test_modeling_openai.py 11.5 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
# coding=utf-8
Sylvain Gugger's avatar
Sylvain Gugger committed
2
# Copyright 2020 The HuggingFace Team. All rights reserved.
thomwolf's avatar
thomwolf committed
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

thomwolf's avatar
thomwolf committed
16

17
18
import unittest

19
from transformers import is_torch_available
20
from transformers.testing_utils import require_torch, slow, torch_device
thomwolf's avatar
thomwolf committed
21

22
from ...generation.test_utils import GenerationTesterMixin
Yih-Dar's avatar
Yih-Dar committed
23
24
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
25
from ...test_pipeline_mixin import PipelineTesterMixin
Aymeric Augustin's avatar
Aymeric Augustin committed
26
27


28
if is_torch_available():
29
    import torch
30

31
    from transformers import (
32
        OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST,
33
        OpenAIGPTConfig,
34
        OpenAIGPTDoubleHeadsModel,
35
        OpenAIGPTForSequenceClassification,
36
37
        OpenAIGPTLMHeadModel,
        OpenAIGPTModel,
38
39
    )

40

41
42
class OpenAIGPTModelTester:
    def __init__(
Lysandre's avatar
Lysandre committed
43
44
        self,
        parent,
Yih-Dar's avatar
Yih-Dar committed
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
        batch_size=13,
        seq_length=7,
        is_training=True,
        use_token_type_ids=True,
        use_labels=True,
        vocab_size=99,
        hidden_size=32,
        num_hidden_layers=5,
        num_attention_heads=4,
        intermediate_size=37,
        hidden_act="gelu",
        hidden_dropout_prob=0.1,
        attention_probs_dropout_prob=0.1,
        max_position_embeddings=512,
        type_vocab_size=16,
        type_sequence_label_size=2,
        initializer_range=0.02,
        num_labels=3,
        num_choices=4,
        scope=None,
65
66
    ):
        self.parent = parent
Yih-Dar's avatar
Yih-Dar committed
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
        self.batch_size = batch_size
        self.seq_length = seq_length
        self.is_training = is_training
        self.use_token_type_ids = use_token_type_ids
        self.use_labels = use_labels
        self.vocab_size = vocab_size
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.intermediate_size = intermediate_size
        self.hidden_act = hidden_act
        self.hidden_dropout_prob = hidden_dropout_prob
        self.attention_probs_dropout_prob = attention_probs_dropout_prob
        self.max_position_embeddings = max_position_embeddings
        self.type_vocab_size = type_vocab_size
        self.type_sequence_label_size = type_sequence_label_size
        self.initializer_range = initializer_range
        self.num_labels = num_labels
        self.num_choices = num_choices
        self.scope = scope
87
        self.pad_token_id = self.vocab_size - 1
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115

    def prepare_config_and_inputs(self):
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

        token_type_ids = None
        if self.use_token_type_ids:
            token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)

        sequence_labels = None
        token_labels = None
        choice_labels = None
        if self.use_labels:
            sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
            token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
            choice_labels = ids_tensor([self.batch_size], self.num_choices)

        config = OpenAIGPTConfig(
            vocab_size=self.vocab_size,
            n_embd=self.hidden_size,
            n_layer=self.num_hidden_layers,
            n_head=self.num_attention_heads,
            # intermediate_size=self.intermediate_size,
            # hidden_act=self.hidden_act,
            # hidden_dropout_prob=self.hidden_dropout_prob,
            # attention_probs_dropout_prob=self.attention_probs_dropout_prob,
            n_positions=self.max_position_embeddings,
            # type_vocab_size=self.type_vocab_size,
            # initializer_range=self.initializer_range
116
            pad_token_id=self.pad_token_id,
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
        )

        head_mask = ids_tensor([self.num_hidden_layers, self.num_attention_heads], 2)

        return (
            config,
            input_ids,
            head_mask,
            token_type_ids,
            sequence_labels,
            token_labels,
            choice_labels,
        )

    def create_and_check_openai_gpt_model(self, config, input_ids, head_mask, token_type_ids, *args):
        model = OpenAIGPTModel(config=config)
        model.to(torch_device)
        model.eval()

Sylvain Gugger's avatar
Sylvain Gugger committed
136
137
138
        result = model(input_ids, token_type_ids=token_type_ids, head_mask=head_mask)
        result = model(input_ids, token_type_ids=token_type_ids)
        result = model(input_ids)
139

Stas Bekman's avatar
Stas Bekman committed
140
        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
141
142
143
144
145
146

    def create_and_check_lm_head_model(self, config, input_ids, head_mask, token_type_ids, *args):
        model = OpenAIGPTLMHeadModel(config)
        model.to(torch_device)
        model.eval()

Sylvain Gugger's avatar
Sylvain Gugger committed
147
        result = model(input_ids, token_type_ids=token_type_ids, labels=input_ids)
Stas Bekman's avatar
Stas Bekman committed
148
149
        self.parent.assertEqual(result.loss.shape, ())
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
150
151
152
153
154
155

    def create_and_check_double_lm_head_model(self, config, input_ids, head_mask, token_type_ids, *args):
        model = OpenAIGPTDoubleHeadsModel(config)
        model.to(torch_device)
        model.eval()

Sylvain Gugger's avatar
Sylvain Gugger committed
156
        result = model(input_ids, token_type_ids=token_type_ids, labels=input_ids)
157
158
        self.parent.assertEqual(result.loss.shape, ())
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
159

160
161
162
163
164
165
166
    def create_and_check_openai_gpt_for_sequence_classification(
        self, config, input_ids, head_mask, token_type_ids, *args
    ):
        config.num_labels = self.num_labels
        model = OpenAIGPTForSequenceClassification(config)
        model.to(torch_device)
        model.eval()
167

168
169
170
171
        sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
        result = model(input_ids, token_type_ids=token_type_ids, labels=sequence_labels)
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))

172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        (
            config,
            input_ids,
            head_mask,
            token_type_ids,
            sequence_labels,
            token_labels,
            choice_labels,
        ) = config_and_inputs
        inputs_dict = {
            "input_ids": input_ids,
            "token_type_ids": token_type_ids,
            "head_mask": head_mask,
        }

        return config, inputs_dict


192
@require_torch
193
class OpenAIGPTModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase):
194
    all_model_classes = (
195
196
197
        (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification)
        if is_torch_available()
        else ()
198
    )
199
200
201
    all_generative_model_classes = (
        (OpenAIGPTLMHeadModel,) if is_torch_available() else ()
    )  # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly
202
203
204
205
206
207
208
209
210
211
    pipeline_model_mapping = (
        {
            "feature-extraction": OpenAIGPTModel,
            "text-classification": OpenAIGPTForSequenceClassification,
            "text-generation": OpenAIGPTLMHeadModel,
            "zero-shot": OpenAIGPTForSequenceClassification,
        }
        if is_torch_available()
        else {}
    )
212

213
214
215
216
217
218
219
220
221
222
223
224
    # TODO: Fix the failed tests
    def is_pipeline_test_to_skip(
        self, pipeline_test_casse_name, config_class, model_architecture, tokenizer_name, processor_name
    ):
        if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests":
            # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers.
            # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a
            # tiny config could not be created.
            return True

        return False

225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
    # special case for DoubleHeads model
    def _prepare_for_class(self, inputs_dict, model_class, return_labels=False):
        inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels)

        if return_labels:
            if model_class.__name__ == "OpenAIGPTDoubleHeadsModel":
                inputs_dict["labels"] = torch.zeros(
                    (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length),
                    dtype=torch.long,
                    device=torch_device,
                )
                inputs_dict["input_ids"] = inputs_dict["labels"]
                inputs_dict["token_type_ids"] = inputs_dict["labels"]
                inputs_dict["mc_token_ids"] = torch.zeros(
                    (self.model_tester.batch_size, self.model_tester.num_choices),
                    dtype=torch.long,
                    device=torch_device,
                )
                inputs_dict["mc_labels"] = torch.zeros(
                    self.model_tester.batch_size, dtype=torch.long, device=torch_device
                )
        return inputs_dict

248
    def setUp(self):
249
        self.model_tester = OpenAIGPTModelTester(self)
250
        self.config_tester = ConfigTester(self, config_class=OpenAIGPTConfig, n_embd=37)
thomwolf's avatar
thomwolf committed
251
252

    def test_config(self):
253
        self.config_tester.run_common_tests()
thomwolf's avatar
thomwolf committed
254

255
256
257
258
259
260
261
262
263
264
265
    def test_openai_gpt_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_openai_gpt_model(*config_and_inputs)

    def test_openai_gpt_lm_head_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_lm_head_model(*config_and_inputs)

    def test_openai_gpt_double_lm_head_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_double_lm_head_model(*config_and_inputs)
thomwolf's avatar
thomwolf committed
266

267
268
269
270
    def test_openai_gpt_classification_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*config_and_inputs)

271
    @slow
272
    def test_model_from_pretrained(self):
273
        for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
274
            model = OpenAIGPTModel.from_pretrained(model_name)
275
            self.assertIsNotNone(model)
276
277


278
@require_torch
279
280
281
282
class OPENAIGPTModelLanguageGenerationTest(unittest.TestCase):
    @slow
    def test_lm_generate_openai_gpt(self):
        model = OpenAIGPTLMHeadModel.from_pretrained("openai-gpt")
283
        model.to(torch_device)
patrickvonplaten's avatar
patrickvonplaten committed
284
        input_ids = torch.tensor([[481, 4735, 544]], dtype=torch.long, device=torch_device)  # the president is
285
286
        expected_output_ids = [
            481,
patrickvonplaten's avatar
patrickvonplaten committed
287
            4735,
288
            544,
patrickvonplaten's avatar
patrickvonplaten committed
289
290
291
292
293
294
295
296
297
298
299
            246,
            963,
            870,
            762,
            239,
            244,
            40477,
            244,
            249,
            719,
            881,
300
            487,
patrickvonplaten's avatar
patrickvonplaten committed
301
            544,
302
            240,
patrickvonplaten's avatar
patrickvonplaten committed
303
304
305
306
307
308
            244,
            603,
            481,
        ]  # the president is a very good man. " \n " i\'m sure he is, " said the

        output_ids = model.generate(input_ids, do_sample=False)
309
        self.assertListEqual(output_ids[0].tolist(), expected_output_ids)