test_trainer.py 12.1 KB
Newer Older
Julien Chaumond's avatar
Julien Chaumond committed
1
2
import unittest

3
import datasets
Sylvain Gugger's avatar
Sylvain Gugger committed
4
5
import numpy as np

Julien Chaumond's avatar
Julien Chaumond committed
6
from transformers import AutoTokenizer, TrainingArguments, is_torch_available
7
from transformers.testing_utils import get_tests_dir, require_torch
Julien Chaumond's avatar
Julien Chaumond committed
8
9
10
11


if is_torch_available():
    import torch
12
13
    from torch.utils.data import IterableDataset

Julien Chaumond's avatar
Julien Chaumond committed
14
15
16
17
    from transformers import (
        AutoModelForSequenceClassification,
        GlueDataset,
        GlueDataTrainingArguments,
18
19
        LineByLineTextDataset,
        Trainer,
Julien Chaumond's avatar
Julien Chaumond committed
20
21
22
    )


23
PATH_SAMPLE_TEXT = f"{get_tests_dir()}/fixtures/sample_text.txt"
Julien Chaumond's avatar
Julien Chaumond committed
24
25


Sylvain Gugger's avatar
Sylvain Gugger committed
26
27
28
29
30
31
class RegressionDataset:
    def __init__(self, a=2, b=3, length=64, seed=42):
        np.random.seed(seed)
        self.length = length
        self.x = np.random.normal(size=(length,)).astype(np.float32)
        self.y = a * self.x + b + np.random.normal(scale=0.1, size=(length,))
Julien Chaumond's avatar
Julien Chaumond committed
32

Sylvain Gugger's avatar
Sylvain Gugger committed
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
    def __len__(self):
        return self.length

    def __getitem__(self, i):
        return {"input_x": self.x[i], "label": self.y[i]}


class AlmostAccuracy:
    def __init__(self, thresh=0.25):
        self.thresh = thresh

    def __call__(self, eval_pred):
        predictions, labels = eval_pred
        true = np.abs(predictions - labels) <= self.thresh
        return {"accuracy": true.astype(np.float32).mean().item()}
48

Julien Chaumond's avatar
Julien Chaumond committed
49

50
51
52
53
54
55
56
57
58
59
60
61
62
if is_torch_available():

    class SampleIterableDataset(IterableDataset):
        def __init__(self, file_path):
            self.file_path = file_path

        def parse_file(self):
            f = open(self.file_path, "r")
            return f.readlines()

        def __iter__(self):
            return iter(self.parse_file())

Sylvain Gugger's avatar
Sylvain Gugger committed
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
    class RegressionModel(torch.nn.Module):
        def __init__(self, a=0, b=0):
            super().__init__()
            self.a = torch.nn.Parameter(torch.tensor(a).float())
            self.b = torch.nn.Parameter(torch.tensor(b).float())

        def forward(self, input_x=None, labels=None):
            y = input_x * self.a + self.b
            if labels is None:
                return (y,)
            loss = torch.nn.functional.mse_loss(y, labels)
            return (loss, y)

    def get_regression_trainer(a=0, b=0, train_len=64, eval_len=64, **kwargs):
        train_dataset = RegressionDataset(length=train_len)
        eval_dataset = RegressionDataset(length=eval_len)
        model = RegressionModel(a, b)
        compute_metrics = kwargs.pop("compute_metrics", None)
        data_collator = kwargs.pop("data_collator", None)
        optimizers = kwargs.pop("optimizers", (None, None))
        args = TrainingArguments("./regression", **kwargs)
        return Trainer(
            model,
            args,
            data_collator=data_collator,
            train_dataset=train_dataset,
            eval_dataset=eval_dataset,
            compute_metrics=compute_metrics,
            optimizers=optimizers,
        )

94

Julien Chaumond's avatar
Julien Chaumond committed
95
96
@require_torch
class TrainerIntegrationTest(unittest.TestCase):
Sylvain Gugger's avatar
Sylvain Gugger committed
97
98
99
    def setUp(self):
        args = TrainingArguments(".")
        self.n_epochs = args.num_train_epochs
100
101
102
103
104
105
106
107
108
109
110
111
112
113
        self.batch_size = args.train_batch_size
        trainer = get_regression_trainer(learning_rate=0.1)
        trainer.train()
        self.default_trained_model = (trainer.model.a, trainer.model.b)

        trainer = get_regression_trainer(learning_rate=0.1, seed=314)
        trainer.train()
        self.alternate_trained_model = (trainer.model.a, trainer.model.b)

    def check_trained_model(self, model, alternate_seed=False):
        # Checks a training seeded with learning_rate = 0.1
        (a, b) = self.alternate_trained_model if alternate_seed else self.default_trained_model
        self.assertTrue(torch.allclose(model.a, a))
        self.assertTrue(torch.allclose(model.b, b))
Sylvain Gugger's avatar
Sylvain Gugger committed
114
115
116
117
118

    def test_reproducible_training(self):
        # Checks that training worked, model trained and seed made a reproducible training.
        trainer = get_regression_trainer(learning_rate=0.1)
        trainer.train()
Sylvain Gugger's avatar
Sylvain Gugger committed
119
        self.check_trained_model(trainer.model)
Sylvain Gugger's avatar
Sylvain Gugger committed
120
121
122
123

        # Checks that a different seed gets different (reproducible) results.
        trainer = get_regression_trainer(learning_rate=0.1, seed=314)
        trainer.train()
Sylvain Gugger's avatar
Sylvain Gugger committed
124
        self.check_trained_model(trainer.model, alternate_seed=True)
Sylvain Gugger's avatar
Sylvain Gugger committed
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142

    def test_number_of_steps_in_training(self):
        # Regular training has n_epochs * len(train_dl) steps
        trainer = get_regression_trainer(learning_rate=0.1)
        train_output = trainer.train()
        self.assertEqual(train_output.global_step, self.n_epochs * 64 / self.batch_size)

        # Check passing num_train_epochs works (and a float version too):
        trainer = get_regression_trainer(learning_rate=0.1, num_train_epochs=1.5)
        train_output = trainer.train()
        self.assertEqual(train_output.global_step, int(1.5 * 64 / self.batch_size))

        # If we pass a max_steps, num_train_epochs is ignored
        trainer = get_regression_trainer(learning_rate=0.1, max_steps=10)
        train_output = trainer.train()
        self.assertEqual(train_output.global_step, 10)

    def test_train_and_eval_dataloaders(self):
143
        n_gpu = max(1, torch.cuda.device_count())
Sylvain Gugger's avatar
Sylvain Gugger committed
144
        trainer = get_regression_trainer(learning_rate=0.1, per_device_train_batch_size=16)
145
        self.assertEqual(trainer.get_train_dataloader().batch_size, 16 * n_gpu)
Sylvain Gugger's avatar
Sylvain Gugger committed
146
        trainer = get_regression_trainer(learning_rate=0.1, per_device_eval_batch_size=16)
147
        self.assertEqual(trainer.get_eval_dataloader().batch_size, 16 * n_gpu)
Sylvain Gugger's avatar
Sylvain Gugger committed
148
149
150
151
152

        # Check drop_last works
        trainer = get_regression_trainer(
            train_len=66, eval_len=74, learning_rate=0.1, per_device_train_batch_size=16, per_device_eval_batch_size=32
        )
153
154
        self.assertEqual(len(trainer.get_train_dataloader()), 66 // (16 * n_gpu) + 1)
        self.assertEqual(len(trainer.get_eval_dataloader()), 74 // (32 * n_gpu) + 1)
Sylvain Gugger's avatar
Sylvain Gugger committed
155
156
157
158
159
160
161
162
163

        trainer = get_regression_trainer(
            train_len=66,
            eval_len=74,
            learning_rate=0.1,
            per_device_train_batch_size=16,
            per_device_eval_batch_size=32,
            dataloader_drop_last=True,
        )
164
165
        self.assertEqual(len(trainer.get_train_dataloader()), 66 // (16 * n_gpu))
        self.assertEqual(len(trainer.get_eval_dataloader()), 74 // (32 * n_gpu))
Sylvain Gugger's avatar
Sylvain Gugger committed
166

167
        # Check passing a new dataset for evaluation wors
Sylvain Gugger's avatar
Sylvain Gugger committed
168
        new_eval_dataset = RegressionDataset(length=128)
169
        self.assertEqual(len(trainer.get_eval_dataloader(new_eval_dataset)), 128 // (32 * n_gpu))
Sylvain Gugger's avatar
Sylvain Gugger committed
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204

    def test_evaluate(self):
        trainer = get_regression_trainer(a=1.5, b=2.5, compute_metrics=AlmostAccuracy())
        results = trainer.evaluate()

        x, y = trainer.eval_dataset.x, trainer.eval_dataset.y
        pred = 1.5 * x + 2.5
        expected_loss = ((pred - y) ** 2).mean()
        self.assertAlmostEqual(results["eval_loss"], expected_loss)
        expected_acc = AlmostAccuracy()((pred, y))["accuracy"]
        self.assertAlmostEqual(results["eval_accuracy"], expected_acc)

        # With a number of elements not a round multiple of the batch size
        trainer = get_regression_trainer(a=1.5, b=2.5, eval_len=66, compute_metrics=AlmostAccuracy())
        results = trainer.evaluate()

        x, y = trainer.eval_dataset.x, trainer.eval_dataset.y
        pred = 1.5 * x + 2.5
        expected_loss = ((pred - y) ** 2).mean()
        self.assertAlmostEqual(results["eval_loss"], expected_loss)
        expected_acc = AlmostAccuracy()((pred, y))["accuracy"]
        self.assertAlmostEqual(results["eval_accuracy"], expected_acc)

    def test_predict(self):
        trainer = get_regression_trainer(a=1.5, b=2.5)
        preds = trainer.predict(trainer.eval_dataset).predictions
        x = trainer.eval_dataset.x
        self.assertTrue(np.allclose(preds, 1.5 * x + 2.5))

        # With a number of elements not a round multiple of the batch size
        trainer = get_regression_trainer(a=1.5, b=2.5, eval_len=66)
        preds = trainer.predict(trainer.eval_dataset).predictions
        x = trainer.eval_dataset.x
        self.assertTrue(np.allclose(preds, 1.5 * x + 2.5))

205
    def test_trainer_with_datasets(self):
Sylvain Gugger's avatar
Sylvain Gugger committed
206
207
208
        np.random.seed(42)
        x = np.random.normal(size=(64,)).astype(np.float32)
        y = 2.0 * x + 3.0 + np.random.normal(scale=0.1, size=(64,))
209
        train_dataset = datasets.Dataset.from_dict({"input_x": x, "label": y})
Sylvain Gugger's avatar
Sylvain Gugger committed
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226

        # Base training. Should have the same results as test_reproducible_training
        model = RegressionModel()
        args = TrainingArguments("./regression", learning_rate=0.1)
        trainer = Trainer(model, args, train_dataset=train_dataset)
        trainer.train()
        self.check_trained_model(trainer.model)

        # Can return tensors.
        train_dataset.set_format(type="torch")
        model = RegressionModel()
        trainer = Trainer(model, args, train_dataset=train_dataset)
        trainer.train()
        self.check_trained_model(trainer.model)

        # Adding one column not used by the model should have no impact
        z = np.random.normal(size=(64,)).astype(np.float32)
227
        train_dataset = datasets.Dataset.from_dict({"input_x": x, "label": y, "extra": z})
Sylvain Gugger's avatar
Sylvain Gugger committed
228
229
230
231
232
233
234
235
236
237
238
239
240
241
        model = RegressionModel()
        trainer = Trainer(model, args, train_dataset=train_dataset)
        trainer.train()
        self.check_trained_model(trainer.model)

    def test_custom_optimizer(self):
        train_dataset = RegressionDataset()
        args = TrainingArguments("./regression")
        model = RegressionModel()
        optimizer = torch.optim.SGD(model.parameters(), lr=1.0)
        lr_scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda x: 1.0)
        trainer = Trainer(model, args, train_dataset=train_dataset, optimizers=(optimizer, lr_scheduler))
        trainer.train()

242
243
244
        (a, b) = self.default_trained_model
        self.assertFalse(torch.allclose(trainer.model.a, a))
        self.assertFalse(torch.allclose(trainer.model.b, b))
Sylvain Gugger's avatar
Sylvain Gugger committed
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
        self.assertEqual(trainer.optimizer.state_dict()["param_groups"][0]["lr"], 1.0)

    def test_model_init(self):
        train_dataset = RegressionDataset()
        args = TrainingArguments("./regression", learning_rate=0.1)
        trainer = Trainer(args=args, train_dataset=train_dataset, model_init=lambda: RegressionModel())
        trainer.train()
        self.check_trained_model(trainer.model)

        # Re-training should restart from scratch, thus lead the same results.
        trainer.train()
        self.check_trained_model(trainer.model)

        # Re-training should restart from scratch, thus lead the same results and new seed should be used.
        trainer.args.seed = 314
        trainer.train()
        self.check_trained_model(trainer.model, alternate_seed=True)

Julien Chaumond's avatar
Julien Chaumond committed
263
264
265
266
267
    def test_trainer_eval_mrpc(self):
        MODEL_ID = "bert-base-cased-finetuned-mrpc"
        tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
        model = AutoModelForSequenceClassification.from_pretrained(MODEL_ID)
        data_args = GlueDataTrainingArguments(
268
            task_name="mrpc", data_dir=f"{get_tests_dir()}/fixtures/tests_samples/MRPC", overwrite_cache=True
Julien Chaumond's avatar
Julien Chaumond committed
269
        )
270
        eval_dataset = GlueDataset(data_args, tokenizer=tokenizer, mode="dev")
Julien Chaumond's avatar
Julien Chaumond committed
271
272
273
274

        training_args = TrainingArguments(output_dir="./examples", no_cuda=True)
        trainer = Trainer(model=model, args=training_args, eval_dataset=eval_dataset)
        result = trainer.evaluate()
275
        self.assertLess(result["eval_loss"], 0.2)
Julien Chaumond's avatar
Julien Chaumond committed
276
277
278
279
280

    def test_trainer_eval_lm(self):
        MODEL_ID = "distilroberta-base"
        tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
        dataset = LineByLineTextDataset(
Lysandre's avatar
Lysandre committed
281
282
283
            tokenizer=tokenizer,
            file_path=PATH_SAMPLE_TEXT,
            block_size=tokenizer.max_len_single_sentence,
Julien Chaumond's avatar
Julien Chaumond committed
284
285
        )
        self.assertEqual(len(dataset), 31)
286
287
288
289
290
291
292
293
294

    def test_trainer_iterable_dataset(self):
        MODEL_ID = "sshleifer/tiny-distilbert-base-cased"
        model = AutoModelForSequenceClassification.from_pretrained(MODEL_ID)
        train_dataset = SampleIterableDataset(PATH_SAMPLE_TEXT)
        training_args = TrainingArguments(output_dir="./examples", no_cuda=True)
        trainer = Trainer(model=model, args=training_args, train_dataset=train_dataset)
        loader = trainer.get_train_dataloader()
        self.assertIsInstance(loader, torch.utils.data.DataLoader)