modeling_transfo_xl.py 52 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
# coding=utf-8
thomwolf's avatar
thomwolf committed
2
# Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team.
thomwolf's avatar
thomwolf committed
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch Transformer XL model.
17
    Adapted from https://github.com/kimiyoung/transformer-xl.
thomwolf's avatar
thomwolf committed
18
19
20
    In particular https://github.com/kimiyoung/transformer-xl/blob/master/pytorch/mem_transformer.py
"""

21
22
from __future__ import absolute_import, division, print_function, unicode_literals

thomwolf's avatar
thomwolf committed
23
24
25
26
27
import os
import json
import math
import logging
import collections
thomwolf's avatar
thomwolf committed
28
29
import sys
from io import open
thomwolf's avatar
thomwolf committed
30
31
32

import torch
import torch.nn as nn
33
import torch.nn.functional as F
thomwolf's avatar
thomwolf committed
34
35
36
from torch.nn import CrossEntropyLoss
from torch.nn.parameter import Parameter

37
38
from .modeling_utils import PreTrainedModel, Conv1D, prune_conv1d_layer, SequenceSummary
from .configuration_transfo_xl import TransfoXLConfig
thomwolf's avatar
thomwolf committed
39
from .modeling_transfo_xl_utilities import ProjectedAdaptiveLogSoftmax, sample_logits
40
from .file_utils import add_start_docstrings
thomwolf's avatar
thomwolf committed
41
42
43

logger = logging.getLogger(__name__)

44
TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_MAP = {
45
46
    'transfo-xl-wt103': "https://s3.amazonaws.com/models.huggingface.co/bert/transfo-xl-wt103-pytorch_model.bin",
}
47

48
49
50
51
52
def build_tf_to_pytorch_map(model, config):
    """ A map of modules from TF to PyTorch.
        This time I use a map to keep the PyTorch model as identical to the original PyTorch model as possible.
    """
    tf_to_pt_map = {}
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79

    if hasattr(model, 'transformer'):
        # We are loading in a TransfoXLLMHeadModel => we will load also the Adaptive Softmax
        tf_to_pt_map.update({
            "transformer/adaptive_softmax/cutoff_0/cluster_W": model.crit.cluster_weight,
            "transformer/adaptive_softmax/cutoff_0/cluster_b": model.crit.cluster_bias})
        for i, (out_l, proj_l, tie_proj) in enumerate(zip(
                                model.crit.out_layers,
                                model.crit.out_projs,
                                config.tie_projs)):
            layer_str = "transformer/adaptive_softmax/cutoff_%d/" % i
            if config.tie_weight:
                tf_to_pt_map.update({
                    layer_str + 'b': out_l.bias})
            else:
                raise NotImplementedError
                # I don't think this is implemented in the TF code
                tf_to_pt_map.update({
                    layer_str + 'lookup_table': out_l.weight,
                    layer_str + 'b': out_l.bias})
            if not tie_proj:
                tf_to_pt_map.update({
                    layer_str + 'proj': proj_l
                    })
        # Now load the rest of the transformer
        model = model.transformer

thomwolf's avatar
thomwolf committed
80
    # Embeddings
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
    for i, (embed_l, proj_l) in enumerate(zip(model.word_emb.emb_layers, model.word_emb.emb_projs)):
        layer_str = "transformer/adaptive_embed/cutoff_%d/" % i
        tf_to_pt_map.update({
            layer_str + 'lookup_table': embed_l.weight,
            layer_str + 'proj_W': proj_l
            })

    # Transformer blocks
    for i, b in enumerate(model.layers):
        layer_str = "transformer/layer_%d/" % i
        tf_to_pt_map.update({
            layer_str + "rel_attn/LayerNorm/gamma": b.dec_attn.layer_norm.weight,
            layer_str + "rel_attn/LayerNorm/beta": b.dec_attn.layer_norm.bias,
            layer_str + "rel_attn/o/kernel": b.dec_attn.o_net.weight,
            layer_str + "rel_attn/qkv/kernel": b.dec_attn.qkv_net.weight,
            layer_str + "rel_attn/r/kernel": b.dec_attn.r_net.weight,
            layer_str + "ff/LayerNorm/gamma": b.pos_ff.layer_norm.weight,
            layer_str + "ff/LayerNorm/beta": b.pos_ff.layer_norm.bias,
            layer_str + "ff/layer_1/kernel": b.pos_ff.CoreNet[0].weight,
            layer_str + "ff/layer_1/bias": b.pos_ff.CoreNet[0].bias,
            layer_str + "ff/layer_2/kernel": b.pos_ff.CoreNet[3].weight,
            layer_str + "ff/layer_2/bias": b.pos_ff.CoreNet[3].bias,
        })

    # Relative positioning biases
    if config.untie_r:
        r_r_list = []
        r_w_list = []
        for b in model.layers:
            r_r_list.append(b.dec_attn.r_r_bias)
            r_w_list.append(b.dec_attn.r_w_bias)
    else:
        r_r_list = [model.r_r_bias]
        r_w_list = [model.r_w_bias]
    tf_to_pt_map.update({
        'transformer/r_r_bias': r_r_list,
        'transformer/r_w_bias': r_w_list})
    return tf_to_pt_map

def load_tf_weights_in_transfo_xl(model, config, tf_path):
    """ Load tf checkpoints in a pytorch model
    """
123
124
125
    try:
        import numpy as np
        import tensorflow as tf
thomwolf's avatar
thomwolf committed
126
    except ImportError:
thomwolf's avatar
thomwolf committed
127
        logger.error("Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see "
128
129
            "https://www.tensorflow.org/install/ for installation instructions.")
        raise
130
131
132
133
134
135
136
    # Build TF to PyTorch weights loading map
    tf_to_pt_map = build_tf_to_pytorch_map(model, config)

    # Load weights from TF model
    init_vars = tf.train.list_variables(tf_path)
    tf_weights = {}
    for name, shape in init_vars:
thomwolf's avatar
thomwolf committed
137
        logger.info("Loading TF weight {} with shape {}".format(name, shape))
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
        array = tf.train.load_variable(tf_path, name)
        tf_weights[name] = array

    for name, pointer in tf_to_pt_map.items():
        assert name in tf_weights
        array = tf_weights[name]
        # adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v
        # which are not required for using pretrained model
        if 'kernel' in name or 'proj' in name:
            array = np.transpose(array)
        if ('r_r_bias' in name or 'r_w_bias' in name) and len(pointer) > 1:
            # Here we will split the TF weigths
            assert len(pointer) == array.shape[0]
            for i, p_i in enumerate(pointer):
                arr_i = array[i, ...]
                try:
                    assert p_i.shape == arr_i.shape
                except AssertionError as e:
                    e.args += (p_i.shape, arr_i.shape)
                    raise
thomwolf's avatar
thomwolf committed
158
                logger.info("Initialize PyTorch weight {} for layer {}".format(name, i))
159
160
161
162
163
164
165
                p_i.data = torch.from_numpy(arr_i)
        else:
            try:
                assert pointer.shape == array.shape
            except AssertionError as e:
                e.args += (pointer.shape, array.shape)
                raise
thomwolf's avatar
thomwolf committed
166
            logger.info("Initialize PyTorch weight {}".format(name))
167
168
169
170
171
            pointer.data = torch.from_numpy(array)
        tf_weights.pop(name, None)
        tf_weights.pop(name + '/Adam', None)
        tf_weights.pop(name + '/Adam_1', None)

thomwolf's avatar
thomwolf committed
172
    logger.info("Weights not copied to PyTorch model: {}".format(', '.join(tf_weights.keys())))
173
174
175
    return model


thomwolf's avatar
thomwolf committed
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
class PositionalEmbedding(nn.Module):
    def __init__(self, demb):
        super(PositionalEmbedding, self).__init__()

        self.demb = demb

        inv_freq = 1 / (10000 ** (torch.arange(0.0, demb, 2.0) / demb))
        self.register_buffer('inv_freq', inv_freq)

    def forward(self, pos_seq, bsz=None):
        sinusoid_inp = torch.ger(pos_seq, self.inv_freq)
        pos_emb = torch.cat([sinusoid_inp.sin(), sinusoid_inp.cos()], dim=-1)

        if bsz is not None:
            return pos_emb[:,None,:].expand(-1, bsz, -1)
        else:
            return pos_emb[:,None,:]


thomwolf's avatar
thomwolf committed
195

thomwolf's avatar
thomwolf committed
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
class PositionwiseFF(nn.Module):
    def __init__(self, d_model, d_inner, dropout, pre_lnorm=False):
        super(PositionwiseFF, self).__init__()

        self.d_model = d_model
        self.d_inner = d_inner
        self.dropout = dropout

        self.CoreNet = nn.Sequential(
            nn.Linear(d_model, d_inner), nn.ReLU(inplace=True),
            nn.Dropout(dropout),
            nn.Linear(d_inner, d_model),
            nn.Dropout(dropout),
        )

211
        self.layer_norm = nn.LayerNorm(d_model)
thomwolf's avatar
thomwolf committed
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230

        self.pre_lnorm = pre_lnorm

    def forward(self, inp):
        if self.pre_lnorm:
            ##### layer normalization + positionwise feed-forward
            core_out = self.CoreNet(self.layer_norm(inp))

            ##### residual connection
            output = core_out + inp
        else:
            ##### positionwise feed-forward
            core_out = self.CoreNet(inp)

            ##### residual connection + layer normalization
            output = self.layer_norm(inp + core_out)

        return output

thomwolf's avatar
thomwolf committed
231
232


thomwolf's avatar
thomwolf committed
233
234
class MultiHeadAttn(nn.Module):
    def __init__(self, n_head, d_model, d_head, dropout, dropatt=0, 
thomwolf's avatar
thomwolf committed
235
                 pre_lnorm=False, r_r_bias=None, r_w_bias=None, output_attentions=False):
thomwolf's avatar
thomwolf committed
236
237
        super(MultiHeadAttn, self).__init__()

thomwolf's avatar
thomwolf committed
238
        self.output_attentions = output_attentions
thomwolf's avatar
thomwolf committed
239
240
241
242
243
244
245
246
247
248
249
250
        self.n_head = n_head
        self.d_model = d_model
        self.d_head = d_head
        self.dropout = dropout

        self.q_net = nn.Linear(d_model, n_head * d_head, bias=False)
        self.kv_net = nn.Linear(d_model, 2 * n_head * d_head, bias=False)

        self.drop = nn.Dropout(dropout)
        self.dropatt = nn.Dropout(dropatt)
        self.o_net = nn.Linear(n_head * d_head, d_model, bias=False)

251
        self.layer_norm = nn.LayerNorm(d_model)
thomwolf's avatar
thomwolf committed
252
253
254
255
256

        self.scale = 1 / (d_head ** 0.5)

        self.pre_lnorm = pre_lnorm

thomwolf's avatar
thomwolf committed
257
        if r_r_bias is None or r_w_bias is None: # Biases are not shared
thomwolf's avatar
thomwolf committed
258
259
            self.r_r_bias = nn.Parameter(torch.FloatTensor(self.n_head, self.d_head))
            self.r_w_bias = nn.Parameter(torch.FloatTensor(self.n_head, self.d_head))
thomwolf's avatar
thomwolf committed
260
261
262
263
        else:
            self.r_r_bias = r_r_bias
            self.r_w_bias = r_w_bias

thomwolf's avatar
thomwolf committed
264
    def forward(self, h, attn_mask=None, mems=None, head_mask=None):
thomwolf's avatar
thomwolf committed
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
        ##### multihead attention
        # [hlen x bsz x n_head x d_head]

        if mems is not None:
            c = torch.cat([mems, h], 0)
        else:
            c = h

        if self.pre_lnorm:
            ##### layer normalization
            c = self.layer_norm(c)

        head_q = self.q_net(h)
        head_k, head_v = torch.chunk(self.kv_net(c), 2, -1)

        head_q = head_q.view(h.size(0), h.size(1), self.n_head, self.d_head)
        head_k = head_k.view(c.size(0), c.size(1), self.n_head, self.d_head)
        head_v = head_v.view(c.size(0), c.size(1), self.n_head, self.d_head)

        # [qlen x klen x bsz x n_head]
        attn_score = torch.einsum('ibnd,jbnd->ijbn', (head_q, head_k))
        attn_score.mul_(self.scale)
287
288
        if attn_mask is not None and torch.sum(attn_mask).item():
            attn_mask = (attn_mask == 1)  # Switch to bool
thomwolf's avatar
thomwolf committed
289
290
291
292
293
294
295
296
297
            if attn_mask.dim() == 2:
                attn_score.masked_fill_(attn_mask[None,:,:,None], -float('inf'))
            elif attn_mask.dim() == 3:
                attn_score.masked_fill_(attn_mask[:,:,:,None], -float('inf'))

        # [qlen x klen x bsz x n_head]
        attn_prob = F.softmax(attn_score, dim=1)
        attn_prob = self.dropatt(attn_prob)

thomwolf's avatar
thomwolf committed
298
299
300
301
        # Mask heads if we want to
        if head_mask is not None:
            attn_prob = attn_prob * head_mask

thomwolf's avatar
thomwolf committed
302
303
304
305
306
307
308
309
310
311
312
        # [qlen x klen x bsz x n_head] + [klen x bsz x n_head x d_head] -> [qlen x bsz x n_head x d_head]
        attn_vec = torch.einsum('ijbn,jbnd->ibnd', (attn_prob, head_v))
        attn_vec = attn_vec.contiguous().view(
            attn_vec.size(0), attn_vec.size(1), self.n_head * self.d_head)

        ##### linear projection
        attn_out = self.o_net(attn_vec)
        attn_out = self.drop(attn_out)

        if self.pre_lnorm:
            ##### residual connection
thomwolf's avatar
thomwolf committed
313
            outputs = [h + attn_out]
thomwolf's avatar
thomwolf committed
314
315
        else:
            ##### residual connection + layer normalization
thomwolf's avatar
thomwolf committed
316
            outputs = [self.layer_norm(h + attn_out)]
thomwolf's avatar
thomwolf committed
317

thomwolf's avatar
thomwolf committed
318
319
320
321
        if self.output_attentions:
            outputs.append(attn_prob)

        return outputs
thomwolf's avatar
thomwolf committed
322
323
324

class RelMultiHeadAttn(nn.Module):
    def __init__(self, n_head, d_model, d_head, dropout, dropatt=0,
thomwolf's avatar
thomwolf committed
325
                 tgt_len=None, ext_len=None, mem_len=None, pre_lnorm=False,
thomwolf's avatar
thomwolf committed
326
                 r_r_bias=None, r_w_bias=None, output_attentions=False):
thomwolf's avatar
thomwolf committed
327
328
        super(RelMultiHeadAttn, self).__init__()

thomwolf's avatar
thomwolf committed
329
        self.output_attentions = output_attentions
thomwolf's avatar
thomwolf committed
330
331
332
333
334
335
336
337
338
339
340
        self.n_head = n_head
        self.d_model = d_model
        self.d_head = d_head
        self.dropout = dropout

        self.qkv_net = nn.Linear(d_model, 3 * n_head * d_head, bias=False)

        self.drop = nn.Dropout(dropout)
        self.dropatt = nn.Dropout(dropatt)
        self.o_net = nn.Linear(n_head * d_head, d_model, bias=False)

341
        self.layer_norm = nn.LayerNorm(d_model)
thomwolf's avatar
thomwolf committed
342
343
344
345
346

        self.scale = 1 / (d_head ** 0.5)

        self.pre_lnorm = pre_lnorm

thomwolf's avatar
thomwolf committed
347
        if r_r_bias is None or r_w_bias is None: # Biases are not shared
thomwolf's avatar
thomwolf committed
348
349
            self.r_r_bias = nn.Parameter(torch.FloatTensor(self.n_head, self.d_head))
            self.r_w_bias = nn.Parameter(torch.FloatTensor(self.n_head, self.d_head))
thomwolf's avatar
thomwolf committed
350
351
352
353
        else:
            self.r_r_bias = r_r_bias
            self.r_w_bias = r_w_bias

thomwolf's avatar
thomwolf committed
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
    def _parallelogram_mask(self, h, w, left=False):
        mask = torch.ones((h, w)).byte()
        m = min(h, w)
        mask[:m,:m] = torch.triu(mask[:m,:m])
        mask[-m:,-m:] = torch.tril(mask[-m:,-m:])

        if left:
            return mask
        else:
            return mask.flip(0)

    def _shift(self, x, qlen, klen, mask, left=False):
        if qlen > 1:
            zero_pad = torch.zeros((x.size(0), qlen-1, x.size(2), x.size(3)),
                                    device=x.device, dtype=x.dtype)
        else:
            zero_pad = torch.zeros(0, device=x.device, dtype=x.dtype)

        if left:
            mask = mask.flip(1)
            x_padded = torch.cat([zero_pad, x], dim=1).expand(qlen, -1, -1, -1)
        else:
            x_padded = torch.cat([x, zero_pad], dim=1).expand(qlen, -1, -1, -1)

        x = x_padded.masked_select(mask[:,:,None,None]) \
                    .view(qlen, klen, x.size(2), x.size(3))

        return x

    def _rel_shift(self, x, zero_triu=False):
thomwolf's avatar
thomwolf committed
384
385
        zero_pad_shape = (x.size(0), 1) + x.size()[2:]
        zero_pad = torch.zeros(zero_pad_shape, device=x.device, dtype=x.dtype)
thomwolf's avatar
thomwolf committed
386
387
        x_padded = torch.cat([zero_pad, x], dim=1)

thomwolf's avatar
thomwolf committed
388
389
        x_padded_shape = (x.size(1) + 1, x.size(0)) + x.size()[2:]
        x_padded = x_padded.view(*x_padded_shape)
thomwolf's avatar
thomwolf committed
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407

        x = x_padded[1:].view_as(x)

        if zero_triu:
            ones = torch.ones((x.size(0), x.size(1)))
            x = x * torch.tril(ones, x.size(1) - x.size(0))[:,:,None,None]

        return x

    def forward(self, w, r, attn_mask=None, mems=None):
        raise NotImplementedError

class RelPartialLearnableMultiHeadAttn(RelMultiHeadAttn):
    def __init__(self, *args, **kwargs):
        super(RelPartialLearnableMultiHeadAttn, self).__init__(*args, **kwargs)

        self.r_net = nn.Linear(self.d_model, self.n_head * self.d_head, bias=False)

thomwolf's avatar
thomwolf committed
408
    def forward(self, w, r, attn_mask=None, mems=None, head_mask=None):
thomwolf's avatar
thomwolf committed
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
        qlen, rlen, bsz = w.size(0), r.size(0), w.size(1)

        if mems is not None:
            cat = torch.cat([mems, w], 0)
            if self.pre_lnorm:
                w_heads = self.qkv_net(self.layer_norm(cat))
            else:
                w_heads = self.qkv_net(cat)
            r_head_k = self.r_net(r)

            w_head_q, w_head_k, w_head_v = torch.chunk(w_heads, 3, dim=-1)
            w_head_q = w_head_q[-qlen:]
        else:
            if self.pre_lnorm:
                w_heads = self.qkv_net(self.layer_norm(w))
            else:
                w_heads = self.qkv_net(w)
            r_head_k = self.r_net(r)

            w_head_q, w_head_k, w_head_v = torch.chunk(w_heads, 3, dim=-1)

        klen = w_head_k.size(0)

        w_head_q = w_head_q.view(qlen, bsz, self.n_head, self.d_head)           # qlen x bsz x n_head x d_head
        w_head_k = w_head_k.view(klen, bsz, self.n_head, self.d_head)           # qlen x bsz x n_head x d_head
        w_head_v = w_head_v.view(klen, bsz, self.n_head, self.d_head)           # qlen x bsz x n_head x d_head

        r_head_k = r_head_k.view(rlen, self.n_head, self.d_head)                # qlen x n_head x d_head

        #### compute attention score
439
        rw_head_q = w_head_q + self.r_w_bias                                    # qlen x bsz x n_head x d_head
thomwolf's avatar
thomwolf committed
440
441
        AC = torch.einsum('ibnd,jbnd->ijbn', (rw_head_q, w_head_k))             # qlen x klen x bsz x n_head

thomwolf's avatar
thomwolf committed
442
        rr_head_q = w_head_q + self.r_r_bias
thomwolf's avatar
thomwolf committed
443
444
445
446
447
448
449
450
        BD = torch.einsum('ibnd,jnd->ijbn', (rr_head_q, r_head_k))              # qlen x klen x bsz x n_head
        BD = self._rel_shift(BD)

        # [qlen x klen x bsz x n_head]
        attn_score = AC + BD
        attn_score.mul_(self.scale)

        #### compute attention probability
451
452
        if attn_mask is not None and torch.sum(attn_mask).item():
            attn_mask = (attn_mask == 1)  # Switch to bool
thomwolf's avatar
thomwolf committed
453
454
            if attn_mask.dim() == 2:
                attn_score = attn_score.float().masked_fill(
455
                    attn_mask[None,:,:,None], -1e30).type_as(attn_score)
thomwolf's avatar
thomwolf committed
456
457
            elif attn_mask.dim() == 3:
                attn_score = attn_score.float().masked_fill(
458
                    attn_mask[:,:,:,None], -1e30).type_as(attn_score)
thomwolf's avatar
thomwolf committed
459
460
461
462
463

        # [qlen x klen x bsz x n_head]
        attn_prob = F.softmax(attn_score, dim=1)
        attn_prob = self.dropatt(attn_prob)

thomwolf's avatar
thomwolf committed
464
465
466
467
        # Mask heads if we want to
        if head_mask is not None:
            attn_prob = attn_prob * head_mask

thomwolf's avatar
thomwolf committed
468
469
470
471
472
473
474
475
476
477
478
479
480
        #### compute attention vector
        attn_vec = torch.einsum('ijbn,jbnd->ibnd', (attn_prob, w_head_v))

        # [qlen x bsz x n_head x d_head]
        attn_vec = attn_vec.contiguous().view(
            attn_vec.size(0), attn_vec.size(1), self.n_head * self.d_head)

        ##### linear projection
        attn_out = self.o_net(attn_vec)
        attn_out = self.drop(attn_out)

        if self.pre_lnorm:
            ##### residual connection
thomwolf's avatar
thomwolf committed
481
            outputs = [w + attn_out]
thomwolf's avatar
thomwolf committed
482
483
        else:
            ##### residual connection + layer normalization
thomwolf's avatar
thomwolf committed
484
            outputs = [self.layer_norm(w + attn_out)]
thomwolf's avatar
thomwolf committed
485

thomwolf's avatar
thomwolf committed
486
487
488
489
        if self.output_attentions:
            outputs.append(attn_prob)

        return outputs
thomwolf's avatar
thomwolf committed
490
491
492
493
494

class RelLearnableMultiHeadAttn(RelMultiHeadAttn):
    def __init__(self, *args, **kwargs):
        super(RelLearnableMultiHeadAttn, self).__init__(*args, **kwargs)

thomwolf's avatar
thomwolf committed
495
    def forward(self, w, r_emb, r_w_bias, r_bias, attn_mask=None, mems=None, head_mask=None):
thomwolf's avatar
thomwolf committed
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
        # r_emb: [klen, n_head, d_head], used for term B
        # r_w_bias: [n_head, d_head], used for term C
        # r_bias: [klen, n_head], used for term D

        qlen, bsz = w.size(0), w.size(1)

        if mems is not None:
            cat = torch.cat([mems, w], 0)
            if self.pre_lnorm:
                w_heads = self.qkv_net(self.layer_norm(cat))
            else:
                w_heads = self.qkv_net(cat)
            w_head_q, w_head_k, w_head_v = torch.chunk(w_heads, 3, dim=-1)

            w_head_q = w_head_q[-qlen:]
        else:
            if self.pre_lnorm:
                w_heads = self.qkv_net(self.layer_norm(w))
            else:
                w_heads = self.qkv_net(w)
            w_head_q, w_head_k, w_head_v = torch.chunk(w_heads, 3, dim=-1)

        klen = w_head_k.size(0)

        w_head_q = w_head_q.view(qlen, bsz, self.n_head, self.d_head)
        w_head_k = w_head_k.view(klen, bsz, self.n_head, self.d_head)
        w_head_v = w_head_v.view(klen, bsz, self.n_head, self.d_head)

        if klen > r_emb.size(0):
            r_emb_pad = r_emb[0:1].expand(klen-r_emb.size(0), -1, -1)
            r_emb = torch.cat([r_emb_pad, r_emb], 0)
            r_bias_pad = r_bias[0:1].expand(klen-r_bias.size(0), -1)
            r_bias = torch.cat([r_bias_pad, r_bias], 0)
        else:
            r_emb = r_emb[-klen:]
            r_bias = r_bias[-klen:]

        #### compute attention score
        rw_head_q = w_head_q + r_w_bias[None]                                   # qlen x bsz x n_head x d_head

        AC = torch.einsum('ibnd,jbnd->ijbn', (rw_head_q, w_head_k))             # qlen x klen x bsz x n_head
        B_ = torch.einsum('ibnd,jnd->ijbn', (w_head_q, r_emb))                  # qlen x klen x bsz x n_head
        D_ = r_bias[None, :, None]                                              # 1    x klen x 1   x n_head
        BD = self._rel_shift(B_ + D_)

        # [qlen x klen x bsz x n_head]
        attn_score = AC + BD
        attn_score.mul_(self.scale)

        #### compute attention probability
546
547
        if attn_mask is not None and torch.sum(attn_mask).item():
            attn_mask = (attn_mask == 1)  # Switch to bool
thomwolf's avatar
thomwolf committed
548
549
550
551
552
553
554
555
556
            if attn_mask.dim() == 2:
                attn_score.masked_fill_(attn_mask[None,:,:,None], -float('inf'))
            elif attn_mask.dim() == 3:
                attn_score.masked_fill_(attn_mask[:,:,:,None], -float('inf'))

        # [qlen x klen x bsz x n_head]
        attn_prob = F.softmax(attn_score, dim=1)
        attn_prob = self.dropatt(attn_prob)

thomwolf's avatar
thomwolf committed
557
558
559
        if head_mask is not None:
            attn_prob = attn_prob * head_mask

thomwolf's avatar
thomwolf committed
560
561
562
563
564
565
566
567
568
569
570
571
572
        #### compute attention vector
        attn_vec = torch.einsum('ijbn,jbnd->ibnd', (attn_prob, w_head_v))

        # [qlen x bsz x n_head x d_head]
        attn_vec = attn_vec.contiguous().view(
            attn_vec.size(0), attn_vec.size(1), self.n_head * self.d_head)

        ##### linear projection
        attn_out = self.o_net(attn_vec)
        attn_out = self.drop(attn_out)

        if self.pre_lnorm:
            ##### residual connection
thomwolf's avatar
thomwolf committed
573
            outputs = [w + attn_out]
thomwolf's avatar
thomwolf committed
574
575
        else:
            ##### residual connection + layer normalization
thomwolf's avatar
thomwolf committed
576
577
578
579
580
581
582
            outputs = [self.layer_norm(w + attn_out)]

        if self.output_attentions:
            outputs.append(attn_prob)

        return outputs

thomwolf's avatar
thomwolf committed
583
584
585
586
587
588
589
590
591
592


class DecoderLayer(nn.Module):
    def __init__(self, n_head, d_model, d_head, d_inner, dropout, **kwargs):
        super(DecoderLayer, self).__init__()

        self.dec_attn = MultiHeadAttn(n_head, d_model, d_head, dropout, **kwargs)
        self.pos_ff = PositionwiseFF(d_model, d_inner, dropout, 
                                     pre_lnorm=kwargs.get('pre_lnorm'))

thomwolf's avatar
thomwolf committed
593
    def forward(self, dec_inp, dec_attn_mask=None, mems=None, head_mask=None):
thomwolf's avatar
thomwolf committed
594

thomwolf's avatar
thomwolf committed
595
596
597
        attn_outputs = self.dec_attn(dec_inp, attn_mask=dec_attn_mask,
                               mems=mems, head_mask=head_mask)
        ff_output = self.pos_ff(attn_outputs[0])
thomwolf's avatar
thomwolf committed
598

thomwolf's avatar
thomwolf committed
599
600
601
        outputs = [ff_output] + attn_outputs[1:]

        return outputs
thomwolf's avatar
thomwolf committed
602
603
604
605
606
607
608
609
610
611
612

class RelLearnableDecoderLayer(nn.Module):
    def __init__(self, n_head, d_model, d_head, d_inner, dropout,
                 **kwargs):
        super(RelLearnableDecoderLayer, self).__init__()

        self.dec_attn = RelLearnableMultiHeadAttn(n_head, d_model, d_head, dropout,
                                         **kwargs)
        self.pos_ff = PositionwiseFF(d_model, d_inner, dropout, 
                                     pre_lnorm=kwargs.get('pre_lnorm'))

thomwolf's avatar
thomwolf committed
613
    def forward(self, dec_inp, r_emb, r_w_bias, r_bias, dec_attn_mask=None, mems=None, head_mask=None):
thomwolf's avatar
thomwolf committed
614

thomwolf's avatar
thomwolf committed
615
        attn_outputs = self.dec_attn(dec_inp, r_emb, r_w_bias, r_bias,
thomwolf's avatar
thomwolf committed
616
                               attn_mask=dec_attn_mask,
thomwolf's avatar
thomwolf committed
617
618
                               mems=mems, head_mask=head_mask)
        ff_output = self.pos_ff(attn_outputs[0])
thomwolf's avatar
thomwolf committed
619

thomwolf's avatar
thomwolf committed
620
621
622
        outputs = [ff_output] + attn_outputs[1:]

        return outputs
thomwolf's avatar
thomwolf committed
623
624
625
626
627
628
629
630
631
632
633

class RelPartialLearnableDecoderLayer(nn.Module):
    def __init__(self, n_head, d_model, d_head, d_inner, dropout,
                 **kwargs):
        super(RelPartialLearnableDecoderLayer, self).__init__()

        self.dec_attn = RelPartialLearnableMultiHeadAttn(n_head, d_model,
                            d_head, dropout, **kwargs)
        self.pos_ff = PositionwiseFF(d_model, d_inner, dropout, 
                                     pre_lnorm=kwargs.get('pre_lnorm'))

thomwolf's avatar
thomwolf committed
634
    def forward(self, dec_inp, r, dec_attn_mask=None, mems=None, head_mask=None):
thomwolf's avatar
thomwolf committed
635

thomwolf's avatar
thomwolf committed
636
        attn_outputs = self.dec_attn(dec_inp, r,
thomwolf's avatar
thomwolf committed
637
                               attn_mask=dec_attn_mask,
thomwolf's avatar
thomwolf committed
638
639
640
641
642
643
                               mems=mems, head_mask=head_mask)
        ff_output = self.pos_ff(attn_outputs[0])

        outputs = [ff_output] + attn_outputs[1:]

        return outputs
thomwolf's avatar
thomwolf committed
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669



class AdaptiveEmbedding(nn.Module):
    def __init__(self, n_token, d_embed, d_proj, cutoffs, div_val=1, 
                 sample_softmax=False):
        super(AdaptiveEmbedding, self).__init__()

        self.n_token = n_token
        self.d_embed = d_embed

        self.cutoffs = cutoffs + [n_token]
        self.div_val = div_val
        self.d_proj = d_proj

        self.emb_scale = d_proj ** 0.5

        self.cutoff_ends = [0] + self.cutoffs

        self.emb_layers = nn.ModuleList()
        self.emb_projs = nn.ParameterList()
        if div_val == 1:
            self.emb_layers.append(
                nn.Embedding(n_token, d_embed, sparse=sample_softmax>0)
            )
            if d_proj != d_embed:
thomwolf's avatar
thomwolf committed
670
                self.emb_projs.append(nn.Parameter(torch.FloatTensor(d_proj, d_embed)))
thomwolf's avatar
thomwolf committed
671
672
673
674
675
        else:
            for i in range(len(self.cutoffs)):
                l_idx, r_idx = self.cutoff_ends[i], self.cutoff_ends[i+1]
                d_emb_i = d_embed // (div_val ** i)
                self.emb_layers.append(nn.Embedding(r_idx-l_idx, d_emb_i))
thomwolf's avatar
thomwolf committed
676
                self.emb_projs.append(nn.Parameter(torch.FloatTensor(d_proj, d_emb_i)))
thomwolf's avatar
thomwolf committed
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702

    def forward(self, inp):
        if self.div_val == 1:
            embed = self.emb_layers[0](inp)
            if self.d_proj != self.d_embed:
                embed  = F.linear(embed, self.emb_projs[0])
        else:
            param = next(self.parameters())
            inp_flat = inp.view(-1)
            emb_flat = torch.zeros([inp_flat.size(0), self.d_proj], 
                dtype=param.dtype, device=param.device)
            for i in range(len(self.cutoffs)):
                l_idx, r_idx = self.cutoff_ends[i], self.cutoff_ends[i + 1]

                mask_i = (inp_flat >= l_idx) & (inp_flat < r_idx)
                indices_i = mask_i.nonzero().squeeze()

                if indices_i.numel() == 0:
                    continue

                inp_i = inp_flat.index_select(0, indices_i) - l_idx
                emb_i = self.emb_layers[i](inp_i)
                emb_i = F.linear(emb_i, self.emb_projs[i])

                emb_flat.index_copy_(0, indices_i, emb_i)

thomwolf's avatar
thomwolf committed
703
704
            embed_shape = inp.size() + (self.d_proj,)
            embed = emb_flat.view(embed_shape)
thomwolf's avatar
thomwolf committed
705
706
707
708
709
710

        embed.mul_(self.emb_scale)

        return embed


711
class TransfoXLPreTrainedModel(PreTrainedModel):
712
713
714
    """ An abstract class to handle weights initialization and
        a simple interface for dowloading and loading pretrained models.
    """
715
    config_class = TransfoXLConfig
716
    pretrained_model_archive_map = TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_MAP
717
718
719
720
    load_tf_weights = load_tf_weights_in_transfo_xl
    base_model_prefix = "transformer"

    def _init_weight(self, weight):
721
722
723
724
        if self.config.init == 'uniform':
            nn.init.uniform_(weight, -self.config.init_range, self.config.init_range)
        elif self.config.init == 'normal':
            nn.init.normal_(weight, 0.0, self.config.init_std)
thomwolf's avatar
thomwolf committed
725

726
    def _init_bias(self, bias):
727
728
        nn.init.constant_(bias, 0.0)

729
    def _init_weights(self, m):
730
731
732
733
734
        """ Initialize the weights.
        """
        classname = m.__class__.__name__
        if classname.find('Linear') != -1:
            if hasattr(m, 'weight') and m.weight is not None:
735
                self._init_weight(m.weight)
736
            if hasattr(m, 'bias') and m.bias is not None:
737
                self._init_bias(m.bias)
738
739
740
741
742
743
744
        elif classname.find('AdaptiveEmbedding') != -1:
            if hasattr(m, 'emb_projs'):
                for i in range(len(m.emb_projs)):
                    if m.emb_projs[i] is not None:
                        nn.init.normal_(m.emb_projs[i], 0.0, self.config.proj_init_std)
        elif classname.find('Embedding') != -1:
            if hasattr(m, 'weight'):
745
                self._init_weight(m.weight)
746
747
        elif classname.find('ProjectedAdaptiveLogSoftmax') != -1:
            if hasattr(m, 'cluster_weight') and m.cluster_weight is not None:
748
                self._init_weight(m.cluster_weight)
749
            if hasattr(m, 'cluster_bias') and m.cluster_bias is not None:
750
                self._init_bias(m.cluster_bias)
751
752
753
754
755
756
757
758
            if hasattr(m, 'out_projs'):
                for i in range(len(m.out_projs)):
                    if m.out_projs[i] is not None:
                        nn.init.normal_(m.out_projs[i], 0.0, self.config.proj_init_std)
        elif classname.find('LayerNorm') != -1:
            if hasattr(m, 'weight'):
                nn.init.normal_(m.weight, 1.0, self.config.init_std)
            if hasattr(m, 'bias') and m.bias is not None:
759
                self._init_bias(m.bias)
760
        else:
761
            if hasattr(m, 'r_emb'):
762
                self._init_weight(m.r_emb)
763
            if hasattr(m, 'r_w_bias'):
764
                self._init_weight(m.r_w_bias)
765
            if hasattr(m, 'r_r_bias'):
766
                self._init_weight(m.r_r_bias)
767
            if hasattr(m, 'r_bias'):
768
                self._init_bias(m.r_bias)
thomwolf's avatar
thomwolf committed
769

770
771
    def set_num_special_tokens(self, num_special_tokens):
        pass
thomwolf's avatar
thomwolf committed
772

773

thomwolf's avatar
thomwolf committed
774
775
776
777
778
779
TRANSFO_XL_START_DOCSTRING = r"""    The Transformer-XL model was proposed in
    `Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context`_
    by Zihang Dai*, Zhilin Yang*, Yiming Yang, Jaime Carbonell, Quoc V. Le, Ruslan Salakhutdinov.
    It's a causal (uni-directional) transformer with relative positioning (sinuso茂dal) embeddings which can reuse
    previously computed hidden-states to attend to longer context (memory).
    This model also uses adaptive softmax inputs and outputs (tied).
thomwolf's avatar
thomwolf committed
780

thomwolf's avatar
thomwolf committed
781
782
    This model is a PyTorch `torch.nn.Module`_ sub-class. Use it as a regular PyTorch Module and
    refer to the PyTorch documentation for all matter related to general usage and behavior.
thomwolf's avatar
thomwolf committed
783

thomwolf's avatar
thomwolf committed
784
785
    .. _`Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context`:
        https://arxiv.org/abs/1901.02860
786

thomwolf's avatar
thomwolf committed
787
788
    .. _`torch.nn.Module`:
        https://pytorch.org/docs/stable/nn.html#module
789

thomwolf's avatar
thomwolf committed
790
791
    Parameters:
        config (:class:`~pytorch_transformers.TransfoXLConfig`): Model configuration class with all the parameters of the model.
792
793
            Initializing with a config file does not load the weights associated with the model, only the configuration.
            Check out the :meth:`~pytorch_transformers.PreTrainedModel.from_pretrained` method to load the model weights.
thomwolf's avatar
thomwolf committed
794
"""
thomwolf's avatar
thomwolf committed
795

thomwolf's avatar
thomwolf committed
796
797
798
799
TRANSFO_XL_INPUTS_DOCSTRING = r"""
    Inputs:
        **input_ids**: ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
            Indices of input sequence tokens in the vocabulary.
thomwolf's avatar
thomwolf committed
800
801
            Transformer-XL is a model with relative position embeddings so you can either pad the inputs on
            the right or on the left.
thomwolf's avatar
thomwolf committed
802
803
804
            Indices can be obtained using :class:`pytorch_transformers.TransfoXLTokenizer`.
            See :func:`pytorch_transformers.PreTrainedTokenizer.encode` and
            :func:`pytorch_transformers.PreTrainedTokenizer.convert_tokens_to_ids` for details.
thomwolf's avatar
thomwolf committed
805
        **mems**: (`optional`)
thomwolf's avatar
thomwolf committed
806
807
808
            list of ``torch.FloatTensor`` (one for each layer):
            that contains pre-computed hidden-states (key and values in the attention blocks) as computed by the model
            (see `mems` output below). Can be used to speed up sequential decoding and attend to longer context.
thomwolf's avatar
thomwolf committed
809
        **head_mask**: (`optional`) ``torch.FloatTensor`` of shape ``(num_heads,)`` or ``(num_layers, num_heads)``:
thomwolf's avatar
thomwolf committed
810
            Mask to nullify selected heads of the self-attention modules.
thomwolf's avatar
thomwolf committed
811
            Mask values selected in ``[0, 1]``:
thomwolf's avatar
thomwolf committed
812
813
            ``1`` indicates the head is **not masked**, ``0`` indicates the head is **masked**.
"""
814

thomwolf's avatar
thomwolf committed
815
816
817
818
819
820
821
@add_start_docstrings("The bare Bert Model transformer outputing raw hidden-states without any specific head on top.",
                      TRANSFO_XL_START_DOCSTRING, TRANSFO_XL_INPUTS_DOCSTRING)
class TransfoXLModel(TransfoXLPreTrainedModel):
    r"""
    Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
        **last_hidden_state**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, hidden_size)``
            Sequence of hidden-states at the last layer of the model.
thomwolf's avatar
thomwolf committed
822
        **mems**:
thomwolf's avatar
thomwolf committed
823
824
825
826
827
828
829
            list of ``torch.FloatTensor`` (one for each layer):
            that contains pre-computed hidden-states (key and values in the attention blocks) as computed by the model
            (see `mems` input above). Can be used to speed up sequential decoding and attend to longer context.
        **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
            list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
            of shape ``(batch_size, sequence_length, hidden_size)``:
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
thomwolf's avatar
thomwolf committed
830
831
832
        **attentions**: (`optional`, returned when ``config.output_attentions=True``)
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
thomwolf's avatar
thomwolf committed
833
834
835

    Examples::

wangfei's avatar
wangfei committed
836
837
838
839
840
        tokenizer = TransfoXLTokenizer.from_pretrained('transfo-xl-wt103')
        model = TransfoXLModel.from_pretrained('transfo-xl-wt103')
        input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0)  # Batch size 1
        outputs = model(input_ids)
        last_hidden_states, mems = outputs[:2]
841

thomwolf's avatar
thomwolf committed
842
    """
843
844
    def __init__(self, config):
        super(TransfoXLModel, self).__init__(config)
thomwolf's avatar
thomwolf committed
845
846
847
        self.output_attentions = config.output_attentions
        self.output_hidden_states = config.output_hidden_states

848
849
850
851
852
853
854
855
856
        self.n_token = config.n_token

        self.d_embed = config.d_embed
        self.d_model = config.d_model
        self.n_head = config.n_head
        self.d_head = config.d_head

        self.word_emb = AdaptiveEmbedding(config.n_token, config.d_embed, config.d_model, config.cutoffs, 
                                          div_val=config.div_val)
thomwolf's avatar
thomwolf committed
857

858
        self.drop = nn.Dropout(config.dropout)
thomwolf's avatar
thomwolf committed
859

860
861
862
863
864
865
866
867
868
869
        self.n_layer = config.n_layer

        self.tgt_len = config.tgt_len
        self.mem_len = config.mem_len
        self.ext_len = config.ext_len
        self.max_klen = config.tgt_len + config.ext_len + config.mem_len

        self.attn_type = config.attn_type

        if not config.untie_r:
thomwolf's avatar
thomwolf committed
870
871
            self.r_w_bias = nn.Parameter(torch.FloatTensor(self.n_head, self.d_head))
            self.r_r_bias = nn.Parameter(torch.FloatTensor(self.n_head, self.d_head))
thomwolf's avatar
thomwolf committed
872

thomwolf's avatar
thomwolf committed
873
        self.layers = nn.ModuleList()
874
875
        if config.attn_type == 0: # the default attention
            for i in range(config.n_layer):
thomwolf's avatar
thomwolf committed
876
877
                self.layers.append(
                    RelPartialLearnableDecoderLayer(
878
879
880
881
                        config.n_head, config.d_model, config.d_head, config.d_inner, config.dropout,
                        tgt_len=config.tgt_len, ext_len=config.ext_len, mem_len=config.mem_len,
                        dropatt=config.dropatt, pre_lnorm=config.pre_lnorm,
                        r_w_bias=None if config.untie_r else self.r_w_bias,
thomwolf's avatar
thomwolf committed
882
883
                        r_r_bias=None if config.untie_r else self.r_r_bias,
                        output_attentions=self.output_attentions)
thomwolf's avatar
thomwolf committed
884
                )
885
886
        elif config.attn_type == 1: # learnable embeddings
            for i in range(config.n_layer):
thomwolf's avatar
thomwolf committed
887
888
                self.layers.append(
                    RelLearnableDecoderLayer(
889
890
891
892
                        config.n_head, config.d_model, config.d_head, config.d_inner, config.dropout,
                        tgt_len=config.tgt_len, ext_len=config.ext_len, mem_len=config.mem_len,
                        dropatt=config.dropatt, pre_lnorm=config.pre_lnorm,
                        r_w_bias=None if config.untie_r else self.r_w_bias,
thomwolf's avatar
thomwolf committed
893
894
                        r_r_bias=None if config.untie_r else self.r_r_bias,
                        output_attentions=self.output_attentions)
thomwolf's avatar
thomwolf committed
895
                )
896
897
        elif config.attn_type in [2, 3]: # absolute embeddings
            for i in range(config.n_layer):
thomwolf's avatar
thomwolf committed
898
899
                self.layers.append(
                    DecoderLayer(
900
901
902
                        config.n_head, config.d_model, config.d_head, config.d_inner, config.dropout,
                        dropatt=config.dropatt, pre_lnorm=config.pre_lnorm,
                        r_w_bias=None if config.untie_r else self.r_w_bias,
thomwolf's avatar
thomwolf committed
903
904
                        r_r_bias=None if config.untie_r else self.r_r_bias,
                        output_attentions=self.output_attentions)
thomwolf's avatar
thomwolf committed
905
906
                )

907
908
        self.same_length = config.same_length
        self.clamp_len = config.clamp_len
thomwolf's avatar
thomwolf committed
909
910
911
912

        if self.attn_type == 0: # default attention
            self.pos_emb = PositionalEmbedding(self.d_model)
        elif self.attn_type == 1: # learnable
thomwolf's avatar
thomwolf committed
913
            self.r_emb = nn.Parameter(torch.FloatTensor(
thomwolf's avatar
thomwolf committed
914
                    self.n_layer, self.max_klen, self.n_head, self.d_head))
thomwolf's avatar
thomwolf committed
915
            self.r_bias = nn.Parameter(torch.FloatTensor(
thomwolf's avatar
thomwolf committed
916
917
918
919
                    self.n_layer, self.max_klen, self.n_head))
        elif self.attn_type == 2: # absolute standard
            self.pos_emb = PositionalEmbedding(self.d_model)
        elif self.attn_type == 3: # absolute deeper SA
thomwolf's avatar
thomwolf committed
920
            self.r_emb = nn.Parameter(torch.FloatTensor(
thomwolf's avatar
thomwolf committed
921
                    self.n_layer, self.max_klen, self.n_head, self.d_head))
thomwolf's avatar
thomwolf committed
922

923
        self.init_weights()
thomwolf's avatar
thomwolf committed
924

thomwolf's avatar
thomwolf committed
925
    def _resize_token_embeddings(self, new_num_tokens):
thomwolf's avatar
thomwolf committed
926
        return self.word_emb
thomwolf's avatar
thomwolf committed
927

thomwolf's avatar
thomwolf committed
928
929
930
    def backward_compatible(self):
        self.sample_softmax = -1

thomwolf's avatar
thomwolf committed
931
932
933
934
935
    def reset_length(self, tgt_len, ext_len, mem_len):
        self.tgt_len = tgt_len
        self.mem_len = mem_len
        self.ext_len = ext_len

thomwolf's avatar
thomwolf committed
936
937
938
939
    def _prune_heads(self, heads):
        logger.info("Head pruning is not implemented for Transformer-XL model")
        pass

940
    def init_mems(self, data):
thomwolf's avatar
thomwolf committed
941
942
943
        if self.mem_len > 0:
            mems = []
            param = next(self.parameters())
944
            for i in range(self.n_layer):
945
946
                empty = torch.zeros(self.mem_len, data.size(1), self.config.d_model,
                                    dtype=param.dtype, device=param.device)
thomwolf's avatar
thomwolf committed
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
                mems.append(empty)

            return mems
        else:
            return None

    def _update_mems(self, hids, mems, qlen, mlen):
        # does not deal with None
        if mems is None: return None

        # mems is not None
        assert len(hids) == len(mems), 'len(hids) != len(mems)'

        # There are `mlen + qlen` steps that can be cached into mems
        # For the next step, the last `ext_len` of the `qlen` tokens
        # will be used as the extended context. Hence, we only cache
        # the tokens from `mlen + qlen - self.ext_len - self.mem_len`
        # to `mlen + qlen - self.ext_len`.
        with torch.no_grad():
            new_mems = []
            end_idx = mlen + max(0, qlen - 0 - self.ext_len)
            beg_idx = max(0, end_idx - self.mem_len)
            for i in range(len(hids)):

                cat = torch.cat([mems[i], hids[i]], dim=0)
                new_mems.append(cat[beg_idx:end_idx].detach())

        return new_mems

thomwolf's avatar
thomwolf committed
976
    def _forward(self, dec_inp, mems=None, head_mask=None):
thomwolf's avatar
thomwolf committed
977
978
        qlen, bsz = dec_inp.size()

thomwolf's avatar
thomwolf committed
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
        # Prepare head mask if needed
        # 1.0 in head_mask indicate we keep the head
        # attention_probs has shape bsz x n_heads x N x N
        # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] (a head_mask for each layer)
        # and head_mask is converted to shape [num_hidden_layers x qlen x klen x bsz x n_head]
        if head_mask is not None:
            if head_mask.dim() == 1:
                head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(0).unsqueeze(0)
                head_mask = head_mask.expand(self.n_layer, -1, -1, -1, -1)
            elif head_mask.dim() == 2:
                head_mask = head_mask.unsqueeze(1).unsqueeze(1).unsqueeze(1)
            head_mask = head_mask.to(dtype=next(self.parameters()).dtype) # switch to fload if need + fp16 compatibility
        else:
            head_mask = [None] * self.n_layer

thomwolf's avatar
thomwolf committed
994
995
996
997
998
        word_emb = self.word_emb(dec_inp)

        mlen = mems[0].size(0) if mems is not None else 0
        klen = mlen + qlen
        if self.same_length:
thomwolf's avatar
thomwolf committed
999
            all_ones = word_emb.new_ones((qlen, klen), dtype=torch.uint8)
thomwolf's avatar
thomwolf committed
1000
1001
1002
1003
1004
1005
            mask_len = klen - self.mem_len
            if mask_len > 0:
                mask_shift_len = qlen - mask_len
            else:
                mask_shift_len = qlen
            dec_attn_mask = (torch.triu(all_ones, 1+mlen)
1006
                    + torch.tril(all_ones, -mask_shift_len))[:, :, None] # -1
thomwolf's avatar
thomwolf committed
1007
1008
        else:
            dec_attn_mask = torch.triu(
thomwolf's avatar
thomwolf committed
1009
                word_emb.new_ones((qlen, klen), dtype=torch.uint8), diagonal=1+mlen)[:,:,None]
thomwolf's avatar
thomwolf committed
1010
1011

        hids = []
thomwolf's avatar
thomwolf committed
1012
        attentions = []
thomwolf's avatar
thomwolf committed
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
        if self.attn_type == 0: # default
            pos_seq = torch.arange(klen-1, -1, -1.0, device=word_emb.device, 
                                   dtype=word_emb.dtype)
            if self.clamp_len > 0:
                pos_seq.clamp_(max=self.clamp_len)
            pos_emb = self.pos_emb(pos_seq)

            core_out = self.drop(word_emb)
            pos_emb = self.drop(pos_emb)

            for i, layer in enumerate(self.layers):
1024
                hids.append(core_out)
thomwolf's avatar
thomwolf committed
1025
                mems_i = None if mems is None else mems[i]
thomwolf's avatar
thomwolf committed
1026
1027
1028
1029
1030
                layer_outputs = layer(core_out, pos_emb, dec_attn_mask=dec_attn_mask,
                                      mems=mems_i, head_mask=head_mask[i])
                core_out = layer_outputs[0]
                if self.output_attentions:
                    attentions.append(layer_outputs[1])
thomwolf's avatar
thomwolf committed
1031
1032
1033
        elif self.attn_type == 1: # learnable
            core_out = self.drop(word_emb)
            for i, layer in enumerate(self.layers):
1034
                hids.append(core_out)
thomwolf's avatar
thomwolf committed
1035
1036
1037
1038
1039
1040
1041
                if self.clamp_len > 0:
                    r_emb = self.r_emb[i][-self.clamp_len :]
                    r_bias = self.r_bias[i][-self.clamp_len :]
                else:
                    r_emb, r_bias = self.r_emb[i], self.r_bias[i]

                mems_i = None if mems is None else mems[i]
thomwolf's avatar
thomwolf committed
1042
1043
1044
1045
1046
1047
                layer_outputs = layer(core_out, r_emb, self.r_w_bias[i],
                                      r_bias, dec_attn_mask=dec_attn_mask,
                                      mems=mems_i, head_mask=head_mask[i])
                core_out = layer_outputs[0]
                if self.output_attentions:
                    attentions.append(layer_outputs[1])
thomwolf's avatar
thomwolf committed
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
        elif self.attn_type == 2: # absolute
            pos_seq = torch.arange(klen - 1, -1, -1.0, device=word_emb.device,
                                   dtype=word_emb.dtype)
            if self.clamp_len > 0:
                pos_seq.clamp_(max=self.clamp_len)
            pos_emb = self.pos_emb(pos_seq)

            core_out = self.drop(word_emb + pos_emb[-qlen:])

            for i, layer in enumerate(self.layers):
1058
                hids.append(core_out)
thomwolf's avatar
thomwolf committed
1059
1060
1061
                mems_i = None if mems is None else mems[i]
                if mems_i is not None and i == 0:
                    mems_i += pos_emb[:mlen]
thomwolf's avatar
thomwolf committed
1062
1063
1064
1065
1066
                layer_outputs = layer(core_out, dec_attn_mask=dec_attn_mask,
                                 mems=mems_i, head_mask=head_mask[i])
                core_out = layer_outputs[0]
                if self.output_attentions:
                    attentions.append(layer_outputs[1])
thomwolf's avatar
thomwolf committed
1067
1068
1069
1070
        elif self.attn_type == 3:
            core_out = self.drop(word_emb)

            for i, layer in enumerate(self.layers):
1071
                hids.append(core_out)
thomwolf's avatar
thomwolf committed
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
                mems_i = None if mems is None else mems[i]
                if mems_i is not None and mlen > 0:
                    cur_emb = self.r_emb[i][:-qlen]
                    cur_size = cur_emb.size(0)
                    if cur_size < mlen:
                        cur_emb_pad = cur_emb[0:1].expand(mlen-cur_size, -1, -1)
                        cur_emb = torch.cat([cur_emb_pad, cur_emb], 0)
                    else:
                        cur_emb = cur_emb[-mlen:]
                    mems_i += cur_emb.view(mlen, 1, -1)
                core_out += self.r_emb[i][-qlen:].view(qlen, 1, -1)

thomwolf's avatar
thomwolf committed
1084
1085
1086
1087
1088
                layer_outputs = layer(core_out, dec_attn_mask=dec_attn_mask,
                                      mems=mems_i, head_mask=head_mask[i])
                core_out = layer_outputs[0]
                if self.output_attentions:
                    attentions.append(layer_outputs[1])
thomwolf's avatar
thomwolf committed
1089
1090
1091
1092
1093

        core_out = self.drop(core_out)

        new_mems = self._update_mems(hids, mems, mlen, qlen)

thomwolf's avatar
thomwolf committed
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
        # We transpose back here to shape [bsz, len, hidden_dim]
        outputs = [core_out.transpose(0, 1).contiguous(), new_mems]
        if self.output_hidden_states:
            # Add last layer and transpose to library standard shape [bsz, len, hidden_dim]
            hids.append(core_out)
            hids = list(t.transpose(0, 1).contiguous() for t in hids)
            outputs.append(hids)
        if self.output_attentions:
            # Transpose to library standard shape [bsz, n_heads, query_seq_len, key_seq_len]
            attentions = list(t.permute(2, 3, 0, 1).contiguous() for t in attentions)
            outputs.append(attentions)
        return outputs  # last hidden state, new_mems, (all hidden states), (all attentions)

    def forward(self, input_ids, mems=None, head_mask=None):
1108
1109
1110
1111
        # the original code for Transformer-XL used shapes [len, bsz] but we want a unified interface in the library
        # so we transpose here from shape [bsz, len] to shape [len, bsz]
        input_ids = input_ids.transpose(0, 1).contiguous()

thomwolf's avatar
thomwolf committed
1112
1113
        if mems is None:
            mems = self.init_mems(input_ids)
thomwolf's avatar
thomwolf committed
1114
        outputs = self._forward(input_ids, mems=mems, head_mask=head_mask)
1115

thomwolf's avatar
thomwolf committed
1116
        return outputs  # last hidden state, new_mems, (all hidden states), (all attentions)
thomwolf's avatar
thomwolf committed
1117
1118


thomwolf's avatar
thomwolf committed
1119
1120
1121
@add_start_docstrings("""The Transformer-XL Model with a language modeling head on top
    (adaptive softmax with weights tied to the adaptive input embeddings)""",
    TRANSFO_XL_START_DOCSTRING, TRANSFO_XL_INPUTS_DOCSTRING)
thomwolf's avatar
thomwolf committed
1122
class TransfoXLLMHeadModel(TransfoXLPreTrainedModel):
thomwolf's avatar
thomwolf committed
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
    r"""
        **lm_labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
            Labels for language modeling.
            Note that the labels **are shifted** inside the model, i.e. you can set ``lm_labels = input_ids``
            Indices are selected in ``[-1, 0, ..., config.vocab_size]``
            All labels set to ``-1`` are ignored (masked), the loss is only
            computed for labels in ``[0, ..., config.vocab_size]``

    Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
        **loss**: (`optional`, returned when ``lm_labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``:
            Language modeling loss.
        **prediction_scores**: ``None`` if ``lm_labels`` is provided else ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, config.vocab_size)``
            Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
            We don't output them when the loss is computed to speedup adaptive softmax decoding.
thomwolf's avatar
thomwolf committed
1137
        **mems**:
thomwolf's avatar
thomwolf committed
1138
1139
1140
1141
1142
1143
1144
            list of ``torch.FloatTensor`` (one for each layer):
            that contains pre-computed hidden-states (key and values in the attention blocks) as computed by the model
            (see `mems` input above). Can be used to speed up sequential decoding and attend to longer context.
        **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
            list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
            of shape ``(batch_size, sequence_length, hidden_size)``:
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
thomwolf's avatar
thomwolf committed
1145
1146
1147
        **attentions**: (`optional`, returned when ``config.output_attentions=True``)
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
thomwolf's avatar
thomwolf committed
1148
1149
1150

    Examples::

wangfei's avatar
wangfei committed
1151
1152
1153
1154
1155
        tokenizer = TransfoXLTokenizer.from_pretrained('transfo-xl-wt103')
        model = TransfoXLLMHeadModel.from_pretrained('transfo-xl-wt103')
        input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0)  # Batch size 1
        outputs = model(input_ids)
        prediction_scores, mems = outputs[:2]
thomwolf's avatar
thomwolf committed
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169

    """
    def __init__(self, config):
        super(TransfoXLLMHeadModel, self).__init__(config)
        self.transformer = TransfoXLModel(config)
        self.sample_softmax = config.sample_softmax
        # use sampled softmax
        if config.sample_softmax > 0:
            self.out_layer = nn.Linear(config.d_model, config.n_token)
            self.sampler = LogUniformSampler(config.n_token, config.sample_softmax)
        # use adaptive softmax (including standard softmax)
        else:
            self.crit = ProjectedAdaptiveLogSoftmax(config.n_token, config.d_embed, config.d_model, 
                                                    config.cutoffs, div_val=config.div_val)
1170
        self.init_weights()
thomwolf's avatar
thomwolf committed
1171
1172
1173
        self.tie_weights()

    def tie_weights(self):
1174
1175
1176
        """
        Run this to be sure output and input (adaptive) softmax weights are tied
        """
thomwolf's avatar
thomwolf committed
1177
1178
1179
1180
1181
1182
1183
1184
        # sampled softmax
        if self.sample_softmax > 0:
            if self.config.tie_weight:
                self.out_layer.weight = self.transformer.word_emb.weight
        # adaptive softmax (including standard softmax)
        else:
            if self.config.tie_weight:
                for i in range(len(self.crit.out_layers)):
thomwolf's avatar
thomwolf committed
1185
1186
                    self._tie_or_clone_weights(self.crit.out_layers[i],
                                               self.transformer.word_emb.emb_layers[i])
thomwolf's avatar
thomwolf committed
1187
1188
1189
            if self.config.tie_projs:
                for i, tie_proj in enumerate(self.config.tie_projs):
                    if tie_proj and self.config.div_val == 1 and self.config.d_model != self.config.d_embed:
thomwolf's avatar
thomwolf committed
1190
1191
1192
1193
                        if self.config.torchscript:
                            self.crit.out_projs[i] = nn.Parameter(self.transformer.word_emb.emb_projs[0].clone())
                        else:
                            self.crit.out_projs[i] = self.transformer.word_emb.emb_projs[0]
thomwolf's avatar
thomwolf committed
1194
                    elif tie_proj and self.config.div_val != 1:
thomwolf's avatar
thomwolf committed
1195
1196
1197
1198
                        if self.config.torchscript:
                            self.crit.out_projs[i] = nn.Parameter(self.transformer.word_emb.emb_projs[i].clone())
                        else:
                            self.crit.out_projs[i] = self.transformer.word_emb.emb_projs[i]
thomwolf's avatar
thomwolf committed
1199
1200
1201
1202
1203
1204
1205

    def reset_length(self, tgt_len, ext_len, mem_len):
        self.transformer.reset_length(tgt_len, ext_len, mem_len)

    def init_mems(self, data):
        return self.transformer.init_mems(data)

thomwolf's avatar
thomwolf committed
1206
    def forward(self, input_ids, labels=None, mems=None, head_mask=None):
1207
1208
        bsz = input_ids.size(0)
        tgt_len = input_ids.size(1)
thomwolf's avatar
thomwolf committed
1209

thomwolf's avatar
thomwolf committed
1210
        transformer_outputs = self.transformer(input_ids, mems=mems, head_mask=head_mask)
thomwolf's avatar
thomwolf committed
1211

thomwolf's avatar
thomwolf committed
1212
        last_hidden = transformer_outputs[0]
1213
        pred_hid = last_hidden[:, -tgt_len:]
thomwolf's avatar
thomwolf committed
1214
        outputs = transformer_outputs[1:]
thomwolf's avatar
thomwolf committed
1215
        if self.sample_softmax > 0 and self.training:
thomwolf's avatar
thomwolf committed
1216
            assert self.config.tie_weight
thomwolf's avatar
thomwolf committed
1217
            logit = sample_logits(self.transformer.word_emb, self.out_layer.bias, labels, pred_hid, self.sampler)
1218
            softmax_output = -F.log_softmax(logit, -1)[:, :, 0]
thomwolf's avatar
thomwolf committed
1219
1220
1221
1222
            outputs = [softmax_output] + outputs
            if labels is not None:
                # TODO: This is not implemented
                raise NotImplementedError
thomwolf's avatar
thomwolf committed
1223
        else:
thomwolf's avatar
thomwolf committed
1224
1225
            softmax_output = self.crit(pred_hid.view(-1, pred_hid.size(-1)), labels)
            if labels is None:
1226
                softmax_output = softmax_output.view(bsz, tgt_len, -1)
thomwolf's avatar
thomwolf committed
1227
                outputs = [softmax_output] + outputs
thomwolf's avatar
thomwolf committed
1228
            else:
1229
                softmax_output = softmax_output.view(bsz, tgt_len)
thomwolf's avatar
thomwolf committed
1230
                outputs = [softmax_output, None] + outputs
thomwolf's avatar
thomwolf committed
1231

thomwolf's avatar
thomwolf committed
1232
        return outputs  # (loss), logits or None if labels is not None (speed up adaptive softmax), new_mems, (all hidden states), (all attentions)