modeling_transfo_xl.py 57.6 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
# coding=utf-8
thomwolf's avatar
thomwolf committed
2
# Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team.
thomwolf's avatar
thomwolf committed
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch Transformer XL model.
17
    Adapted from https://github.com/kimiyoung/transformer-xl.
thomwolf's avatar
thomwolf committed
18
19
20
    In particular https://github.com/kimiyoung/transformer-xl/blob/master/pytorch/mem_transformer.py
"""

21
22
from __future__ import absolute_import, division, print_function, unicode_literals

thomwolf's avatar
thomwolf committed
23
24
25
26
27
import os
import json
import math
import logging
import collections
thomwolf's avatar
thomwolf committed
28
29
import sys
from io import open
thomwolf's avatar
thomwolf committed
30
31
32

import torch
import torch.nn as nn
33
import torch.nn.functional as F
thomwolf's avatar
thomwolf committed
34
35
36
from torch.nn import CrossEntropyLoss
from torch.nn.parameter import Parameter

thomwolf's avatar
thomwolf committed
37
from .modeling_bert import BertLayerNorm as LayerNorm
thomwolf's avatar
thomwolf committed
38
from .modeling_transfo_xl_utilities import ProjectedAdaptiveLogSoftmax, sample_logits
thomwolf's avatar
thomwolf committed
39
from .modeling_utils import (PretrainedConfig, PreTrainedModel, add_start_docstrings)
thomwolf's avatar
thomwolf committed
40
41
42

logger = logging.getLogger(__name__)

43
TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_MAP = {
44
45
    'transfo-xl-wt103': "https://s3.amazonaws.com/models.huggingface.co/bert/transfo-xl-wt103-pytorch_model.bin",
}
46
TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP = {
thomwolf's avatar
thomwolf committed
47
    'transfo-xl-wt103': "https://s3.amazonaws.com/models.huggingface.co/bert/transfo-xl-wt103-config.json",
thomwolf's avatar
thomwolf committed
48
}
49

50
51
52
53
54
def build_tf_to_pytorch_map(model, config):
    """ A map of modules from TF to PyTorch.
        This time I use a map to keep the PyTorch model as identical to the original PyTorch model as possible.
    """
    tf_to_pt_map = {}
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81

    if hasattr(model, 'transformer'):
        # We are loading in a TransfoXLLMHeadModel => we will load also the Adaptive Softmax
        tf_to_pt_map.update({
            "transformer/adaptive_softmax/cutoff_0/cluster_W": model.crit.cluster_weight,
            "transformer/adaptive_softmax/cutoff_0/cluster_b": model.crit.cluster_bias})
        for i, (out_l, proj_l, tie_proj) in enumerate(zip(
                                model.crit.out_layers,
                                model.crit.out_projs,
                                config.tie_projs)):
            layer_str = "transformer/adaptive_softmax/cutoff_%d/" % i
            if config.tie_weight:
                tf_to_pt_map.update({
                    layer_str + 'b': out_l.bias})
            else:
                raise NotImplementedError
                # I don't think this is implemented in the TF code
                tf_to_pt_map.update({
                    layer_str + 'lookup_table': out_l.weight,
                    layer_str + 'b': out_l.bias})
            if not tie_proj:
                tf_to_pt_map.update({
                    layer_str + 'proj': proj_l
                    })
        # Now load the rest of the transformer
        model = model.transformer

thomwolf's avatar
thomwolf committed
82
    # Embeddings
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
    for i, (embed_l, proj_l) in enumerate(zip(model.word_emb.emb_layers, model.word_emb.emb_projs)):
        layer_str = "transformer/adaptive_embed/cutoff_%d/" % i
        tf_to_pt_map.update({
            layer_str + 'lookup_table': embed_l.weight,
            layer_str + 'proj_W': proj_l
            })

    # Transformer blocks
    for i, b in enumerate(model.layers):
        layer_str = "transformer/layer_%d/" % i
        tf_to_pt_map.update({
            layer_str + "rel_attn/LayerNorm/gamma": b.dec_attn.layer_norm.weight,
            layer_str + "rel_attn/LayerNorm/beta": b.dec_attn.layer_norm.bias,
            layer_str + "rel_attn/o/kernel": b.dec_attn.o_net.weight,
            layer_str + "rel_attn/qkv/kernel": b.dec_attn.qkv_net.weight,
            layer_str + "rel_attn/r/kernel": b.dec_attn.r_net.weight,
            layer_str + "ff/LayerNorm/gamma": b.pos_ff.layer_norm.weight,
            layer_str + "ff/LayerNorm/beta": b.pos_ff.layer_norm.bias,
            layer_str + "ff/layer_1/kernel": b.pos_ff.CoreNet[0].weight,
            layer_str + "ff/layer_1/bias": b.pos_ff.CoreNet[0].bias,
            layer_str + "ff/layer_2/kernel": b.pos_ff.CoreNet[3].weight,
            layer_str + "ff/layer_2/bias": b.pos_ff.CoreNet[3].bias,
        })

    # Relative positioning biases
    if config.untie_r:
        r_r_list = []
        r_w_list = []
        for b in model.layers:
            r_r_list.append(b.dec_attn.r_r_bias)
            r_w_list.append(b.dec_attn.r_w_bias)
    else:
        r_r_list = [model.r_r_bias]
        r_w_list = [model.r_w_bias]
    tf_to_pt_map.update({
        'transformer/r_r_bias': r_r_list,
        'transformer/r_w_bias': r_w_list})
    return tf_to_pt_map

def load_tf_weights_in_transfo_xl(model, config, tf_path):
    """ Load tf checkpoints in a pytorch model
    """
125
126
127
    try:
        import numpy as np
        import tensorflow as tf
thomwolf's avatar
thomwolf committed
128
    except ImportError:
thomwolf's avatar
thomwolf committed
129
        logger.error("Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see "
130
131
            "https://www.tensorflow.org/install/ for installation instructions.")
        raise
132
133
134
135
136
137
138
    # Build TF to PyTorch weights loading map
    tf_to_pt_map = build_tf_to_pytorch_map(model, config)

    # Load weights from TF model
    init_vars = tf.train.list_variables(tf_path)
    tf_weights = {}
    for name, shape in init_vars:
thomwolf's avatar
thomwolf committed
139
        logger.info("Loading TF weight {} with shape {}".format(name, shape))
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
        array = tf.train.load_variable(tf_path, name)
        tf_weights[name] = array

    for name, pointer in tf_to_pt_map.items():
        assert name in tf_weights
        array = tf_weights[name]
        # adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v
        # which are not required for using pretrained model
        if 'kernel' in name or 'proj' in name:
            array = np.transpose(array)
        if ('r_r_bias' in name or 'r_w_bias' in name) and len(pointer) > 1:
            # Here we will split the TF weigths
            assert len(pointer) == array.shape[0]
            for i, p_i in enumerate(pointer):
                arr_i = array[i, ...]
                try:
                    assert p_i.shape == arr_i.shape
                except AssertionError as e:
                    e.args += (p_i.shape, arr_i.shape)
                    raise
thomwolf's avatar
thomwolf committed
160
                logger.info("Initialize PyTorch weight {} for layer {}".format(name, i))
161
162
163
164
165
166
167
                p_i.data = torch.from_numpy(arr_i)
        else:
            try:
                assert pointer.shape == array.shape
            except AssertionError as e:
                e.args += (pointer.shape, array.shape)
                raise
thomwolf's avatar
thomwolf committed
168
            logger.info("Initialize PyTorch weight {}".format(name))
169
170
171
172
173
            pointer.data = torch.from_numpy(array)
        tf_weights.pop(name, None)
        tf_weights.pop(name + '/Adam', None)
        tf_weights.pop(name + '/Adam_1', None)

thomwolf's avatar
thomwolf committed
174
    logger.info("Weights not copied to PyTorch model: {}".format(', '.join(tf_weights.keys())))
175
176
177
    return model


178
class TransfoXLConfig(PretrainedConfig):
thomwolf's avatar
thomwolf committed
179
    """Configuration class to store the configuration of a `TransfoXLModel`.
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211

        Args:
            vocab_size_or_config_json_file: Vocabulary size of `inputs_ids` in `TransfoXLModel` or a configuration json file.
            cutoffs: cutoffs for the adaptive softmax
            d_model: Dimensionality of the model's hidden states.
            d_embed: Dimensionality of the embeddings
            d_head: Dimensionality of the model's heads.
            div_val: divident value for adapative input and softmax
            pre_lnorm: apply LayerNorm to the input instead of the output
            d_inner: Inner dimension in FF
            n_layer: Number of hidden layers in the Transformer encoder.
            n_head: Number of attention heads for each attention layer in
                the Transformer encoder.
            tgt_len: number of tokens to predict
            ext_len: length of the extended context
            mem_len: length of the retained previous heads
            same_length: use the same attn length for all tokens
            proj_share_all_but_first: True to share all but first projs, False not to share.
            attn_type: attention type. 0 for Transformer-XL, 1 for Shaw et al, 2 for Vaswani et al, 3 for Al Rfou et al.
            clamp_len: use the same pos embeddings after clamp_len
            sample_softmax: number of samples in sampled softmax
            adaptive: use adaptive softmax
            tie_weight: tie the word embedding and softmax weights
            dropout: The dropout probabilitiy for all fully connected
                layers in the embeddings, encoder, and pooler.
            dropatt: The dropout ratio for the attention probabilities.
            untie_r: untie relative position biases
            embd_pdrop: The dropout ratio for the embeddings.
            init: parameter initializer to use
            init_range: parameters initialized by U(-init_range, init_range).
            proj_init_std: parameters initialized by N(0, init_std)
            init_std: parameters initialized by N(0, init_std)
thomwolf's avatar
thomwolf committed
212
    """
213
    pretrained_config_archive_map = TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP
214

thomwolf's avatar
thomwolf committed
215
216
217
    def __init__(self,
                 vocab_size_or_config_json_file=267735,
                 cutoffs=[20000, 40000, 200000],
thomwolf's avatar
thomwolf committed
218
219
220
221
222
223
                 d_model=1024,
                 d_embed=1024,
                 n_head=16,
                 d_head=64,
                 d_inner=4096,
                 div_val=4,
thomwolf's avatar
thomwolf committed
224
                 pre_lnorm=False,
thomwolf's avatar
thomwolf committed
225
                 n_layer=18,
226
                 tgt_len=128,
thomwolf's avatar
thomwolf committed
227
                 ext_len=0,
228
229
230
231
                 mem_len=1600,
                 clamp_len=1000,
                 same_length=True,
                 proj_share_all_but_first=True,
thomwolf's avatar
thomwolf committed
232
233
234
                 attn_type=0,
                 sample_softmax=-1,
                 adaptive=True,
thomwolf's avatar
thomwolf committed
235
                 tie_weight=True,
thomwolf's avatar
thomwolf committed
236
237
                 dropout=0.1,
                 dropatt=0.0,
thomwolf's avatar
thomwolf committed
238
                 untie_r=True,
thomwolf's avatar
thomwolf committed
239
240
241
                 init="normal",
                 init_range=0.01,
                 proj_init_std=0.01,
thomwolf's avatar
thomwolf committed
242
243
                 init_std=0.02,
                 **kwargs):
thomwolf's avatar
thomwolf committed
244
245
        """Constructs TransfoXLConfig.
        """
thomwolf's avatar
thomwolf committed
246
247
        super(TransfoXLConfig, self).__init__(**kwargs)

thomwolf's avatar
thomwolf committed
248
249
        if isinstance(vocab_size_or_config_json_file, str) or (sys.version_info[0] == 2
                        and isinstance(vocab_size_or_config_json_file, unicode)):
thomwolf's avatar
thomwolf committed
250
251
252
253
254
            with open(vocab_size_or_config_json_file, "r", encoding='utf-8') as reader:
                json_config = json.loads(reader.read())
            for key, value in json_config.items():
                self.__dict__[key] = value
        elif isinstance(vocab_size_or_config_json_file, int):
thomwolf's avatar
thomwolf committed
255
            self.n_token = vocab_size_or_config_json_file
thomwolf's avatar
thomwolf committed
256
257
            self.cutoffs = []
            self.cutoffs.extend(cutoffs)
thomwolf's avatar
thomwolf committed
258
            self.tie_weight = tie_weight
259
260
261
262
            if proj_share_all_but_first:
                self.tie_projs = [False] + [True] * len(self.cutoffs)
            else:
                self.tie_projs = [False] + [False] * len(self.cutoffs)
thomwolf's avatar
thomwolf committed
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
            self.d_model = d_model
            self.d_embed = d_embed
            self.d_head = d_head
            self.d_inner = d_inner
            self.div_val = div_val
            self.pre_lnorm = pre_lnorm
            self.n_layer = n_layer
            self.n_head = n_head
            self.tgt_len = tgt_len
            self.ext_len = ext_len
            self.mem_len = mem_len
            self.same_length = same_length
            self.attn_type = attn_type
            self.clamp_len = clamp_len
            self.sample_softmax = sample_softmax
            self.adaptive = adaptive
            self.dropout = dropout
            self.dropatt = dropatt
thomwolf's avatar
thomwolf committed
281
            self.untie_r = untie_r
thomwolf's avatar
thomwolf committed
282
283
284
285
286
287
            self.init = init
            self.init_range = init_range
            self.proj_init_std = proj_init_std
            self.init_std = init_std
        else:
            raise ValueError("First argument must be either a vocabulary size (int)"
VictorSanh's avatar
VictorSanh committed
288
                             " or the path to a pretrained model config file (str)")
thomwolf's avatar
thomwolf committed
289

290
291
292
293
    @property
    def max_position_embeddings(self):
        return self.tgt_len + self.ext_len + self.mem_len

thomwolf's avatar
thomwolf committed
294
295
296
297
    @property
    def vocab_size(self):
        return self.n_token

thomwolf's avatar
thomwolf committed
298
299
300
301
    @vocab_size.setter
    def vocab_size(self, value):
        self.n_token = value

thomwolf's avatar
thomwolf committed
302
303
304
305
306
307
308
309
310
311
312
    @property
    def hidden_size(self):
        return self.d_model

    @property
    def num_attention_heads(self):
        return self.n_head

    @property
    def num_hidden_layers(self):
        return self.n_layer
thomwolf's avatar
thomwolf committed
313

thomwolf's avatar
thomwolf committed
314

thomwolf's avatar
thomwolf committed
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
class PositionalEmbedding(nn.Module):
    def __init__(self, demb):
        super(PositionalEmbedding, self).__init__()

        self.demb = demb

        inv_freq = 1 / (10000 ** (torch.arange(0.0, demb, 2.0) / demb))
        self.register_buffer('inv_freq', inv_freq)

    def forward(self, pos_seq, bsz=None):
        sinusoid_inp = torch.ger(pos_seq, self.inv_freq)
        pos_emb = torch.cat([sinusoid_inp.sin(), sinusoid_inp.cos()], dim=-1)

        if bsz is not None:
            return pos_emb[:,None,:].expand(-1, bsz, -1)
        else:
            return pos_emb[:,None,:]


thomwolf's avatar
thomwolf committed
334

thomwolf's avatar
thomwolf committed
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
class PositionwiseFF(nn.Module):
    def __init__(self, d_model, d_inner, dropout, pre_lnorm=False):
        super(PositionwiseFF, self).__init__()

        self.d_model = d_model
        self.d_inner = d_inner
        self.dropout = dropout

        self.CoreNet = nn.Sequential(
            nn.Linear(d_model, d_inner), nn.ReLU(inplace=True),
            nn.Dropout(dropout),
            nn.Linear(d_inner, d_model),
            nn.Dropout(dropout),
        )

thomwolf's avatar
thomwolf committed
350
        self.layer_norm = LayerNorm(d_model)
thomwolf's avatar
thomwolf committed
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369

        self.pre_lnorm = pre_lnorm

    def forward(self, inp):
        if self.pre_lnorm:
            ##### layer normalization + positionwise feed-forward
            core_out = self.CoreNet(self.layer_norm(inp))

            ##### residual connection
            output = core_out + inp
        else:
            ##### positionwise feed-forward
            core_out = self.CoreNet(inp)

            ##### residual connection + layer normalization
            output = self.layer_norm(inp + core_out)

        return output

thomwolf's avatar
thomwolf committed
370
371


thomwolf's avatar
thomwolf committed
372
373
class MultiHeadAttn(nn.Module):
    def __init__(self, n_head, d_model, d_head, dropout, dropatt=0, 
thomwolf's avatar
thomwolf committed
374
                 pre_lnorm=False, r_r_bias=None, r_w_bias=None, output_attentions=False):
thomwolf's avatar
thomwolf committed
375
376
        super(MultiHeadAttn, self).__init__()

thomwolf's avatar
thomwolf committed
377
        self.output_attentions = output_attentions
thomwolf's avatar
thomwolf committed
378
379
380
381
382
383
384
385
386
387
388
389
        self.n_head = n_head
        self.d_model = d_model
        self.d_head = d_head
        self.dropout = dropout

        self.q_net = nn.Linear(d_model, n_head * d_head, bias=False)
        self.kv_net = nn.Linear(d_model, 2 * n_head * d_head, bias=False)

        self.drop = nn.Dropout(dropout)
        self.dropatt = nn.Dropout(dropatt)
        self.o_net = nn.Linear(n_head * d_head, d_model, bias=False)

thomwolf's avatar
thomwolf committed
390
        self.layer_norm = LayerNorm(d_model)
thomwolf's avatar
thomwolf committed
391
392
393
394
395

        self.scale = 1 / (d_head ** 0.5)

        self.pre_lnorm = pre_lnorm

thomwolf's avatar
thomwolf committed
396
        if r_r_bias is None or r_w_bias is None: # Biases are not shared
thomwolf's avatar
thomwolf committed
397
398
            self.r_r_bias = nn.Parameter(torch.FloatTensor(self.n_head, self.d_head))
            self.r_w_bias = nn.Parameter(torch.FloatTensor(self.n_head, self.d_head))
thomwolf's avatar
thomwolf committed
399
400
401
402
        else:
            self.r_r_bias = r_r_bias
            self.r_w_bias = r_w_bias

thomwolf's avatar
thomwolf committed
403
    def forward(self, h, attn_mask=None, mems=None, head_mask=None):
thomwolf's avatar
thomwolf committed
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
        ##### multihead attention
        # [hlen x bsz x n_head x d_head]

        if mems is not None:
            c = torch.cat([mems, h], 0)
        else:
            c = h

        if self.pre_lnorm:
            ##### layer normalization
            c = self.layer_norm(c)

        head_q = self.q_net(h)
        head_k, head_v = torch.chunk(self.kv_net(c), 2, -1)

        head_q = head_q.view(h.size(0), h.size(1), self.n_head, self.d_head)
        head_k = head_k.view(c.size(0), c.size(1), self.n_head, self.d_head)
        head_v = head_v.view(c.size(0), c.size(1), self.n_head, self.d_head)

        # [qlen x klen x bsz x n_head]
        attn_score = torch.einsum('ibnd,jbnd->ijbn', (head_q, head_k))
        attn_score.mul_(self.scale)
426
427
        if attn_mask is not None and torch.sum(attn_mask).item():
            attn_mask = (attn_mask == 1)  # Switch to bool
thomwolf's avatar
thomwolf committed
428
429
430
431
432
433
434
435
436
            if attn_mask.dim() == 2:
                attn_score.masked_fill_(attn_mask[None,:,:,None], -float('inf'))
            elif attn_mask.dim() == 3:
                attn_score.masked_fill_(attn_mask[:,:,:,None], -float('inf'))

        # [qlen x klen x bsz x n_head]
        attn_prob = F.softmax(attn_score, dim=1)
        attn_prob = self.dropatt(attn_prob)

thomwolf's avatar
thomwolf committed
437
438
439
440
        # Mask heads if we want to
        if head_mask is not None:
            attn_prob = attn_prob * head_mask

thomwolf's avatar
thomwolf committed
441
442
443
444
445
446
447
448
449
450
451
        # [qlen x klen x bsz x n_head] + [klen x bsz x n_head x d_head] -> [qlen x bsz x n_head x d_head]
        attn_vec = torch.einsum('ijbn,jbnd->ibnd', (attn_prob, head_v))
        attn_vec = attn_vec.contiguous().view(
            attn_vec.size(0), attn_vec.size(1), self.n_head * self.d_head)

        ##### linear projection
        attn_out = self.o_net(attn_vec)
        attn_out = self.drop(attn_out)

        if self.pre_lnorm:
            ##### residual connection
thomwolf's avatar
thomwolf committed
452
            outputs = [h + attn_out]
thomwolf's avatar
thomwolf committed
453
454
        else:
            ##### residual connection + layer normalization
thomwolf's avatar
thomwolf committed
455
            outputs = [self.layer_norm(h + attn_out)]
thomwolf's avatar
thomwolf committed
456

thomwolf's avatar
thomwolf committed
457
458
459
460
        if self.output_attentions:
            outputs.append(attn_prob)

        return outputs
thomwolf's avatar
thomwolf committed
461
462
463

class RelMultiHeadAttn(nn.Module):
    def __init__(self, n_head, d_model, d_head, dropout, dropatt=0,
thomwolf's avatar
thomwolf committed
464
                 tgt_len=None, ext_len=None, mem_len=None, pre_lnorm=False,
thomwolf's avatar
thomwolf committed
465
                 r_r_bias=None, r_w_bias=None, output_attentions=False):
thomwolf's avatar
thomwolf committed
466
467
        super(RelMultiHeadAttn, self).__init__()

thomwolf's avatar
thomwolf committed
468
        self.output_attentions = output_attentions
thomwolf's avatar
thomwolf committed
469
470
471
472
473
474
475
476
477
478
479
        self.n_head = n_head
        self.d_model = d_model
        self.d_head = d_head
        self.dropout = dropout

        self.qkv_net = nn.Linear(d_model, 3 * n_head * d_head, bias=False)

        self.drop = nn.Dropout(dropout)
        self.dropatt = nn.Dropout(dropatt)
        self.o_net = nn.Linear(n_head * d_head, d_model, bias=False)

thomwolf's avatar
thomwolf committed
480
        self.layer_norm = LayerNorm(d_model)
thomwolf's avatar
thomwolf committed
481
482
483
484
485

        self.scale = 1 / (d_head ** 0.5)

        self.pre_lnorm = pre_lnorm

thomwolf's avatar
thomwolf committed
486
        if r_r_bias is None or r_w_bias is None: # Biases are not shared
thomwolf's avatar
thomwolf committed
487
488
            self.r_r_bias = nn.Parameter(torch.FloatTensor(self.n_head, self.d_head))
            self.r_w_bias = nn.Parameter(torch.FloatTensor(self.n_head, self.d_head))
thomwolf's avatar
thomwolf committed
489
490
491
492
        else:
            self.r_r_bias = r_r_bias
            self.r_w_bias = r_w_bias

thomwolf's avatar
thomwolf committed
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
    def _parallelogram_mask(self, h, w, left=False):
        mask = torch.ones((h, w)).byte()
        m = min(h, w)
        mask[:m,:m] = torch.triu(mask[:m,:m])
        mask[-m:,-m:] = torch.tril(mask[-m:,-m:])

        if left:
            return mask
        else:
            return mask.flip(0)

    def _shift(self, x, qlen, klen, mask, left=False):
        if qlen > 1:
            zero_pad = torch.zeros((x.size(0), qlen-1, x.size(2), x.size(3)),
                                    device=x.device, dtype=x.dtype)
        else:
            zero_pad = torch.zeros(0, device=x.device, dtype=x.dtype)

        if left:
            mask = mask.flip(1)
            x_padded = torch.cat([zero_pad, x], dim=1).expand(qlen, -1, -1, -1)
        else:
            x_padded = torch.cat([x, zero_pad], dim=1).expand(qlen, -1, -1, -1)

        x = x_padded.masked_select(mask[:,:,None,None]) \
                    .view(qlen, klen, x.size(2), x.size(3))

        return x

    def _rel_shift(self, x, zero_triu=False):
thomwolf's avatar
thomwolf committed
523
524
        zero_pad_shape = (x.size(0), 1) + x.size()[2:]
        zero_pad = torch.zeros(zero_pad_shape, device=x.device, dtype=x.dtype)
thomwolf's avatar
thomwolf committed
525
526
        x_padded = torch.cat([zero_pad, x], dim=1)

thomwolf's avatar
thomwolf committed
527
528
        x_padded_shape = (x.size(1) + 1, x.size(0)) + x.size()[2:]
        x_padded = x_padded.view(*x_padded_shape)
thomwolf's avatar
thomwolf committed
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546

        x = x_padded[1:].view_as(x)

        if zero_triu:
            ones = torch.ones((x.size(0), x.size(1)))
            x = x * torch.tril(ones, x.size(1) - x.size(0))[:,:,None,None]

        return x

    def forward(self, w, r, attn_mask=None, mems=None):
        raise NotImplementedError

class RelPartialLearnableMultiHeadAttn(RelMultiHeadAttn):
    def __init__(self, *args, **kwargs):
        super(RelPartialLearnableMultiHeadAttn, self).__init__(*args, **kwargs)

        self.r_net = nn.Linear(self.d_model, self.n_head * self.d_head, bias=False)

thomwolf's avatar
thomwolf committed
547
    def forward(self, w, r, attn_mask=None, mems=None, head_mask=None):
thomwolf's avatar
thomwolf committed
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
        qlen, rlen, bsz = w.size(0), r.size(0), w.size(1)

        if mems is not None:
            cat = torch.cat([mems, w], 0)
            if self.pre_lnorm:
                w_heads = self.qkv_net(self.layer_norm(cat))
            else:
                w_heads = self.qkv_net(cat)
            r_head_k = self.r_net(r)

            w_head_q, w_head_k, w_head_v = torch.chunk(w_heads, 3, dim=-1)
            w_head_q = w_head_q[-qlen:]
        else:
            if self.pre_lnorm:
                w_heads = self.qkv_net(self.layer_norm(w))
            else:
                w_heads = self.qkv_net(w)
            r_head_k = self.r_net(r)

            w_head_q, w_head_k, w_head_v = torch.chunk(w_heads, 3, dim=-1)

        klen = w_head_k.size(0)

        w_head_q = w_head_q.view(qlen, bsz, self.n_head, self.d_head)           # qlen x bsz x n_head x d_head
        w_head_k = w_head_k.view(klen, bsz, self.n_head, self.d_head)           # qlen x bsz x n_head x d_head
        w_head_v = w_head_v.view(klen, bsz, self.n_head, self.d_head)           # qlen x bsz x n_head x d_head

        r_head_k = r_head_k.view(rlen, self.n_head, self.d_head)                # qlen x n_head x d_head

        #### compute attention score
578
        rw_head_q = w_head_q + self.r_w_bias                                    # qlen x bsz x n_head x d_head
thomwolf's avatar
thomwolf committed
579
580
        AC = torch.einsum('ibnd,jbnd->ijbn', (rw_head_q, w_head_k))             # qlen x klen x bsz x n_head

thomwolf's avatar
thomwolf committed
581
        rr_head_q = w_head_q + self.r_r_bias
thomwolf's avatar
thomwolf committed
582
583
584
585
586
587
588
589
        BD = torch.einsum('ibnd,jnd->ijbn', (rr_head_q, r_head_k))              # qlen x klen x bsz x n_head
        BD = self._rel_shift(BD)

        # [qlen x klen x bsz x n_head]
        attn_score = AC + BD
        attn_score.mul_(self.scale)

        #### compute attention probability
590
591
        if attn_mask is not None and torch.sum(attn_mask).item():
            attn_mask = (attn_mask == 1)  # Switch to bool
thomwolf's avatar
thomwolf committed
592
593
            if attn_mask.dim() == 2:
                attn_score = attn_score.float().masked_fill(
594
                    attn_mask[None,:,:,None], -1e30).type_as(attn_score)
thomwolf's avatar
thomwolf committed
595
596
            elif attn_mask.dim() == 3:
                attn_score = attn_score.float().masked_fill(
597
                    attn_mask[:,:,:,None], -1e30).type_as(attn_score)
thomwolf's avatar
thomwolf committed
598
599
600
601
602

        # [qlen x klen x bsz x n_head]
        attn_prob = F.softmax(attn_score, dim=1)
        attn_prob = self.dropatt(attn_prob)

thomwolf's avatar
thomwolf committed
603
604
605
606
        # Mask heads if we want to
        if head_mask is not None:
            attn_prob = attn_prob * head_mask

thomwolf's avatar
thomwolf committed
607
608
609
610
611
612
613
614
615
616
617
618
619
        #### compute attention vector
        attn_vec = torch.einsum('ijbn,jbnd->ibnd', (attn_prob, w_head_v))

        # [qlen x bsz x n_head x d_head]
        attn_vec = attn_vec.contiguous().view(
            attn_vec.size(0), attn_vec.size(1), self.n_head * self.d_head)

        ##### linear projection
        attn_out = self.o_net(attn_vec)
        attn_out = self.drop(attn_out)

        if self.pre_lnorm:
            ##### residual connection
thomwolf's avatar
thomwolf committed
620
            outputs = [w + attn_out]
thomwolf's avatar
thomwolf committed
621
622
        else:
            ##### residual connection + layer normalization
thomwolf's avatar
thomwolf committed
623
            outputs = [self.layer_norm(w + attn_out)]
thomwolf's avatar
thomwolf committed
624

thomwolf's avatar
thomwolf committed
625
626
627
628
        if self.output_attentions:
            outputs.append(attn_prob)

        return outputs
thomwolf's avatar
thomwolf committed
629
630
631
632
633

class RelLearnableMultiHeadAttn(RelMultiHeadAttn):
    def __init__(self, *args, **kwargs):
        super(RelLearnableMultiHeadAttn, self).__init__(*args, **kwargs)

thomwolf's avatar
thomwolf committed
634
    def forward(self, w, r_emb, r_w_bias, r_bias, attn_mask=None, mems=None, head_mask=None):
thomwolf's avatar
thomwolf committed
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
        # r_emb: [klen, n_head, d_head], used for term B
        # r_w_bias: [n_head, d_head], used for term C
        # r_bias: [klen, n_head], used for term D

        qlen, bsz = w.size(0), w.size(1)

        if mems is not None:
            cat = torch.cat([mems, w], 0)
            if self.pre_lnorm:
                w_heads = self.qkv_net(self.layer_norm(cat))
            else:
                w_heads = self.qkv_net(cat)
            w_head_q, w_head_k, w_head_v = torch.chunk(w_heads, 3, dim=-1)

            w_head_q = w_head_q[-qlen:]
        else:
            if self.pre_lnorm:
                w_heads = self.qkv_net(self.layer_norm(w))
            else:
                w_heads = self.qkv_net(w)
            w_head_q, w_head_k, w_head_v = torch.chunk(w_heads, 3, dim=-1)

        klen = w_head_k.size(0)

        w_head_q = w_head_q.view(qlen, bsz, self.n_head, self.d_head)
        w_head_k = w_head_k.view(klen, bsz, self.n_head, self.d_head)
        w_head_v = w_head_v.view(klen, bsz, self.n_head, self.d_head)

        if klen > r_emb.size(0):
            r_emb_pad = r_emb[0:1].expand(klen-r_emb.size(0), -1, -1)
            r_emb = torch.cat([r_emb_pad, r_emb], 0)
            r_bias_pad = r_bias[0:1].expand(klen-r_bias.size(0), -1)
            r_bias = torch.cat([r_bias_pad, r_bias], 0)
        else:
            r_emb = r_emb[-klen:]
            r_bias = r_bias[-klen:]

        #### compute attention score
        rw_head_q = w_head_q + r_w_bias[None]                                   # qlen x bsz x n_head x d_head

        AC = torch.einsum('ibnd,jbnd->ijbn', (rw_head_q, w_head_k))             # qlen x klen x bsz x n_head
        B_ = torch.einsum('ibnd,jnd->ijbn', (w_head_q, r_emb))                  # qlen x klen x bsz x n_head
        D_ = r_bias[None, :, None]                                              # 1    x klen x 1   x n_head
        BD = self._rel_shift(B_ + D_)

        # [qlen x klen x bsz x n_head]
        attn_score = AC + BD
        attn_score.mul_(self.scale)

        #### compute attention probability
685
686
        if attn_mask is not None and torch.sum(attn_mask).item():
            attn_mask = (attn_mask == 1)  # Switch to bool
thomwolf's avatar
thomwolf committed
687
688
689
690
691
692
693
694
695
            if attn_mask.dim() == 2:
                attn_score.masked_fill_(attn_mask[None,:,:,None], -float('inf'))
            elif attn_mask.dim() == 3:
                attn_score.masked_fill_(attn_mask[:,:,:,None], -float('inf'))

        # [qlen x klen x bsz x n_head]
        attn_prob = F.softmax(attn_score, dim=1)
        attn_prob = self.dropatt(attn_prob)

thomwolf's avatar
thomwolf committed
696
697
698
        if head_mask is not None:
            attn_prob = attn_prob * head_mask

thomwolf's avatar
thomwolf committed
699
700
701
702
703
704
705
706
707
708
709
710
711
        #### compute attention vector
        attn_vec = torch.einsum('ijbn,jbnd->ibnd', (attn_prob, w_head_v))

        # [qlen x bsz x n_head x d_head]
        attn_vec = attn_vec.contiguous().view(
            attn_vec.size(0), attn_vec.size(1), self.n_head * self.d_head)

        ##### linear projection
        attn_out = self.o_net(attn_vec)
        attn_out = self.drop(attn_out)

        if self.pre_lnorm:
            ##### residual connection
thomwolf's avatar
thomwolf committed
712
            outputs = [w + attn_out]
thomwolf's avatar
thomwolf committed
713
714
        else:
            ##### residual connection + layer normalization
thomwolf's avatar
thomwolf committed
715
716
717
718
719
720
721
            outputs = [self.layer_norm(w + attn_out)]

        if self.output_attentions:
            outputs.append(attn_prob)

        return outputs

thomwolf's avatar
thomwolf committed
722
723
724
725
726
727
728
729
730
731


class DecoderLayer(nn.Module):
    def __init__(self, n_head, d_model, d_head, d_inner, dropout, **kwargs):
        super(DecoderLayer, self).__init__()

        self.dec_attn = MultiHeadAttn(n_head, d_model, d_head, dropout, **kwargs)
        self.pos_ff = PositionwiseFF(d_model, d_inner, dropout, 
                                     pre_lnorm=kwargs.get('pre_lnorm'))

thomwolf's avatar
thomwolf committed
732
    def forward(self, dec_inp, dec_attn_mask=None, mems=None, head_mask=None):
thomwolf's avatar
thomwolf committed
733

thomwolf's avatar
thomwolf committed
734
735
736
        attn_outputs = self.dec_attn(dec_inp, attn_mask=dec_attn_mask,
                               mems=mems, head_mask=head_mask)
        ff_output = self.pos_ff(attn_outputs[0])
thomwolf's avatar
thomwolf committed
737

thomwolf's avatar
thomwolf committed
738
739
740
        outputs = [ff_output] + attn_outputs[1:]

        return outputs
thomwolf's avatar
thomwolf committed
741
742
743
744
745
746
747
748
749
750
751

class RelLearnableDecoderLayer(nn.Module):
    def __init__(self, n_head, d_model, d_head, d_inner, dropout,
                 **kwargs):
        super(RelLearnableDecoderLayer, self).__init__()

        self.dec_attn = RelLearnableMultiHeadAttn(n_head, d_model, d_head, dropout,
                                         **kwargs)
        self.pos_ff = PositionwiseFF(d_model, d_inner, dropout, 
                                     pre_lnorm=kwargs.get('pre_lnorm'))

thomwolf's avatar
thomwolf committed
752
    def forward(self, dec_inp, r_emb, r_w_bias, r_bias, dec_attn_mask=None, mems=None, head_mask=None):
thomwolf's avatar
thomwolf committed
753

thomwolf's avatar
thomwolf committed
754
        attn_outputs = self.dec_attn(dec_inp, r_emb, r_w_bias, r_bias,
thomwolf's avatar
thomwolf committed
755
                               attn_mask=dec_attn_mask,
thomwolf's avatar
thomwolf committed
756
757
                               mems=mems, head_mask=head_mask)
        ff_output = self.pos_ff(attn_outputs[0])
thomwolf's avatar
thomwolf committed
758

thomwolf's avatar
thomwolf committed
759
760
761
        outputs = [ff_output] + attn_outputs[1:]

        return outputs
thomwolf's avatar
thomwolf committed
762
763
764
765
766
767
768
769
770
771
772

class RelPartialLearnableDecoderLayer(nn.Module):
    def __init__(self, n_head, d_model, d_head, d_inner, dropout,
                 **kwargs):
        super(RelPartialLearnableDecoderLayer, self).__init__()

        self.dec_attn = RelPartialLearnableMultiHeadAttn(n_head, d_model,
                            d_head, dropout, **kwargs)
        self.pos_ff = PositionwiseFF(d_model, d_inner, dropout, 
                                     pre_lnorm=kwargs.get('pre_lnorm'))

thomwolf's avatar
thomwolf committed
773
    def forward(self, dec_inp, r, dec_attn_mask=None, mems=None, head_mask=None):
thomwolf's avatar
thomwolf committed
774

thomwolf's avatar
thomwolf committed
775
        attn_outputs = self.dec_attn(dec_inp, r,
thomwolf's avatar
thomwolf committed
776
                               attn_mask=dec_attn_mask,
thomwolf's avatar
thomwolf committed
777
778
779
780
781
782
                               mems=mems, head_mask=head_mask)
        ff_output = self.pos_ff(attn_outputs[0])

        outputs = [ff_output] + attn_outputs[1:]

        return outputs
thomwolf's avatar
thomwolf committed
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808



class AdaptiveEmbedding(nn.Module):
    def __init__(self, n_token, d_embed, d_proj, cutoffs, div_val=1, 
                 sample_softmax=False):
        super(AdaptiveEmbedding, self).__init__()

        self.n_token = n_token
        self.d_embed = d_embed

        self.cutoffs = cutoffs + [n_token]
        self.div_val = div_val
        self.d_proj = d_proj

        self.emb_scale = d_proj ** 0.5

        self.cutoff_ends = [0] + self.cutoffs

        self.emb_layers = nn.ModuleList()
        self.emb_projs = nn.ParameterList()
        if div_val == 1:
            self.emb_layers.append(
                nn.Embedding(n_token, d_embed, sparse=sample_softmax>0)
            )
            if d_proj != d_embed:
thomwolf's avatar
thomwolf committed
809
                self.emb_projs.append(nn.Parameter(torch.FloatTensor(d_proj, d_embed)))
thomwolf's avatar
thomwolf committed
810
811
812
813
814
        else:
            for i in range(len(self.cutoffs)):
                l_idx, r_idx = self.cutoff_ends[i], self.cutoff_ends[i+1]
                d_emb_i = d_embed // (div_val ** i)
                self.emb_layers.append(nn.Embedding(r_idx-l_idx, d_emb_i))
thomwolf's avatar
thomwolf committed
815
                self.emb_projs.append(nn.Parameter(torch.FloatTensor(d_proj, d_emb_i)))
thomwolf's avatar
thomwolf committed
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841

    def forward(self, inp):
        if self.div_val == 1:
            embed = self.emb_layers[0](inp)
            if self.d_proj != self.d_embed:
                embed  = F.linear(embed, self.emb_projs[0])
        else:
            param = next(self.parameters())
            inp_flat = inp.view(-1)
            emb_flat = torch.zeros([inp_flat.size(0), self.d_proj], 
                dtype=param.dtype, device=param.device)
            for i in range(len(self.cutoffs)):
                l_idx, r_idx = self.cutoff_ends[i], self.cutoff_ends[i + 1]

                mask_i = (inp_flat >= l_idx) & (inp_flat < r_idx)
                indices_i = mask_i.nonzero().squeeze()

                if indices_i.numel() == 0:
                    continue

                inp_i = inp_flat.index_select(0, indices_i) - l_idx
                emb_i = self.emb_layers[i](inp_i)
                emb_i = F.linear(emb_i, self.emb_projs[i])

                emb_flat.index_copy_(0, indices_i, emb_i)

thomwolf's avatar
thomwolf committed
842
843
            embed_shape = inp.size() + (self.d_proj,)
            embed = emb_flat.view(embed_shape)
thomwolf's avatar
thomwolf committed
844
845
846
847
848
849

        embed.mul_(self.emb_scale)

        return embed


850
class TransfoXLPreTrainedModel(PreTrainedModel):
851
852
853
    """ An abstract class to handle weights initialization and
        a simple interface for dowloading and loading pretrained models.
    """
854
    config_class = TransfoXLConfig
855
    pretrained_model_archive_map = TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_MAP
856
857
858
859
    load_tf_weights = load_tf_weights_in_transfo_xl
    base_model_prefix = "transformer"

    def _init_weight(self, weight):
860
861
862
863
        if self.config.init == 'uniform':
            nn.init.uniform_(weight, -self.config.init_range, self.config.init_range)
        elif self.config.init == 'normal':
            nn.init.normal_(weight, 0.0, self.config.init_std)
thomwolf's avatar
thomwolf committed
864

865
    def _init_bias(self, bias):
866
867
        nn.init.constant_(bias, 0.0)

868
    def _init_weights(self, m):
869
870
871
872
873
        """ Initialize the weights.
        """
        classname = m.__class__.__name__
        if classname.find('Linear') != -1:
            if hasattr(m, 'weight') and m.weight is not None:
874
                self._init_weight(m.weight)
875
            if hasattr(m, 'bias') and m.bias is not None:
876
                self._init_bias(m.bias)
877
878
879
880
881
882
883
        elif classname.find('AdaptiveEmbedding') != -1:
            if hasattr(m, 'emb_projs'):
                for i in range(len(m.emb_projs)):
                    if m.emb_projs[i] is not None:
                        nn.init.normal_(m.emb_projs[i], 0.0, self.config.proj_init_std)
        elif classname.find('Embedding') != -1:
            if hasattr(m, 'weight'):
884
                self._init_weight(m.weight)
885
886
        elif classname.find('ProjectedAdaptiveLogSoftmax') != -1:
            if hasattr(m, 'cluster_weight') and m.cluster_weight is not None:
887
                self._init_weight(m.cluster_weight)
888
            if hasattr(m, 'cluster_bias') and m.cluster_bias is not None:
889
                self._init_bias(m.cluster_bias)
890
891
892
893
894
895
896
897
            if hasattr(m, 'out_projs'):
                for i in range(len(m.out_projs)):
                    if m.out_projs[i] is not None:
                        nn.init.normal_(m.out_projs[i], 0.0, self.config.proj_init_std)
        elif classname.find('LayerNorm') != -1:
            if hasattr(m, 'weight'):
                nn.init.normal_(m.weight, 1.0, self.config.init_std)
            if hasattr(m, 'bias') and m.bias is not None:
898
                self._init_bias(m.bias)
899
        else:
900
            if hasattr(m, 'r_emb'):
901
                self._init_weight(m.r_emb)
902
            if hasattr(m, 'r_w_bias'):
903
                self._init_weight(m.r_w_bias)
904
            if hasattr(m, 'r_r_bias'):
905
                self._init_weight(m.r_r_bias)
906
            if hasattr(m, 'r_bias'):
907
                self._init_bias(m.r_bias)
thomwolf's avatar
thomwolf committed
908

909
910
    def set_num_special_tokens(self, num_special_tokens):
        pass
thomwolf's avatar
thomwolf committed
911

912

thomwolf's avatar
thomwolf committed
913
914
915
916
917
918
TRANSFO_XL_START_DOCSTRING = r"""    The Transformer-XL model was proposed in
    `Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context`_
    by Zihang Dai*, Zhilin Yang*, Yiming Yang, Jaime Carbonell, Quoc V. Le, Ruslan Salakhutdinov.
    It's a causal (uni-directional) transformer with relative positioning (sinuso茂dal) embeddings which can reuse
    previously computed hidden-states to attend to longer context (memory).
    This model also uses adaptive softmax inputs and outputs (tied).
thomwolf's avatar
thomwolf committed
919

thomwolf's avatar
thomwolf committed
920
921
    This model is a PyTorch `torch.nn.Module`_ sub-class. Use it as a regular PyTorch Module and
    refer to the PyTorch documentation for all matter related to general usage and behavior.
thomwolf's avatar
thomwolf committed
922

thomwolf's avatar
thomwolf committed
923
924
    .. _`Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context`:
        https://arxiv.org/abs/1901.02860
925

thomwolf's avatar
thomwolf committed
926
927
    .. _`torch.nn.Module`:
        https://pytorch.org/docs/stable/nn.html#module
928

thomwolf's avatar
thomwolf committed
929
930
    Parameters:
        config (:class:`~pytorch_transformers.TransfoXLConfig`): Model configuration class with all the parameters of the model.
931
932
            Initializing with a config file does not load the weights associated with the model, only the configuration.
            Check out the :meth:`~pytorch_transformers.PreTrainedModel.from_pretrained` method to load the model weights.
thomwolf's avatar
thomwolf committed
933
"""
thomwolf's avatar
thomwolf committed
934

thomwolf's avatar
thomwolf committed
935
936
937
938
TRANSFO_XL_INPUTS_DOCSTRING = r"""
    Inputs:
        **input_ids**: ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
            Indices of input sequence tokens in the vocabulary.
thomwolf's avatar
thomwolf committed
939
940
            Transformer-XL is a model with relative position embeddings so you can either pad the inputs on
            the right or on the left.
thomwolf's avatar
thomwolf committed
941
942
943
            Indices can be obtained using :class:`pytorch_transformers.TransfoXLTokenizer`.
            See :func:`pytorch_transformers.PreTrainedTokenizer.encode` and
            :func:`pytorch_transformers.PreTrainedTokenizer.convert_tokens_to_ids` for details.
thomwolf's avatar
thomwolf committed
944
        **mems**: (`optional`)
thomwolf's avatar
thomwolf committed
945
946
947
            list of ``torch.FloatTensor`` (one for each layer):
            that contains pre-computed hidden-states (key and values in the attention blocks) as computed by the model
            (see `mems` output below). Can be used to speed up sequential decoding and attend to longer context.
thomwolf's avatar
thomwolf committed
948
        **head_mask**: (`optional`) ``torch.FloatTensor`` of shape ``(num_heads,)`` or ``(num_layers, num_heads)``:
thomwolf's avatar
thomwolf committed
949
            Mask to nullify selected heads of the self-attention modules.
thomwolf's avatar
thomwolf committed
950
            Mask values selected in ``[0, 1]``:
thomwolf's avatar
thomwolf committed
951
952
            ``1`` indicates the head is **not masked**, ``0`` indicates the head is **masked**.
"""
953

thomwolf's avatar
thomwolf committed
954
955
956
957
958
959
960
@add_start_docstrings("The bare Bert Model transformer outputing raw hidden-states without any specific head on top.",
                      TRANSFO_XL_START_DOCSTRING, TRANSFO_XL_INPUTS_DOCSTRING)
class TransfoXLModel(TransfoXLPreTrainedModel):
    r"""
    Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
        **last_hidden_state**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, hidden_size)``
            Sequence of hidden-states at the last layer of the model.
thomwolf's avatar
thomwolf committed
961
        **mems**:
thomwolf's avatar
thomwolf committed
962
963
964
965
966
967
968
            list of ``torch.FloatTensor`` (one for each layer):
            that contains pre-computed hidden-states (key and values in the attention blocks) as computed by the model
            (see `mems` input above). Can be used to speed up sequential decoding and attend to longer context.
        **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
            list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
            of shape ``(batch_size, sequence_length, hidden_size)``:
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
thomwolf's avatar
thomwolf committed
969
970
971
        **attentions**: (`optional`, returned when ``config.output_attentions=True``)
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
thomwolf's avatar
thomwolf committed
972
973
974

    Examples::

wangfei's avatar
wangfei committed
975
976
977
978
979
        tokenizer = TransfoXLTokenizer.from_pretrained('transfo-xl-wt103')
        model = TransfoXLModel.from_pretrained('transfo-xl-wt103')
        input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0)  # Batch size 1
        outputs = model(input_ids)
        last_hidden_states, mems = outputs[:2]
980

thomwolf's avatar
thomwolf committed
981
    """
982
983
    def __init__(self, config):
        super(TransfoXLModel, self).__init__(config)
thomwolf's avatar
thomwolf committed
984
985
986
        self.output_attentions = config.output_attentions
        self.output_hidden_states = config.output_hidden_states

987
988
989
990
991
992
993
994
995
        self.n_token = config.n_token

        self.d_embed = config.d_embed
        self.d_model = config.d_model
        self.n_head = config.n_head
        self.d_head = config.d_head

        self.word_emb = AdaptiveEmbedding(config.n_token, config.d_embed, config.d_model, config.cutoffs, 
                                          div_val=config.div_val)
thomwolf's avatar
thomwolf committed
996

997
        self.drop = nn.Dropout(config.dropout)
thomwolf's avatar
thomwolf committed
998

999
1000
1001
1002
1003
1004
1005
1006
1007
1008
        self.n_layer = config.n_layer

        self.tgt_len = config.tgt_len
        self.mem_len = config.mem_len
        self.ext_len = config.ext_len
        self.max_klen = config.tgt_len + config.ext_len + config.mem_len

        self.attn_type = config.attn_type

        if not config.untie_r:
thomwolf's avatar
thomwolf committed
1009
1010
            self.r_w_bias = nn.Parameter(torch.FloatTensor(self.n_head, self.d_head))
            self.r_r_bias = nn.Parameter(torch.FloatTensor(self.n_head, self.d_head))
thomwolf's avatar
thomwolf committed
1011

thomwolf's avatar
thomwolf committed
1012
        self.layers = nn.ModuleList()
1013
1014
        if config.attn_type == 0: # the default attention
            for i in range(config.n_layer):
thomwolf's avatar
thomwolf committed
1015
1016
                self.layers.append(
                    RelPartialLearnableDecoderLayer(
1017
1018
1019
1020
                        config.n_head, config.d_model, config.d_head, config.d_inner, config.dropout,
                        tgt_len=config.tgt_len, ext_len=config.ext_len, mem_len=config.mem_len,
                        dropatt=config.dropatt, pre_lnorm=config.pre_lnorm,
                        r_w_bias=None if config.untie_r else self.r_w_bias,
thomwolf's avatar
thomwolf committed
1021
1022
                        r_r_bias=None if config.untie_r else self.r_r_bias,
                        output_attentions=self.output_attentions)
thomwolf's avatar
thomwolf committed
1023
                )
1024
1025
        elif config.attn_type == 1: # learnable embeddings
            for i in range(config.n_layer):
thomwolf's avatar
thomwolf committed
1026
1027
                self.layers.append(
                    RelLearnableDecoderLayer(
1028
1029
1030
1031
                        config.n_head, config.d_model, config.d_head, config.d_inner, config.dropout,
                        tgt_len=config.tgt_len, ext_len=config.ext_len, mem_len=config.mem_len,
                        dropatt=config.dropatt, pre_lnorm=config.pre_lnorm,
                        r_w_bias=None if config.untie_r else self.r_w_bias,
thomwolf's avatar
thomwolf committed
1032
1033
                        r_r_bias=None if config.untie_r else self.r_r_bias,
                        output_attentions=self.output_attentions)
thomwolf's avatar
thomwolf committed
1034
                )
1035
1036
        elif config.attn_type in [2, 3]: # absolute embeddings
            for i in range(config.n_layer):
thomwolf's avatar
thomwolf committed
1037
1038
                self.layers.append(
                    DecoderLayer(
1039
1040
1041
                        config.n_head, config.d_model, config.d_head, config.d_inner, config.dropout,
                        dropatt=config.dropatt, pre_lnorm=config.pre_lnorm,
                        r_w_bias=None if config.untie_r else self.r_w_bias,
thomwolf's avatar
thomwolf committed
1042
1043
                        r_r_bias=None if config.untie_r else self.r_r_bias,
                        output_attentions=self.output_attentions)
thomwolf's avatar
thomwolf committed
1044
1045
                )

1046
1047
        self.same_length = config.same_length
        self.clamp_len = config.clamp_len
thomwolf's avatar
thomwolf committed
1048
1049
1050
1051

        if self.attn_type == 0: # default attention
            self.pos_emb = PositionalEmbedding(self.d_model)
        elif self.attn_type == 1: # learnable
thomwolf's avatar
thomwolf committed
1052
            self.r_emb = nn.Parameter(torch.FloatTensor(
thomwolf's avatar
thomwolf committed
1053
                    self.n_layer, self.max_klen, self.n_head, self.d_head))
thomwolf's avatar
thomwolf committed
1054
            self.r_bias = nn.Parameter(torch.FloatTensor(
thomwolf's avatar
thomwolf committed
1055
1056
1057
1058
                    self.n_layer, self.max_klen, self.n_head))
        elif self.attn_type == 2: # absolute standard
            self.pos_emb = PositionalEmbedding(self.d_model)
        elif self.attn_type == 3: # absolute deeper SA
thomwolf's avatar
thomwolf committed
1059
            self.r_emb = nn.Parameter(torch.FloatTensor(
thomwolf's avatar
thomwolf committed
1060
                    self.n_layer, self.max_klen, self.n_head, self.d_head))
thomwolf's avatar
thomwolf committed
1061

1062
        self.init_weights()
thomwolf's avatar
thomwolf committed
1063

thomwolf's avatar
thomwolf committed
1064
    def _resize_token_embeddings(self, new_num_tokens):
thomwolf's avatar
thomwolf committed
1065
        return self.word_emb
thomwolf's avatar
thomwolf committed
1066

thomwolf's avatar
thomwolf committed
1067
1068
1069
    def backward_compatible(self):
        self.sample_softmax = -1

thomwolf's avatar
thomwolf committed
1070
1071
1072
1073
1074
    def reset_length(self, tgt_len, ext_len, mem_len):
        self.tgt_len = tgt_len
        self.mem_len = mem_len
        self.ext_len = ext_len

thomwolf's avatar
thomwolf committed
1075
1076
1077
1078
    def _prune_heads(self, heads):
        logger.info("Head pruning is not implemented for Transformer-XL model")
        pass

1079
    def init_mems(self, data):
thomwolf's avatar
thomwolf committed
1080
1081
1082
        if self.mem_len > 0:
            mems = []
            param = next(self.parameters())
1083
            for i in range(self.n_layer):
1084
1085
                empty = torch.zeros(self.mem_len, data.size(1), self.config.d_model,
                                    dtype=param.dtype, device=param.device)
thomwolf's avatar
thomwolf committed
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
                mems.append(empty)

            return mems
        else:
            return None

    def _update_mems(self, hids, mems, qlen, mlen):
        # does not deal with None
        if mems is None: return None

        # mems is not None
        assert len(hids) == len(mems), 'len(hids) != len(mems)'

        # There are `mlen + qlen` steps that can be cached into mems
        # For the next step, the last `ext_len` of the `qlen` tokens
        # will be used as the extended context. Hence, we only cache
        # the tokens from `mlen + qlen - self.ext_len - self.mem_len`
        # to `mlen + qlen - self.ext_len`.
        with torch.no_grad():
            new_mems = []
            end_idx = mlen + max(0, qlen - 0 - self.ext_len)
            beg_idx = max(0, end_idx - self.mem_len)
            for i in range(len(hids)):

                cat = torch.cat([mems[i], hids[i]], dim=0)
                new_mems.append(cat[beg_idx:end_idx].detach())

        return new_mems

thomwolf's avatar
thomwolf committed
1115
    def _forward(self, dec_inp, mems=None, head_mask=None):
thomwolf's avatar
thomwolf committed
1116
1117
        qlen, bsz = dec_inp.size()

thomwolf's avatar
thomwolf committed
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
        # Prepare head mask if needed
        # 1.0 in head_mask indicate we keep the head
        # attention_probs has shape bsz x n_heads x N x N
        # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] (a head_mask for each layer)
        # and head_mask is converted to shape [num_hidden_layers x qlen x klen x bsz x n_head]
        if head_mask is not None:
            if head_mask.dim() == 1:
                head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(0).unsqueeze(0)
                head_mask = head_mask.expand(self.n_layer, -1, -1, -1, -1)
            elif head_mask.dim() == 2:
                head_mask = head_mask.unsqueeze(1).unsqueeze(1).unsqueeze(1)
            head_mask = head_mask.to(dtype=next(self.parameters()).dtype) # switch to fload if need + fp16 compatibility
        else:
            head_mask = [None] * self.n_layer

thomwolf's avatar
thomwolf committed
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
        word_emb = self.word_emb(dec_inp)

        mlen = mems[0].size(0) if mems is not None else 0
        klen = mlen + qlen
        if self.same_length:
            all_ones = word_emb.new_ones(qlen, klen)
            mask_len = klen - self.mem_len
            if mask_len > 0:
                mask_shift_len = qlen - mask_len
            else:
                mask_shift_len = qlen
            dec_attn_mask = (torch.triu(all_ones, 1+mlen)
1145
                    + torch.tril(all_ones, -mask_shift_len))[:, :, None] # -1
thomwolf's avatar
thomwolf committed
1146
1147
        else:
            dec_attn_mask = torch.triu(
1148
                word_emb.new_ones(qlen, klen), diagonal=1+mlen)[:,:,None]
thomwolf's avatar
thomwolf committed
1149
1150

        hids = []
thomwolf's avatar
thomwolf committed
1151
        attentions = []
thomwolf's avatar
thomwolf committed
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
        if self.attn_type == 0: # default
            pos_seq = torch.arange(klen-1, -1, -1.0, device=word_emb.device, 
                                   dtype=word_emb.dtype)
            if self.clamp_len > 0:
                pos_seq.clamp_(max=self.clamp_len)
            pos_emb = self.pos_emb(pos_seq)

            core_out = self.drop(word_emb)
            pos_emb = self.drop(pos_emb)

            for i, layer in enumerate(self.layers):
1163
                hids.append(core_out)
thomwolf's avatar
thomwolf committed
1164
                mems_i = None if mems is None else mems[i]
thomwolf's avatar
thomwolf committed
1165
1166
1167
1168
1169
                layer_outputs = layer(core_out, pos_emb, dec_attn_mask=dec_attn_mask,
                                      mems=mems_i, head_mask=head_mask[i])
                core_out = layer_outputs[0]
                if self.output_attentions:
                    attentions.append(layer_outputs[1])
thomwolf's avatar
thomwolf committed
1170
1171
1172
        elif self.attn_type == 1: # learnable
            core_out = self.drop(word_emb)
            for i, layer in enumerate(self.layers):
1173
                hids.append(core_out)
thomwolf's avatar
thomwolf committed
1174
1175
1176
1177
1178
1179
1180
                if self.clamp_len > 0:
                    r_emb = self.r_emb[i][-self.clamp_len :]
                    r_bias = self.r_bias[i][-self.clamp_len :]
                else:
                    r_emb, r_bias = self.r_emb[i], self.r_bias[i]

                mems_i = None if mems is None else mems[i]
thomwolf's avatar
thomwolf committed
1181
1182
1183
1184
1185
1186
                layer_outputs = layer(core_out, r_emb, self.r_w_bias[i],
                                      r_bias, dec_attn_mask=dec_attn_mask,
                                      mems=mems_i, head_mask=head_mask[i])
                core_out = layer_outputs[0]
                if self.output_attentions:
                    attentions.append(layer_outputs[1])
thomwolf's avatar
thomwolf committed
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
        elif self.attn_type == 2: # absolute
            pos_seq = torch.arange(klen - 1, -1, -1.0, device=word_emb.device,
                                   dtype=word_emb.dtype)
            if self.clamp_len > 0:
                pos_seq.clamp_(max=self.clamp_len)
            pos_emb = self.pos_emb(pos_seq)

            core_out = self.drop(word_emb + pos_emb[-qlen:])

            for i, layer in enumerate(self.layers):
1197
                hids.append(core_out)
thomwolf's avatar
thomwolf committed
1198
1199
1200
                mems_i = None if mems is None else mems[i]
                if mems_i is not None and i == 0:
                    mems_i += pos_emb[:mlen]
thomwolf's avatar
thomwolf committed
1201
1202
1203
1204
1205
                layer_outputs = layer(core_out, dec_attn_mask=dec_attn_mask,
                                 mems=mems_i, head_mask=head_mask[i])
                core_out = layer_outputs[0]
                if self.output_attentions:
                    attentions.append(layer_outputs[1])
thomwolf's avatar
thomwolf committed
1206
1207
1208
1209
        elif self.attn_type == 3:
            core_out = self.drop(word_emb)

            for i, layer in enumerate(self.layers):
1210
                hids.append(core_out)
thomwolf's avatar
thomwolf committed
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
                mems_i = None if mems is None else mems[i]
                if mems_i is not None and mlen > 0:
                    cur_emb = self.r_emb[i][:-qlen]
                    cur_size = cur_emb.size(0)
                    if cur_size < mlen:
                        cur_emb_pad = cur_emb[0:1].expand(mlen-cur_size, -1, -1)
                        cur_emb = torch.cat([cur_emb_pad, cur_emb], 0)
                    else:
                        cur_emb = cur_emb[-mlen:]
                    mems_i += cur_emb.view(mlen, 1, -1)
                core_out += self.r_emb[i][-qlen:].view(qlen, 1, -1)

thomwolf's avatar
thomwolf committed
1223
1224
1225
1226
1227
                layer_outputs = layer(core_out, dec_attn_mask=dec_attn_mask,
                                      mems=mems_i, head_mask=head_mask[i])
                core_out = layer_outputs[0]
                if self.output_attentions:
                    attentions.append(layer_outputs[1])
thomwolf's avatar
thomwolf committed
1228
1229
1230
1231
1232

        core_out = self.drop(core_out)

        new_mems = self._update_mems(hids, mems, mlen, qlen)

thomwolf's avatar
thomwolf committed
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
        # We transpose back here to shape [bsz, len, hidden_dim]
        outputs = [core_out.transpose(0, 1).contiguous(), new_mems]
        if self.output_hidden_states:
            # Add last layer and transpose to library standard shape [bsz, len, hidden_dim]
            hids.append(core_out)
            hids = list(t.transpose(0, 1).contiguous() for t in hids)
            outputs.append(hids)
        if self.output_attentions:
            # Transpose to library standard shape [bsz, n_heads, query_seq_len, key_seq_len]
            attentions = list(t.permute(2, 3, 0, 1).contiguous() for t in attentions)
            outputs.append(attentions)
        return outputs  # last hidden state, new_mems, (all hidden states), (all attentions)

    def forward(self, input_ids, mems=None, head_mask=None):
1247
1248
1249
1250
        # the original code for Transformer-XL used shapes [len, bsz] but we want a unified interface in the library
        # so we transpose here from shape [bsz, len] to shape [len, bsz]
        input_ids = input_ids.transpose(0, 1).contiguous()

thomwolf's avatar
thomwolf committed
1251
1252
        if mems is None:
            mems = self.init_mems(input_ids)
thomwolf's avatar
thomwolf committed
1253
        outputs = self._forward(input_ids, mems=mems, head_mask=head_mask)
1254

thomwolf's avatar
thomwolf committed
1255
        return outputs  # last hidden state, new_mems, (all hidden states), (all attentions)
thomwolf's avatar
thomwolf committed
1256
1257


thomwolf's avatar
thomwolf committed
1258
1259
1260
@add_start_docstrings("""The Transformer-XL Model with a language modeling head on top
    (adaptive softmax with weights tied to the adaptive input embeddings)""",
    TRANSFO_XL_START_DOCSTRING, TRANSFO_XL_INPUTS_DOCSTRING)
thomwolf's avatar
thomwolf committed
1261
class TransfoXLLMHeadModel(TransfoXLPreTrainedModel):
thomwolf's avatar
thomwolf committed
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
    r"""
        **lm_labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
            Labels for language modeling.
            Note that the labels **are shifted** inside the model, i.e. you can set ``lm_labels = input_ids``
            Indices are selected in ``[-1, 0, ..., config.vocab_size]``
            All labels set to ``-1`` are ignored (masked), the loss is only
            computed for labels in ``[0, ..., config.vocab_size]``

    Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
        **loss**: (`optional`, returned when ``lm_labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``:
            Language modeling loss.
        **prediction_scores**: ``None`` if ``lm_labels`` is provided else ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, config.vocab_size)``
            Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
            We don't output them when the loss is computed to speedup adaptive softmax decoding.
thomwolf's avatar
thomwolf committed
1276
        **mems**:
thomwolf's avatar
thomwolf committed
1277
1278
1279
1280
1281
1282
1283
            list of ``torch.FloatTensor`` (one for each layer):
            that contains pre-computed hidden-states (key and values in the attention blocks) as computed by the model
            (see `mems` input above). Can be used to speed up sequential decoding and attend to longer context.
        **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
            list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
            of shape ``(batch_size, sequence_length, hidden_size)``:
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
thomwolf's avatar
thomwolf committed
1284
1285
1286
        **attentions**: (`optional`, returned when ``config.output_attentions=True``)
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
thomwolf's avatar
thomwolf committed
1287
1288
1289

    Examples::

wangfei's avatar
wangfei committed
1290
1291
1292
1293
1294
        tokenizer = TransfoXLTokenizer.from_pretrained('transfo-xl-wt103')
        model = TransfoXLLMHeadModel.from_pretrained('transfo-xl-wt103')
        input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0)  # Batch size 1
        outputs = model(input_ids)
        prediction_scores, mems = outputs[:2]
thomwolf's avatar
thomwolf committed
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308

    """
    def __init__(self, config):
        super(TransfoXLLMHeadModel, self).__init__(config)
        self.transformer = TransfoXLModel(config)
        self.sample_softmax = config.sample_softmax
        # use sampled softmax
        if config.sample_softmax > 0:
            self.out_layer = nn.Linear(config.d_model, config.n_token)
            self.sampler = LogUniformSampler(config.n_token, config.sample_softmax)
        # use adaptive softmax (including standard softmax)
        else:
            self.crit = ProjectedAdaptiveLogSoftmax(config.n_token, config.d_embed, config.d_model, 
                                                    config.cutoffs, div_val=config.div_val)
1309
        self.init_weights()
thomwolf's avatar
thomwolf committed
1310
1311
1312
        self.tie_weights()

    def tie_weights(self):
1313
1314
1315
        """
        Run this to be sure output and input (adaptive) softmax weights are tied
        """
thomwolf's avatar
thomwolf committed
1316
1317
1318
1319
1320
1321
1322
1323
        # sampled softmax
        if self.sample_softmax > 0:
            if self.config.tie_weight:
                self.out_layer.weight = self.transformer.word_emb.weight
        # adaptive softmax (including standard softmax)
        else:
            if self.config.tie_weight:
                for i in range(len(self.crit.out_layers)):
thomwolf's avatar
thomwolf committed
1324
1325
                    self._tie_or_clone_weights(self.crit.out_layers[i],
                                               self.transformer.word_emb.emb_layers[i])
thomwolf's avatar
thomwolf committed
1326
1327
1328
            if self.config.tie_projs:
                for i, tie_proj in enumerate(self.config.tie_projs):
                    if tie_proj and self.config.div_val == 1 and self.config.d_model != self.config.d_embed:
thomwolf's avatar
thomwolf committed
1329
1330
1331
1332
                        if self.config.torchscript:
                            self.crit.out_projs[i] = nn.Parameter(self.transformer.word_emb.emb_projs[0].clone())
                        else:
                            self.crit.out_projs[i] = self.transformer.word_emb.emb_projs[0]
thomwolf's avatar
thomwolf committed
1333
                    elif tie_proj and self.config.div_val != 1:
thomwolf's avatar
thomwolf committed
1334
1335
1336
1337
                        if self.config.torchscript:
                            self.crit.out_projs[i] = nn.Parameter(self.transformer.word_emb.emb_projs[i].clone())
                        else:
                            self.crit.out_projs[i] = self.transformer.word_emb.emb_projs[i]
thomwolf's avatar
thomwolf committed
1338
1339
1340
1341
1342
1343
1344

    def reset_length(self, tgt_len, ext_len, mem_len):
        self.transformer.reset_length(tgt_len, ext_len, mem_len)

    def init_mems(self, data):
        return self.transformer.init_mems(data)

thomwolf's avatar
thomwolf committed
1345
    def forward(self, input_ids, labels=None, mems=None, head_mask=None):
1346
1347
        bsz = input_ids.size(0)
        tgt_len = input_ids.size(1)
thomwolf's avatar
thomwolf committed
1348

thomwolf's avatar
thomwolf committed
1349
        transformer_outputs = self.transformer(input_ids, mems=mems, head_mask=head_mask)
thomwolf's avatar
thomwolf committed
1350

thomwolf's avatar
thomwolf committed
1351
        last_hidden = transformer_outputs[0]
1352
        pred_hid = last_hidden[:, -tgt_len:]
thomwolf's avatar
thomwolf committed
1353
        outputs = transformer_outputs[1:]
thomwolf's avatar
thomwolf committed
1354
        if self.sample_softmax > 0 and self.training:
thomwolf's avatar
thomwolf committed
1355
            assert self.config.tie_weight
thomwolf's avatar
thomwolf committed
1356
            logit = sample_logits(self.transformer.word_emb, self.out_layer.bias, labels, pred_hid, self.sampler)
1357
            softmax_output = -F.log_softmax(logit, -1)[:, :, 0]
thomwolf's avatar
thomwolf committed
1358
1359
1360
1361
            outputs = [softmax_output] + outputs
            if labels is not None:
                # TODO: This is not implemented
                raise NotImplementedError
thomwolf's avatar
thomwolf committed
1362
        else:
thomwolf's avatar
thomwolf committed
1363
1364
            softmax_output = self.crit(pred_hid.view(-1, pred_hid.size(-1)), labels)
            if labels is None:
1365
                softmax_output = softmax_output.view(bsz, tgt_len, -1)
thomwolf's avatar
thomwolf committed
1366
                outputs = [softmax_output] + outputs
thomwolf's avatar
thomwolf committed
1367
            else:
1368
                softmax_output = softmax_output.view(bsz, tgt_len)
thomwolf's avatar
thomwolf committed
1369
                outputs = [softmax_output, None] + outputs
thomwolf's avatar
thomwolf committed
1370

thomwolf's avatar
thomwolf committed
1371
        return outputs  # (loss), logits or None if labels is not None (speed up adaptive softmax), new_mems, (all hidden states), (all attentions)