test_modeling_auto.py 13.4 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
# coding=utf-8
Sylvain Gugger's avatar
Sylvain Gugger committed
2
# Copyright 2020 The HuggingFace Team. All rights reserved.
thomwolf's avatar
thomwolf committed
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

16
import copy
17
import os
18
import tempfile
Aymeric Augustin's avatar
Aymeric Augustin committed
19
import unittest
thomwolf's avatar
thomwolf committed
20

21
from transformers import is_torch_available
22
23
24
25
26
27
28
from transformers.testing_utils import (
    DUMMY_UNKWOWN_IDENTIFIER,
    SMALL_MODEL_IDENTIFIER,
    require_scatter,
    require_torch,
    slow,
)
Aymeric Augustin's avatar
Aymeric Augustin committed
29

30

31
if is_torch_available():
32
33
    import torch

34
35
36
    from transformers import (
        AutoConfig,
        AutoModel,
37
38
        AutoModelForCausalLM,
        AutoModelForMaskedLM,
39
40
        AutoModelForPreTraining,
        AutoModelForQuestionAnswering,
41
        AutoModelForSeq2SeqLM,
42
        AutoModelForSequenceClassification,
43
        AutoModelForTableQuestionAnswering,
44
        AutoModelForTokenClassification,
45
46
47
48
49
50
        AutoModelWithLMHead,
        BertConfig,
        BertForMaskedLM,
        BertForPreTraining,
        BertForQuestionAnswering,
        BertForSequenceClassification,
51
        BertForTokenClassification,
52
        BertModel,
53
54
        FunnelBaseModel,
        FunnelModel,
55
56
        GPT2Config,
        GPT2LMHeadModel,
57
        PreTrainedModel,
58
59
60
        RobertaForMaskedLM,
        T5Config,
        T5ForConditionalGeneration,
61
62
        TapasConfig,
        TapasForQuestionAnswering,
63
    )
Sylvain Gugger's avatar
Sylvain Gugger committed
64
    from transformers.models.auto.modeling_auto import (
65
66
        MODEL_FOR_CAUSAL_LM_MAPPING,
        MODEL_FOR_MASKED_LM_MAPPING,
Lysandre's avatar
Lysandre committed
67
68
        MODEL_FOR_PRETRAINING_MAPPING,
        MODEL_FOR_QUESTION_ANSWERING_MAPPING,
69
        MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
Lysandre's avatar
Lysandre committed
70
        MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
71
        MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING,
Lysandre's avatar
Lysandre committed
72
        MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
73
        MODEL_MAPPING,
Lysandre's avatar
Lysandre committed
74
75
        MODEL_WITH_LM_HEAD_MAPPING,
    )
Sylvain Gugger's avatar
Sylvain Gugger committed
76
77
78
    from transformers.models.bert.modeling_bert import BERT_PRETRAINED_MODEL_ARCHIVE_LIST
    from transformers.models.gpt2.modeling_gpt2 import GPT2_PRETRAINED_MODEL_ARCHIVE_LIST
    from transformers.models.t5.modeling_t5 import T5_PRETRAINED_MODEL_ARCHIVE_LIST
79
    from transformers.models.tapas.modeling_tapas import TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST
thomwolf's avatar
thomwolf committed
80
81


82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
if is_torch_available():

    class FakeModel(PreTrainedModel):
        config_class = BertConfig
        base_model_prefix = "fake"

        def __init__(self, config):
            super().__init__(config)
            self.linear = torch.nn.Linear(config.hidden_size, config.hidden_size)

        def forward(self, x):
            return self.linear(x)

        def _init_weights(self, module):
            pass


# Make sure this is synchronized with the model above.
FAKE_MODEL_CODE = """
import torch
from transformers import BertConfig, PreTrainedModel

class FakeModel(PreTrainedModel):
    config_class = BertConfig
    base_model_prefix = "fake"

    def __init__(self, config):
        super().__init__(config)
        self.linear = torch.nn.Linear(config.hidden_size, config.hidden_size)

    def forward(self, x):
        return self.linear(x)

    def _init_weights(self, module):
        pass
"""


120
@require_torch
thomwolf's avatar
thomwolf committed
121
class AutoModelTest(unittest.TestCase):
122
    @slow
thomwolf's avatar
thomwolf committed
123
    def test_model_from_pretrained(self):
124
        for model_name in BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
thomwolf's avatar
thomwolf committed
125
126
127
128
129
130
131
132
            config = AutoConfig.from_pretrained(model_name)
            self.assertIsNotNone(config)
            self.assertIsInstance(config, BertConfig)

            model = AutoModel.from_pretrained(model_name)
            model, loading_info = AutoModel.from_pretrained(model_name, output_loading_info=True)
            self.assertIsNotNone(model)
            self.assertIsInstance(model, BertModel)
Lysandre Debut's avatar
Lysandre Debut committed
133
134
135
136
137

            self.assertEqual(len(loading_info["missing_keys"]), 0)
            self.assertEqual(len(loading_info["unexpected_keys"]), 8)
            self.assertEqual(len(loading_info["mismatched_keys"]), 0)
            self.assertEqual(len(loading_info["error_msgs"]), 0)
thomwolf's avatar
thomwolf committed
138

thomwolf's avatar
thomwolf committed
139
140
    @slow
    def test_model_for_pretraining_from_pretrained(self):
141
        for model_name in BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
thomwolf's avatar
thomwolf committed
142
143
144
145
146
147
148
149
            config = AutoConfig.from_pretrained(model_name)
            self.assertIsNotNone(config)
            self.assertIsInstance(config, BertConfig)

            model = AutoModelForPreTraining.from_pretrained(model_name)
            model, loading_info = AutoModelForPreTraining.from_pretrained(model_name, output_loading_info=True)
            self.assertIsNotNone(model)
            self.assertIsInstance(model, BertForPreTraining)
150
151
152
            # Only one value should not be initialized and in the missing keys.
            missing_keys = loading_info.pop("missing_keys")
            self.assertListEqual(["cls.predictions.decoder.bias"], missing_keys)
153
            for key, value in loading_info.items():
154
                self.assertEqual(len(value), 0)
thomwolf's avatar
thomwolf committed
155

156
    @slow
LysandreJik's avatar
LysandreJik committed
157
    def test_lmhead_model_from_pretrained(self):
158
        for model_name in BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
LysandreJik's avatar
LysandreJik committed
159
160
161
162
163
164
165
166
167
            config = AutoConfig.from_pretrained(model_name)
            self.assertIsNotNone(config)
            self.assertIsInstance(config, BertConfig)

            model = AutoModelWithLMHead.from_pretrained(model_name)
            model, loading_info = AutoModelWithLMHead.from_pretrained(model_name, output_loading_info=True)
            self.assertIsNotNone(model)
            self.assertIsInstance(model, BertForMaskedLM)

168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
    @slow
    def test_model_for_causal_lm(self):
        for model_name in GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
            config = AutoConfig.from_pretrained(model_name)
            self.assertIsNotNone(config)
            self.assertIsInstance(config, GPT2Config)

            model = AutoModelForCausalLM.from_pretrained(model_name)
            model, loading_info = AutoModelForCausalLM.from_pretrained(model_name, output_loading_info=True)
            self.assertIsNotNone(model)
            self.assertIsInstance(model, GPT2LMHeadModel)

    @slow
    def test_model_for_masked_lm(self):
        for model_name in BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
            config = AutoConfig.from_pretrained(model_name)
            self.assertIsNotNone(config)
            self.assertIsInstance(config, BertConfig)

            model = AutoModelForMaskedLM.from_pretrained(model_name)
            model, loading_info = AutoModelForMaskedLM.from_pretrained(model_name, output_loading_info=True)
            self.assertIsNotNone(model)
            self.assertIsInstance(model, BertForMaskedLM)

    @slow
    def test_model_for_encoder_decoder_lm(self):
        for model_name in T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
            config = AutoConfig.from_pretrained(model_name)
            self.assertIsNotNone(config)
            self.assertIsInstance(config, T5Config)

            model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
            model, loading_info = AutoModelForSeq2SeqLM.from_pretrained(model_name, output_loading_info=True)
            self.assertIsNotNone(model)
            self.assertIsInstance(model, T5ForConditionalGeneration)

204
    @slow
LysandreJik's avatar
LysandreJik committed
205
    def test_sequence_classification_model_from_pretrained(self):
206
        for model_name in BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
LysandreJik's avatar
LysandreJik committed
207
208
209
210
211
            config = AutoConfig.from_pretrained(model_name)
            self.assertIsNotNone(config)
            self.assertIsInstance(config, BertConfig)

            model = AutoModelForSequenceClassification.from_pretrained(model_name)
212
213
214
            model, loading_info = AutoModelForSequenceClassification.from_pretrained(
                model_name, output_loading_info=True
            )
LysandreJik's avatar
LysandreJik committed
215
216
217
            self.assertIsNotNone(model)
            self.assertIsInstance(model, BertForSequenceClassification)

218
    @slow
LysandreJik's avatar
LysandreJik committed
219
    def test_question_answering_model_from_pretrained(self):
220
        for model_name in BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
LysandreJik's avatar
LysandreJik committed
221
222
223
224
225
226
227
228
229
            config = AutoConfig.from_pretrained(model_name)
            self.assertIsNotNone(config)
            self.assertIsInstance(config, BertConfig)

            model = AutoModelForQuestionAnswering.from_pretrained(model_name)
            model, loading_info = AutoModelForQuestionAnswering.from_pretrained(model_name, output_loading_info=True)
            self.assertIsNotNone(model)
            self.assertIsInstance(model, BertForQuestionAnswering)

230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
    @slow
    @require_scatter
    def test_table_question_answering_model_from_pretrained(self):
        for model_name in TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST[5:6]:
            config = AutoConfig.from_pretrained(model_name)
            self.assertIsNotNone(config)
            self.assertIsInstance(config, TapasConfig)

            model = AutoModelForTableQuestionAnswering.from_pretrained(model_name)
            model, loading_info = AutoModelForTableQuestionAnswering.from_pretrained(
                model_name, output_loading_info=True
            )
            self.assertIsNotNone(model)
            self.assertIsInstance(model, TapasForQuestionAnswering)

245
246
    @slow
    def test_token_classification_model_from_pretrained(self):
247
        for model_name in BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
248
249
250
251
252
253
254
255
256
            config = AutoConfig.from_pretrained(model_name)
            self.assertIsNotNone(config)
            self.assertIsInstance(config, BertConfig)

            model = AutoModelForTokenClassification.from_pretrained(model_name)
            model, loading_info = AutoModelForTokenClassification.from_pretrained(model_name, output_loading_info=True)
            self.assertIsNotNone(model)
            self.assertIsInstance(model, BertForTokenClassification)

Julien Chaumond's avatar
Julien Chaumond committed
257
258
259
    def test_from_pretrained_identifier(self):
        model = AutoModelWithLMHead.from_pretrained(SMALL_MODEL_IDENTIFIER)
        self.assertIsInstance(model, BertForMaskedLM)
260
261
        self.assertEqual(model.num_parameters(), 14410)
        self.assertEqual(model.num_parameters(only_trainable=True), 14410)
Julien Chaumond's avatar
Julien Chaumond committed
262
263
264
265

    def test_from_identifier_from_model_type(self):
        model = AutoModelWithLMHead.from_pretrained(DUMMY_UNKWOWN_IDENTIFIER)
        self.assertIsInstance(model, RobertaForMaskedLM)
266
267
        self.assertEqual(model.num_parameters(), 14410)
        self.assertEqual(model.num_parameters(only_trainable=True), 14410)
Lysandre's avatar
Lysandre committed
268

269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
    def test_from_pretrained_with_tuple_values(self):
        # For the auto model mapping, FunnelConfig has two models: FunnelModel and FunnelBaseModel
        model = AutoModel.from_pretrained("sgugger/funnel-random-tiny")
        self.assertIsInstance(model, FunnelModel)

        config = copy.deepcopy(model.config)
        config.architectures = ["FunnelBaseModel"]
        model = AutoModel.from_config(config)
        self.assertIsInstance(model, FunnelBaseModel)

        with tempfile.TemporaryDirectory() as tmp_dir:
            model.save_pretrained(tmp_dir)
            model = AutoModel.from_pretrained(tmp_dir)
            self.assertIsInstance(model, FunnelBaseModel)

Lysandre's avatar
Lysandre committed
284
285
286
287
288
289
290
291
    def test_parents_and_children_in_mappings(self):
        # Test that the children are placed before the parents in the mappings, as the `instanceof` will be triggered
        # by the parents and will return the wrong configuration type when using auto models

        mappings = (
            MODEL_MAPPING,
            MODEL_FOR_PRETRAINING_MAPPING,
            MODEL_FOR_QUESTION_ANSWERING_MAPPING,
292
            MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING,
Lysandre's avatar
Lysandre committed
293
294
295
            MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
            MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
            MODEL_WITH_LM_HEAD_MAPPING,
296
297
298
            MODEL_FOR_CAUSAL_LM_MAPPING,
            MODEL_FOR_MASKED_LM_MAPPING,
            MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
Lysandre's avatar
Lysandre committed
299
300
301
302
303
304
        )

        for mapping in mappings:
            mapping = tuple(mapping.items())
            for index, (child_config, child_model) in enumerate(mapping[1:]):
                for parent_config, parent_model in mapping[: index + 1]:
Sam Shleifer's avatar
Sam Shleifer committed
305
306
                    assert not issubclass(
                        child_config, parent_config
Lysandre Debut's avatar
Lysandre Debut committed
307
                    ), f"{child_config.__name__} is child of {parent_config.__name__}"
308
309
310
311
312
313
314
315
316

                    # Tuplify child_model and parent_model since some of them could be tuples.
                    if not isinstance(child_model, (list, tuple)):
                        child_model = (child_model,)
                    if not isinstance(parent_model, (list, tuple)):
                        parent_model = (parent_model,)

                    for child, parent in [(a, b) for a in child_model for b in parent_model]:
                        assert not issubclass(child, parent), f"{child.__name__} is child of {parent.__name__}"
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332

    def test_from_pretrained_dynamic_model(self):
        config = BertConfig(
            vocab_size=99, hidden_size=32, num_hidden_layers=5, num_attention_heads=4, intermediate_size=37
        )
        config.auto_map = {"AutoModel": "modeling.FakeModel"}
        model = FakeModel(config)

        with tempfile.TemporaryDirectory() as tmp_dir:
            model.save_pretrained(tmp_dir)
            with open(os.path.join(tmp_dir, "modeling.py"), "w") as f:
                f.write(FAKE_MODEL_CODE)

            new_model = AutoModel.from_pretrained(tmp_dir, trust_remote_code=True)
            for p1, p2 in zip(model.parameters(), new_model.parameters()):
                self.assertTrue(torch.equal(p1, p2))