"tests/models/siglip/test_modeling_siglip.py" did not exist on "b210c83a78022226ce48402cd67d8c8da7afbd8d"
test_modeling_openai.py 10.6 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
# coding=utf-8
Sylvain Gugger's avatar
Sylvain Gugger committed
2
# Copyright 2020 The HuggingFace Team. All rights reserved.
thomwolf's avatar
thomwolf committed
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

thomwolf's avatar
thomwolf committed
16

17
18
import unittest

19
from transformers import is_torch_available
20
from transformers.testing_utils import require_torch, slow, torch_device
thomwolf's avatar
thomwolf committed
21

Yih-Dar's avatar
Yih-Dar committed
22
23
24
from ...generation.test_generation_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
Aymeric Augustin's avatar
Aymeric Augustin committed
25
26


27
if is_torch_available():
28
    import torch
29

30
    from transformers import (
31
        OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST,
32
        OpenAIGPTConfig,
33
        OpenAIGPTDoubleHeadsModel,
34
        OpenAIGPTForSequenceClassification,
35
36
        OpenAIGPTLMHeadModel,
        OpenAIGPTModel,
37
38
    )

39

40
41
class OpenAIGPTModelTester:
    def __init__(
Lysandre's avatar
Lysandre committed
42
43
        self,
        parent,
Yih-Dar's avatar
Yih-Dar committed
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
        batch_size=13,
        seq_length=7,
        is_training=True,
        use_token_type_ids=True,
        use_labels=True,
        vocab_size=99,
        hidden_size=32,
        num_hidden_layers=5,
        num_attention_heads=4,
        intermediate_size=37,
        hidden_act="gelu",
        hidden_dropout_prob=0.1,
        attention_probs_dropout_prob=0.1,
        max_position_embeddings=512,
        type_vocab_size=16,
        type_sequence_label_size=2,
        initializer_range=0.02,
        num_labels=3,
        num_choices=4,
        scope=None,
64
65
    ):
        self.parent = parent
Yih-Dar's avatar
Yih-Dar committed
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
        self.batch_size = batch_size
        self.seq_length = seq_length
        self.is_training = is_training
        self.use_token_type_ids = use_token_type_ids
        self.use_labels = use_labels
        self.vocab_size = vocab_size
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.intermediate_size = intermediate_size
        self.hidden_act = hidden_act
        self.hidden_dropout_prob = hidden_dropout_prob
        self.attention_probs_dropout_prob = attention_probs_dropout_prob
        self.max_position_embeddings = max_position_embeddings
        self.type_vocab_size = type_vocab_size
        self.type_sequence_label_size = type_sequence_label_size
        self.initializer_range = initializer_range
        self.num_labels = num_labels
        self.num_choices = num_choices
        self.scope = scope
86
        self.pad_token_id = self.vocab_size - 1
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114

    def prepare_config_and_inputs(self):
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

        token_type_ids = None
        if self.use_token_type_ids:
            token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)

        sequence_labels = None
        token_labels = None
        choice_labels = None
        if self.use_labels:
            sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
            token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
            choice_labels = ids_tensor([self.batch_size], self.num_choices)

        config = OpenAIGPTConfig(
            vocab_size=self.vocab_size,
            n_embd=self.hidden_size,
            n_layer=self.num_hidden_layers,
            n_head=self.num_attention_heads,
            # intermediate_size=self.intermediate_size,
            # hidden_act=self.hidden_act,
            # hidden_dropout_prob=self.hidden_dropout_prob,
            # attention_probs_dropout_prob=self.attention_probs_dropout_prob,
            n_positions=self.max_position_embeddings,
            # type_vocab_size=self.type_vocab_size,
            # initializer_range=self.initializer_range
115
            pad_token_id=self.pad_token_id,
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
        )

        head_mask = ids_tensor([self.num_hidden_layers, self.num_attention_heads], 2)

        return (
            config,
            input_ids,
            head_mask,
            token_type_ids,
            sequence_labels,
            token_labels,
            choice_labels,
        )

    def create_and_check_openai_gpt_model(self, config, input_ids, head_mask, token_type_ids, *args):
        model = OpenAIGPTModel(config=config)
        model.to(torch_device)
        model.eval()

Sylvain Gugger's avatar
Sylvain Gugger committed
135
136
137
        result = model(input_ids, token_type_ids=token_type_ids, head_mask=head_mask)
        result = model(input_ids, token_type_ids=token_type_ids)
        result = model(input_ids)
138

Stas Bekman's avatar
Stas Bekman committed
139
        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
140
141
142
143
144
145

    def create_and_check_lm_head_model(self, config, input_ids, head_mask, token_type_ids, *args):
        model = OpenAIGPTLMHeadModel(config)
        model.to(torch_device)
        model.eval()

Sylvain Gugger's avatar
Sylvain Gugger committed
146
        result = model(input_ids, token_type_ids=token_type_ids, labels=input_ids)
Stas Bekman's avatar
Stas Bekman committed
147
148
        self.parent.assertEqual(result.loss.shape, ())
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
149
150
151
152
153
154

    def create_and_check_double_lm_head_model(self, config, input_ids, head_mask, token_type_ids, *args):
        model = OpenAIGPTDoubleHeadsModel(config)
        model.to(torch_device)
        model.eval()

Sylvain Gugger's avatar
Sylvain Gugger committed
155
        result = model(input_ids, token_type_ids=token_type_ids, labels=input_ids)
156
157
        self.parent.assertEqual(result.loss.shape, ())
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
158

159
160
161
162
163
164
165
    def create_and_check_openai_gpt_for_sequence_classification(
        self, config, input_ids, head_mask, token_type_ids, *args
    ):
        config.num_labels = self.num_labels
        model = OpenAIGPTForSequenceClassification(config)
        model.to(torch_device)
        model.eval()
166

167
168
169
170
        sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
        result = model(input_ids, token_type_ids=token_type_ids, labels=sequence_labels)
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))

171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        (
            config,
            input_ids,
            head_mask,
            token_type_ids,
            sequence_labels,
            token_labels,
            choice_labels,
        ) = config_and_inputs
        inputs_dict = {
            "input_ids": input_ids,
            "token_type_ids": token_type_ids,
            "head_mask": head_mask,
        }

        return config, inputs_dict


191
@require_torch
192
class OpenAIGPTModelTest(ModelTesterMixin, GenerationTesterMixin, unittest.TestCase):
193

194
    all_model_classes = (
195
196
197
        (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification)
        if is_torch_available()
        else ()
198
    )
199
200
201
    all_generative_model_classes = (
        (OpenAIGPTLMHeadModel,) if is_torch_available() else ()
    )  # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly
202

203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
    # special case for DoubleHeads model
    def _prepare_for_class(self, inputs_dict, model_class, return_labels=False):
        inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels)

        if return_labels:
            if model_class.__name__ == "OpenAIGPTDoubleHeadsModel":
                inputs_dict["labels"] = torch.zeros(
                    (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length),
                    dtype=torch.long,
                    device=torch_device,
                )
                inputs_dict["input_ids"] = inputs_dict["labels"]
                inputs_dict["token_type_ids"] = inputs_dict["labels"]
                inputs_dict["mc_token_ids"] = torch.zeros(
                    (self.model_tester.batch_size, self.model_tester.num_choices),
                    dtype=torch.long,
                    device=torch_device,
                )
                inputs_dict["mc_labels"] = torch.zeros(
                    self.model_tester.batch_size, dtype=torch.long, device=torch_device
                )
        return inputs_dict

226
    def setUp(self):
227
        self.model_tester = OpenAIGPTModelTester(self)
228
        self.config_tester = ConfigTester(self, config_class=OpenAIGPTConfig, n_embd=37)
thomwolf's avatar
thomwolf committed
229
230

    def test_config(self):
231
        self.config_tester.run_common_tests()
thomwolf's avatar
thomwolf committed
232

233
234
235
236
237
238
239
240
241
242
243
    def test_openai_gpt_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_openai_gpt_model(*config_and_inputs)

    def test_openai_gpt_lm_head_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_lm_head_model(*config_and_inputs)

    def test_openai_gpt_double_lm_head_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_double_lm_head_model(*config_and_inputs)
thomwolf's avatar
thomwolf committed
244

245
246
247
248
    def test_openai_gpt_classification_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*config_and_inputs)

249
    @slow
250
    def test_model_from_pretrained(self):
251
        for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
252
            model = OpenAIGPTModel.from_pretrained(model_name)
253
            self.assertIsNotNone(model)
254
255


256
@require_torch
257
258
259
260
class OPENAIGPTModelLanguageGenerationTest(unittest.TestCase):
    @slow
    def test_lm_generate_openai_gpt(self):
        model = OpenAIGPTLMHeadModel.from_pretrained("openai-gpt")
261
        model.to(torch_device)
patrickvonplaten's avatar
patrickvonplaten committed
262
        input_ids = torch.tensor([[481, 4735, 544]], dtype=torch.long, device=torch_device)  # the president is
263
264
        expected_output_ids = [
            481,
patrickvonplaten's avatar
patrickvonplaten committed
265
            4735,
266
            544,
patrickvonplaten's avatar
patrickvonplaten committed
267
268
269
270
271
272
273
274
275
276
277
            246,
            963,
            870,
            762,
            239,
            244,
            40477,
            244,
            249,
            719,
            881,
278
            487,
patrickvonplaten's avatar
patrickvonplaten committed
279
            544,
280
            240,
patrickvonplaten's avatar
patrickvonplaten committed
281
282
283
284
285
286
            244,
            603,
            481,
        ]  # the president is a very good man. " \n " i\'m sure he is, " said the

        output_ids = model.generate(input_ids, do_sample=False)
287
        self.assertListEqual(output_ids[0].tolist(), expected_output_ids)