test_modeling_xlm.py 18.6 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
# coding=utf-8
Sylvain Gugger's avatar
Sylvain Gugger committed
2
# Copyright 2020 The HuggingFace Team. All rights reserved.
thomwolf's avatar
thomwolf committed
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

16
17
import unittest

18
from transformers import XLMConfig, is_torch_available
19
from transformers.testing_utils import require_torch, slow, torch_device
thomwolf's avatar
thomwolf committed
20

21
from ...generation.test_utils import GenerationTesterMixin
Yih-Dar's avatar
Yih-Dar committed
22
23
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
24
from ...test_pipeline_mixin import PipelineTesterMixin
Aymeric Augustin's avatar
Aymeric Augustin committed
25
26


27
if is_torch_available():
28
    import torch
29

30
    from transformers import (
31
        XLMForMultipleChoice,
32
33
        XLMForQuestionAnswering,
        XLMForQuestionAnsweringSimple,
34
35
36
37
        XLMForSequenceClassification,
        XLMForTokenClassification,
        XLMModel,
        XLMWithLMHeadModel,
38
    )
Sylvain Gugger's avatar
Sylvain Gugger committed
39
    from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST
thomwolf's avatar
thomwolf committed
40
41


42
43
class XLMModelTester:
    def __init__(
Lysandre's avatar
Lysandre committed
44
45
        self,
        parent,
Yih-Dar's avatar
Yih-Dar committed
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
        batch_size=13,
        seq_length=7,
        is_training=True,
        use_input_lengths=True,
        use_token_type_ids=True,
        use_labels=True,
        gelu_activation=True,
        sinusoidal_embeddings=False,
        causal=False,
        asm=False,
        n_langs=2,
        vocab_size=99,
        n_special=0,
        hidden_size=32,
        num_hidden_layers=5,
        num_attention_heads=4,
        hidden_dropout_prob=0.1,
        attention_probs_dropout_prob=0.1,
        max_position_embeddings=512,
        type_sequence_label_size=2,
        initializer_range=0.02,
        num_labels=2,
        num_choices=4,
        summary_type="last",
        use_proj=True,
        scope=None,
        bos_token_id=0,
73
74
    ):
        self.parent = parent
Yih-Dar's avatar
Yih-Dar committed
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
        self.batch_size = batch_size
        self.seq_length = seq_length
        self.is_training = is_training
        self.use_input_lengths = use_input_lengths
        self.use_token_type_ids = use_token_type_ids
        self.use_labels = use_labels
        self.gelu_activation = gelu_activation
        self.sinusoidal_embeddings = sinusoidal_embeddings
        self.causal = causal
        self.asm = asm
        self.n_langs = n_langs
        self.vocab_size = vocab_size
        self.n_special = n_special
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.hidden_dropout_prob = hidden_dropout_prob
        self.attention_probs_dropout_prob = attention_probs_dropout_prob
        self.max_position_embeddings = max_position_embeddings
        self.type_sequence_label_size = type_sequence_label_size
        self.initializer_range = initializer_range
        self.num_labels = num_labels
        self.num_choices = num_choices
        self.summary_type = summary_type
        self.use_proj = use_proj
        self.scope = scope
        self.bos_token_id = bos_token_id
102
103
104

    def prepare_config_and_inputs(self):
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
105
        input_mask = random_attention_mask([self.batch_size, self.seq_length])
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123

        input_lengths = None
        if self.use_input_lengths:
            input_lengths = (
                ids_tensor([self.batch_size], vocab_size=2) + self.seq_length - 2
            )  # small variation of seq_length

        token_type_ids = None
        if self.use_token_type_ids:
            token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.n_langs)

        sequence_labels = None
        token_labels = None
        is_impossible_labels = None
        if self.use_labels:
            sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
            token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
            is_impossible_labels = ids_tensor([self.batch_size], 2).float()
124
            choice_labels = ids_tensor([self.batch_size], self.num_choices)
125

126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
        config = self.get_config()

        return (
            config,
            input_ids,
            token_type_ids,
            input_lengths,
            sequence_labels,
            token_labels,
            is_impossible_labels,
            choice_labels,
            input_mask,
        )

    def get_config(self):
        return XLMConfig(
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
            vocab_size=self.vocab_size,
            n_special=self.n_special,
            emb_dim=self.hidden_size,
            n_layers=self.num_hidden_layers,
            n_heads=self.num_attention_heads,
            dropout=self.hidden_dropout_prob,
            attention_dropout=self.attention_probs_dropout_prob,
            gelu_activation=self.gelu_activation,
            sinusoidal_embeddings=self.sinusoidal_embeddings,
            asm=self.asm,
            causal=self.causal,
            n_langs=self.n_langs,
            max_position_embeddings=self.max_position_embeddings,
            initializer_range=self.initializer_range,
            summary_type=self.summary_type,
            use_proj=self.use_proj,
158
            num_labels=self.num_labels,
159
            bos_token_id=self.bos_token_id,
160
        )
thomwolf's avatar
thomwolf committed
161

162
163
164
165
166
167
168
169
170
    def create_and_check_xlm_model(
        self,
        config,
        input_ids,
        token_type_ids,
        input_lengths,
        sequence_labels,
        token_labels,
        is_impossible_labels,
171
        choice_labels,
172
173
174
175
176
        input_mask,
    ):
        model = XLMModel(config=config)
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
177
178
179
        result = model(input_ids, lengths=input_lengths, langs=token_type_ids)
        result = model(input_ids, langs=token_type_ids)
        result = model(input_ids)
Stas Bekman's avatar
Stas Bekman committed
180
        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
181
182
183
184
185
186
187
188
189
190

    def create_and_check_xlm_lm_head(
        self,
        config,
        input_ids,
        token_type_ids,
        input_lengths,
        sequence_labels,
        token_labels,
        is_impossible_labels,
191
        choice_labels,
192
193
194
195
196
197
        input_mask,
    ):
        model = XLMWithLMHeadModel(config)
        model.to(torch_device)
        model.eval()

Sylvain Gugger's avatar
Sylvain Gugger committed
198
        result = model(input_ids, token_type_ids=token_type_ids, labels=token_labels)
Stas Bekman's avatar
Stas Bekman committed
199
200
        self.parent.assertEqual(result.loss.shape, ())
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
201
202
203
204
205
206
207
208
209
210

    def create_and_check_xlm_simple_qa(
        self,
        config,
        input_ids,
        token_type_ids,
        input_lengths,
        sequence_labels,
        token_labels,
        is_impossible_labels,
211
        choice_labels,
212
213
214
215
216
217
218
219
220
        input_mask,
    ):
        model = XLMForQuestionAnsweringSimple(config)
        model.to(torch_device)
        model.eval()

        outputs = model(input_ids)

        outputs = model(input_ids, start_positions=sequence_labels, end_positions=sequence_labels)
Sylvain Gugger's avatar
Sylvain Gugger committed
221
        result = outputs
Stas Bekman's avatar
Stas Bekman committed
222
223
        self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length))
        self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length))
224
225
226
227
228
229
230
231
232
233

    def create_and_check_xlm_qa(
        self,
        config,
        input_ids,
        token_type_ids,
        input_lengths,
        sequence_labels,
        token_labels,
        is_impossible_labels,
234
        choice_labels,
235
236
237
238
239
240
        input_mask,
    ):
        model = XLMForQuestionAnswering(config)
        model.to(torch_device)
        model.eval()

Sylvain Gugger's avatar
Sylvain Gugger committed
241
        result = model(input_ids)
242

Sylvain Gugger's avatar
Sylvain Gugger committed
243
        result_with_labels = model(
244
            input_ids,
245
246
247
248
249
250
            start_positions=sequence_labels,
            end_positions=sequence_labels,
            cls_index=sequence_labels,
            is_impossible=is_impossible_labels,
            p_mask=input_mask,
        )
thomwolf's avatar
thomwolf committed
251

Sylvain Gugger's avatar
Sylvain Gugger committed
252
        result_with_labels = model(
253
254
255
256
257
258
            input_ids,
            start_positions=sequence_labels,
            end_positions=sequence_labels,
            cls_index=sequence_labels,
            is_impossible=is_impossible_labels,
        )
thomwolf's avatar
thomwolf committed
259

Sylvain Gugger's avatar
Sylvain Gugger committed
260
        (total_loss,) = result_with_labels.to_tuple()
thomwolf's avatar
thomwolf committed
261

Sylvain Gugger's avatar
Sylvain Gugger committed
262
        result_with_labels = model(input_ids, start_positions=sequence_labels, end_positions=sequence_labels)
263

Sylvain Gugger's avatar
Sylvain Gugger committed
264
        (total_loss,) = result_with_labels.to_tuple()
265

Stas Bekman's avatar
Stas Bekman committed
266
267
268
269
270
        self.parent.assertEqual(result_with_labels.loss.shape, ())
        self.parent.assertEqual(result.start_top_log_probs.shape, (self.batch_size, model.config.start_n_top))
        self.parent.assertEqual(result.start_top_index.shape, (self.batch_size, model.config.start_n_top))
        self.parent.assertEqual(
            result.end_top_log_probs.shape, (self.batch_size, model.config.start_n_top * model.config.end_n_top)
271
        )
Stas Bekman's avatar
Stas Bekman committed
272
273
        self.parent.assertEqual(
            result.end_top_index.shape, (self.batch_size, model.config.start_n_top * model.config.end_n_top)
274
        )
Stas Bekman's avatar
Stas Bekman committed
275
        self.parent.assertEqual(result.cls_logits.shape, (self.batch_size,))
276
277
278
279
280
281
282
283
284
285

    def create_and_check_xlm_sequence_classif(
        self,
        config,
        input_ids,
        token_type_ids,
        input_lengths,
        sequence_labels,
        token_labels,
        is_impossible_labels,
286
        choice_labels,
287
288
289
290
291
292
        input_mask,
    ):
        model = XLMForSequenceClassification(config)
        model.to(torch_device)
        model.eval()

Sylvain Gugger's avatar
Sylvain Gugger committed
293
294
        result = model(input_ids)
        result = model(input_ids, labels=sequence_labels)
Stas Bekman's avatar
Stas Bekman committed
295
296
        self.parent.assertEqual(result.loss.shape, ())
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size))
297

298
    def create_and_check_xlm_token_classif(
299
300
301
302
303
304
305
306
        self,
        config,
        input_ids,
        token_type_ids,
        input_lengths,
        sequence_labels,
        token_labels,
        is_impossible_labels,
307
        choice_labels,
308
309
310
311
312
313
314
        input_mask,
    ):
        config.num_labels = self.num_labels
        model = XLMForTokenClassification(config)
        model.to(torch_device)
        model.eval()

Sylvain Gugger's avatar
Sylvain Gugger committed
315
        result = model(input_ids, attention_mask=input_mask, labels=token_labels)
Stas Bekman's avatar
Stas Bekman committed
316
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels))
317

318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
    def create_and_check_xlm_for_multiple_choice(
        self,
        config,
        input_ids,
        token_type_ids,
        input_lengths,
        sequence_labels,
        token_labels,
        is_impossible_labels,
        choice_labels,
        input_mask,
    ):
        config.num_choices = self.num_choices
        model = XLMForMultipleChoice(config=config)
        model.to(torch_device)
        model.eval()
        multiple_choice_inputs_ids = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
        multiple_choice_token_type_ids = token_type_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
        multiple_choice_input_mask = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
Sylvain Gugger's avatar
Sylvain Gugger committed
337
        result = model(
338
339
340
341
342
            multiple_choice_inputs_ids,
            attention_mask=multiple_choice_input_mask,
            token_type_ids=multiple_choice_token_type_ids,
            labels=choice_labels,
        )
Stas Bekman's avatar
Stas Bekman committed
343
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices))
344

345
346
347
    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        (
348
349
350
351
352
353
354
            config,
            input_ids,
            token_type_ids,
            input_lengths,
            sequence_labels,
            token_labels,
            is_impossible_labels,
355
            choice_labels,
356
            input_mask,
357
358
359
360
361
362
        ) = config_and_inputs
        inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "lengths": input_lengths}
        return config, inputs_dict


@require_torch
363
class XLMModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase):
364
365
366
367
368
369
370
    all_model_classes = (
        (
            XLMModel,
            XLMWithLMHeadModel,
            XLMForQuestionAnswering,
            XLMForSequenceClassification,
            XLMForQuestionAnsweringSimple,
371
            XLMForTokenClassification,
372
            XLMForMultipleChoice,
373
374
375
376
377
378
379
        )
        if is_torch_available()
        else ()
    )
    all_generative_model_classes = (
        (XLMWithLMHeadModel,) if is_torch_available() else ()
    )  # TODO (PVP): Check other models whether language generation is also applicable
380
381
382
383
384
385
386
387
388
389
390
391
392
    pipeline_model_mapping = (
        {
            "feature-extraction": XLMModel,
            "fill-mask": XLMWithLMHeadModel,
            "question-answering": XLMForQuestionAnsweringSimple,
            "text-classification": XLMForSequenceClassification,
            "text-generation": XLMWithLMHeadModel,
            "token-classification": XLMForTokenClassification,
            "zero-shot": XLMForSequenceClassification,
        }
        if is_torch_available()
        else {}
    )
thomwolf's avatar
thomwolf committed
393

394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
    # XLM has 2 QA models -> need to manually set the correct labels for one of them here
    def _prepare_for_class(self, inputs_dict, model_class, return_labels=False):
        inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels)

        if return_labels:
            if model_class.__name__ == "XLMForQuestionAnswering":
                inputs_dict["start_positions"] = torch.zeros(
                    self.model_tester.batch_size, dtype=torch.long, device=torch_device
                )
                inputs_dict["end_positions"] = torch.zeros(
                    self.model_tester.batch_size, dtype=torch.long, device=torch_device
                )

        return inputs_dict

thomwolf's avatar
thomwolf committed
409
    def setUp(self):
410
        self.model_tester = XLMModelTester(self)
thomwolf's avatar
thomwolf committed
411
        self.config_tester = ConfigTester(self, config_class=XLMConfig, emb_dim=37)
thomwolf's avatar
thomwolf committed
412
413

    def test_config(self):
thomwolf's avatar
thomwolf committed
414
        self.config_tester.run_common_tests()
thomwolf's avatar
thomwolf committed
415

thomwolf's avatar
thomwolf committed
416
417
418
    def test_xlm_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_xlm_model(*config_and_inputs)
thomwolf's avatar
thomwolf committed
419

thomwolf's avatar
thomwolf committed
420
421
422
    def test_xlm_lm_head(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_xlm_lm_head(*config_and_inputs)
thomwolf's avatar
thomwolf committed
423

424
425
426
427
    def test_xlm_simple_qa(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_xlm_simple_qa(*config_and_inputs)

thomwolf's avatar
thomwolf committed
428
429
430
    def test_xlm_qa(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_xlm_qa(*config_and_inputs)
thomwolf's avatar
thomwolf committed
431

thomwolf's avatar
thomwolf committed
432
433
434
    def test_xlm_sequence_classif(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_xlm_sequence_classif(*config_and_inputs)
thomwolf's avatar
thomwolf committed
435

436
    def test_xlm_token_classif(self):
437
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
438
        self.model_tester.create_and_check_xlm_token_classif(*config_and_inputs)
439

440
441
442
443
    def test_xlm_for_multiple_choice(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_xlm_for_multiple_choice(*config_and_inputs)

444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
    def _check_attentions_for_generate(
        self, batch_size, attentions, min_length, max_length, config, use_cache=False, num_beam_groups=1
    ):
        self.assertIsInstance(attentions, tuple)
        self.assertListEqual(
            [isinstance(iter_attentions, tuple) for iter_attentions in attentions], [True] * len(attentions)
        )
        self.assertEqual(len(attentions), (max_length - min_length) * num_beam_groups)

        for idx, iter_attentions in enumerate(attentions):
            # adds PAD dummy token
            tgt_len = min_length + idx + 1
            src_len = min_length + idx + 1

            expected_shape = (
                batch_size * num_beam_groups,
                config.num_attention_heads,
                tgt_len,
                src_len,
            )
            # check attn size
            self.assertListEqual(
                [layer_attention.shape for layer_attention in iter_attentions], [expected_shape] * len(iter_attentions)
            )

    def _check_hidden_states_for_generate(
        self, batch_size, hidden_states, min_length, max_length, config, use_cache=False, num_beam_groups=1
    ):
        self.assertIsInstance(hidden_states, tuple)
        self.assertListEqual(
            [isinstance(iter_hidden_states, tuple) for iter_hidden_states in hidden_states],
            [True] * len(hidden_states),
        )
        self.assertEqual(len(hidden_states), (max_length - min_length) * num_beam_groups)

        for idx, iter_hidden_states in enumerate(hidden_states):
            # adds PAD dummy token
            seq_len = min_length + idx + 1
            expected_shape = (batch_size * num_beam_groups, seq_len, config.hidden_size)
            # check hidden size
            self.assertListEqual(
                [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states],
                [expected_shape] * len(iter_hidden_states),
            )
        pass

490
    @slow
thomwolf's avatar
thomwolf committed
491
    def test_model_from_pretrained(self):
492
        for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
493
            model = XLMModel.from_pretrained(model_name)
thomwolf's avatar
thomwolf committed
494
            self.assertIsNotNone(model)
495
496


497
@require_torch
498
499
500
501
class XLMModelLanguageGenerationTest(unittest.TestCase):
    @slow
    def test_lm_generate_xlm_mlm_en_2048(self):
        model = XLMWithLMHeadModel.from_pretrained("xlm-mlm-en-2048")
502
        model.to(torch_device)
503
        input_ids = torch.tensor([[14, 447]], dtype=torch.long, device=torch_device)  # the president
504
505
        expected_output_ids = [
            14,
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
            447,
            14,
            447,
            14,
            447,
            14,
            447,
            14,
            447,
            14,
            447,
            14,
            447,
            14,
            447,
            14,
            447,
            14,
            447,
        ]  # the president the president the president the president the president the president the president the president the president the president
        # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference
        output_ids = model.generate(input_ids, do_sample=False)
528
        self.assertListEqual(output_ids[0].cpu().numpy().tolist(), expected_output_ids)