone(config)
            self.assertIsInstance(config, T5Config)

            model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
            model, loading_info = AutoModelForSeq2SeqLM.from_pretrained(model_name, output_loading_info=True)
            self.assertIsNotNone(model)
            self.assertIsInstance(model, T5ForConditionalGeneration)

213
    @slow
LysandreJik's avatar
LysandreJik committed
214
    def test_sequence_classification_model_from_pretrained(self):
215
        for model_name in BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
LysandreJik's avatar
LysandreJik committed
216
217
218
219
220
            config = AutoConfig.from_pretrained(model_name)
            self.assertIsNotNone(config)
            self.assertIsInstance(config, BertConfig)

            model = AutoModelForSequenceClassification.from_pretrained(model_name)
221
222
223
            model, loading_info = AutoModelForSequenceClassification.from_pretrained(
                model_name, output_loading_info=True
            )
LysandreJik's avatar
LysandreJik committed
224
225
226
            self.assertIsNotNone(model)
            self.assertIsInstance(model, BertForSequenceClassification)

227
    @slow
LysandreJik's avatar
LysandreJik committed
228
    def test_question_answering_model_from_pretrained(self):
229
        for model_name in BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
LysandreJik's avatar
LysandreJik committed
230
231
232
233
234
235
236
237
238
            config = AutoConfig.from_pretrained(model_name)
            self.assertIsNotNone(config)
            self.assertIsInstance(config, BertConfig)

            model = AutoModelForQuestionAnswering.from_pretrained(model_name)
            model, loading_info = AutoModelForQuestionAnswering.from_pretrained(model_name, output_loading_info=True)
            self.assertIsNotNone(model)
            self.assertIsInstance(model, BertForQuestionAnswering)

239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
    @slow
    @require_scatter
    def test_table_question_answering_model_from_pretrained(self):
        for model_name in TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST[5:6]:
            config = AutoConfig.from_pretrained(model_name)
            self.assertIsNotNone(config)
            self.assertIsInstance(config, TapasConfig)

            model = AutoModelForTableQuestionAnswering.from_pretrained(model_name)
            model, loading_info = AutoModelForTableQuestionAnswering.from_pretrained(
                model_name, output_loading_info=True
            )
            self.assertIsNotNone(model)
            self.assertIsInstance(model, TapasForQuestionAnswering)

254
255
    @slow
    def test_token_classification_model_from_pretrained(self):
256
        for model_name in BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
257
258
259
260
261
262
263
264
265
            config = AutoConfig.from_pretrained(model_name)
            self.assertIsNotNone(config)
            self.assertIsInstance(config, BertConfig)

            model = AutoModelForTokenClassification.from_pretrained(model_name)
            model, loading_info = AutoModelForTokenClassification.from_pretrained(model_name, output_loading_info=True)
            self.assertIsNotNone(model)
            self.assertIsInstance(model, BertForTokenClassification)

Julien Chaumond's avatar
Julien Chaumond committed
266
267
268
    def test_from_pretrained_identifier(self):
        model = AutoModelWithLMHead.from_pretrained(SMALL_MODEL_IDENTIFIER)
        self.assertIsInstance(model, BertForMaskedLM)
269
270
        self.assertEqual(model.num_parameters(), 14410)
        self.assertEqual(model.num_parameters(only_trainable=True), 14410)
Julien Chaumond's avatar
Julien Chaumond committed
271
272

    def test_from_identifier_from_model_type(self):
273
        model = AutoModelWithLMHead.from_pretrained(DUMMY_UNKNOWN_IDENTIFIER)
Julien Chaumond's avatar
Julien Chaumond committed
274
        self.assertIsInstance(model, RobertaForMaskedLM)
275
276
        self.assertEqual(model.num_parameters(), 14410)
        self.assertEqual(model.num_parameters(only_trainable=True), 14410)
Lysandre's avatar
Lysandre committed
277

278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
    def test_from_pretrained_with_tuple_values(self):
        # For the auto model mapping, FunnelConfig has two models: FunnelModel and FunnelBaseModel
        model = AutoModel.from_pretrained("sgugger/funnel-random-tiny")
        self.assertIsInstance(model, FunnelModel)

        config = copy.deepcopy(model.config)
        config.architectures = ["FunnelBaseModel"]
        model = AutoModel.from_config(config)
        self.assertIsInstance(model, FunnelBaseModel)

        with tempfile.TemporaryDirectory() as tmp_dir:
            model.save_pretrained(tmp_dir)
            model = AutoModel.from_pretrained(tmp_dir)
            self.assertIsInstance(model, FunnelBaseModel)

Lysandre's avatar
Lysandre committed
293
294
295
296
297
298
299
300
    def test_parents_and_children_in_mappings(self):
        # Test that the children are placed before the parents in the mappings, as the `instanceof` will be triggered
        # by the parents and will return the wrong configuration type when using auto models

        mappings = (
            MODEL_MAPPING,
            MODEL_FOR_PRETRAINING_MAPPING,
            MODEL_FOR_QUESTION_ANSWERING_MAPPING,
301
            MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING,
Lysandre's avatar
Lysandre committed
302
303
304
            MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
            MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
            MODEL_WITH_LM_HEAD_MAPPING,
305
306
307
            MODEL_FOR_CAUSAL_LM_MAPPING,
            MODEL_FOR_MASKED_LM_MAPPING,
            MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
Lysandre's avatar
Lysandre committed
308
309
310
311
312
313
        )

        for mapping in mappings:
            mapping = tuple(mapping.items())
            for index, (child_config, child_model) in enumerate(mapping[1:]):
                for parent_config, parent_model in mapping[: index + 1]:
Sam Shleifer's avatar
Sam Shleifer committed
314
315
                    assert not issubclass(
                        child_config, parent_config
Lysandre Debut's avatar
Lysandre Debut committed
316
                    ), f"{child_config.__name__} is child of {parent_config.__name__}"
317
318
319
320
321
322
323
324
325

                    # Tuplify child_model and parent_model since some of them could be tuples.
                    if not isinstance(child_model, (list, tuple)):
                        child_model = (child_model,)
                    if not isinstance(parent_model, (list, tuple)):
                        parent_model = (parent_model,)

                    for child, parent in [(a, b) for a in child_model for b in parent_model]:
                        assert not issubclass(child, parent), f"{child.__name__} is child of {parent.__name__}"
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341

    def test_from_pretrained_dynamic_model(self):
        config = BertConfig(
            vocab_size=99, hidden_size=32, num_hidden_layers=5, num_attention_heads=4, intermediate_size=37
        )
        config.auto_map = {"AutoModel": "modeling.FakeModel"}
        model = FakeModel(config)

        with tempfile.TemporaryDirectory() as tmp_dir:
            model.save_pretrained(tmp_dir)
            with open(os.path.join(tmp_dir, "modeling.py"), "w") as f:
                f.write(FAKE_MODEL_CODE)

            new_model = AutoModel.from_pretrained(tmp_dir, trust_remote_code=True)
            for p1, p2 in zip(model.parameters(), new_model.parameters()):
                self.assertTrue(torch.equal(p1, p2))
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391

    def test_new_model_registration(self):
        AutoConfig.register("new-model", NewModelConfig)

        auto_classes = [
            AutoModel,
            AutoModelForCausalLM,
            AutoModelForMaskedLM,
            AutoModelForPreTraining,
            AutoModelForQuestionAnswering,
            AutoModelForSequenceClassification,
            AutoModelForTokenClassification,
        ]

        try:
            for auto_class in auto_classes:
                with self.subTest(auto_class.__name__):
                    # Wrong config class will raise an error
                    with self.assertRaises(ValueError):
                        auto_class.register(BertConfig, NewModel)
                    auto_class.register(NewModelConfig, NewModel)
                    # Trying to register something existing in the Transformers library will raise an error
                    with self.assertRaises(ValueError):
                        auto_class.register(BertConfig, BertModel)

                    # Now that the config is registered, it can be used as any other config with the auto-API
                    tiny_config = BertModelTester(self).get_config()
                    config = NewModelConfig(**tiny_config.to_dict())
                    model = auto_class.from_config(config)
                    self.assertIsInstance(model, NewModel)

                    with tempfile.TemporaryDirectory() as tmp_dir:
                        model.save_pretrained(tmp_dir)
                        new_model = auto_class.from_pretrained(tmp_dir)
                        self.assertIsInstance(new_model, NewModel)

        finally:
            if "new-model" in CONFIG_MAPPING._extra_content:
                del CONFIG_MAPPING._extra_content["new-model"]
            for mapping in (
                MODEL_MAPPING,
                MODEL_FOR_PRETRAINING_MAPPING,
                MODEL_FOR_QUESTION_ANSWERING_MAPPING,
                MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
                MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
                MODEL_FOR_CAUSAL_LM_MAPPING,
                MODEL_FOR_MASKED_LM_MAPPING,
            ):
                if NewModelConfig in mapping._extra_content:
                    del mapping._extra_content[NewModelConfig]