test_pipelines_document_question_answering.py 13.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest

from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available
from transformers.pipelines import pipeline
from transformers.pipelines.document_question_answering import apply_tesseract
from transformers.testing_utils import (
21
    is_pipeline_test,
22
23
24
25
26
27
28
29
30
    nested_simplify,
    require_detectron2,
    require_pytesseract,
    require_tf,
    require_torch,
    require_vision,
    slow,
)

31
from .test_pipelines_common import ANY
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55


if is_vision_available():
    from PIL import Image

    from transformers.image_utils import load_image
else:

    class Image:
        @staticmethod
        def open(*args, **kwargs):
            pass

    def load_image(_):
        return None


# This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace,
# so we can expect it to be available.
INVOICE_URL = (
    "https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png"
)


56
@is_pipeline_test
57
58
@require_torch
@require_vision
59
class DocumentQuestionAnsweringPipelineTests(unittest.TestCase):
60
61
62
63
    model_mapping = MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING

    @require_pytesseract
    @require_vision
64
    def get_test_pipeline(self, model, tokenizer, processor):
65
        dqa_pipeline = pipeline(
Yih-Dar's avatar
Yih-Dar committed
66
            "document-question-answering", model=model, tokenizer=tokenizer, image_processor=processor
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
        )

        image = INVOICE_URL
        word_boxes = list(zip(*apply_tesseract(load_image(image), None, "")))
        question = "What is the placebo?"
        examples = [
            {
                "image": load_image(image),
                "question": question,
            },
            {
                "image": image,
                "question": question,
            },
            {
                "image": image,
                "question": question,
                "word_boxes": word_boxes,
            },
        ]
        return dqa_pipeline, examples

    def run_pipeline_test(self, dqa_pipeline, examples):
        outputs = dqa_pipeline(examples, top_k=2)
        self.assertEqual(
            outputs,
            [
                [
                    {"score": ANY(float), "answer": ANY(str), "start": ANY(int), "end": ANY(int)},
                    {"score": ANY(float), "answer": ANY(str), "start": ANY(int), "end": ANY(int)},
                ]
            ]
Yih-Dar's avatar
Yih-Dar committed
99
            * 3,
100
101
102
103
104
105
        )

    @require_torch
    @require_detectron2
    @require_pytesseract
    def test_small_model_pt(self):
106
107
108
        dqa_pipeline = pipeline(
            "document-question-answering", model="hf-internal-testing/tiny-random-layoutlmv2-for-dqa-test"
        )
109
110
111
112
        image = INVOICE_URL
        question = "How many cats are there?"

        expected_output = [
113
114
            {"score": 0.0001, "answer": "oy 2312/2019", "start": 38, "end": 39},
            {"score": 0.0001, "answer": "oy 2312/2019 DUE", "start": 38, "end": 40},
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
        ]
        outputs = dqa_pipeline(image=image, question=question, top_k=2)
        self.assertEqual(nested_simplify(outputs, decimals=4), expected_output)

        outputs = dqa_pipeline({"image": image, "question": question}, top_k=2)
        self.assertEqual(nested_simplify(outputs, decimals=4), expected_output)

        # This image does not detect ANY text in it, meaning layoutlmv2 should fail.
        # Empty answer probably
        image = "./tests/fixtures/tests_samples/COCO/000000039769.png"
        outputs = dqa_pipeline(image=image, question=question, top_k=2)
        self.assertEqual(outputs, [])

        # We can optionnally pass directly the words and bounding boxes
        image = "./tests/fixtures/tests_samples/COCO/000000039769.png"
        words = []
        boxes = []
        outputs = dqa_pipeline(image=image, question=question, words=words, boxes=boxes, top_k=2)
        self.assertEqual(outputs, [])

    # 	 TODO: Enable this once hf-internal-testing/tiny-random-donut is implemented
    #    @require_torch
    #    def test_small_model_pt_donut(self):
    #        dqa_pipeline = pipeline("document-question-answering", model="hf-internal-testing/tiny-random-donut")
    #        # dqa_pipeline = pipeline("document-question-answering", model="../tiny-random-donut")
    #        image = "https://templates.invoicehome.com/invoice-template-us-neat-750px.png"
    #        question = "How many cats are there?"
    #
    #        outputs = dqa_pipeline(image=image, question=question, top_k=2)
    #        self.assertEqual(
    #            nested_simplify(outputs, decimals=4), [{"score": 0.8799, "answer": "2"}, {"score": 0.296, "answer": "1"}]
    #        )

    @slow
    @require_torch
    @require_detectron2
    @require_pytesseract
    def test_large_model_pt(self):
        dqa_pipeline = pipeline(
            "document-question-answering",
            model="tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa",
            revision="9977165",
        )
        image = INVOICE_URL
        question = "What is the invoice number?"

        outputs = dqa_pipeline(image=image, question=question, top_k=2)
        self.assertEqual(
            nested_simplify(outputs, decimals=4),
            [
165
166
                {"score": 0.9944, "answer": "us-001", "start": 16, "end": 16},
                {"score": 0.0009, "answer": "us-001", "start": 16, "end": 16},
167
168
169
170
171
172
173
            ],
        )

        outputs = dqa_pipeline({"image": image, "question": question}, top_k=2)
        self.assertEqual(
            nested_simplify(outputs, decimals=4),
            [
174
175
                {"score": 0.9944, "answer": "us-001", "start": 16, "end": 16},
                {"score": 0.0009, "answer": "us-001", "start": 16, "end": 16},
176
177
178
179
180
181
182
183
184
185
            ],
        )

        outputs = dqa_pipeline(
            [{"image": image, "question": question}, {"image": image, "question": question}], top_k=2
        )
        self.assertEqual(
            nested_simplify(outputs, decimals=4),
            [
                [
186
187
                    {"score": 0.9944, "answer": "us-001", "start": 16, "end": 16},
                    {"score": 0.0009, "answer": "us-001", "start": 16, "end": 16},
188
189
190
191
192
                ],
            ]
            * 2,
        )

193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
    @slow
    @require_torch
    @require_detectron2
    @require_pytesseract
    def test_large_model_pt_chunk(self):
        dqa_pipeline = pipeline(
            "document-question-answering",
            model="tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa",
            revision="9977165",
            max_seq_len=50,
        )
        image = INVOICE_URL
        question = "What is the invoice number?"

        outputs = dqa_pipeline(image=image, question=question, top_k=2)
        self.assertEqual(
            nested_simplify(outputs, decimals=4),
            [
211
212
                {"score": 0.9974, "answer": "1110212019", "start": 23, "end": 23},
                {"score": 0.9948, "answer": "us-001", "start": 16, "end": 16},
213
214
215
216
217
218
219
            ],
        )

        outputs = dqa_pipeline({"image": image, "question": question}, top_k=2)
        self.assertEqual(
            nested_simplify(outputs, decimals=4),
            [
220
221
                {"score": 0.9974, "answer": "1110212019", "start": 23, "end": 23},
                {"score": 0.9948, "answer": "us-001", "start": 16, "end": 16},
222
223
224
225
226
227
228
229
230
231
            ],
        )

        outputs = dqa_pipeline(
            [{"image": image, "question": question}, {"image": image, "question": question}], top_k=2
        )
        self.assertEqual(
            nested_simplify(outputs, decimals=4),
            [
                [
232
233
                    {"score": 0.9974, "answer": "1110212019", "start": 23, "end": 23},
                    {"score": 0.9948, "answer": "us-001", "start": 16, "end": 16},
234
235
236
237
238
                ]
            ]
            * 2,
        )

239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
    @slow
    @require_torch
    @require_pytesseract
    @require_vision
    def test_large_model_pt_layoutlm(self):
        tokenizer = AutoTokenizer.from_pretrained(
            "impira/layoutlm-document-qa", revision="3dc6de3", add_prefix_space=True
        )
        dqa_pipeline = pipeline(
            "document-question-answering",
            model="impira/layoutlm-document-qa",
            tokenizer=tokenizer,
            revision="3dc6de3",
        )
        image = INVOICE_URL
        question = "What is the invoice number?"

        outputs = dqa_pipeline(image=image, question=question, top_k=2)
        self.assertEqual(
258
            nested_simplify(outputs, decimals=3),
259
            [
260
261
                {"score": 0.425, "answer": "us-001", "start": 16, "end": 16},
                {"score": 0.082, "answer": "1110212019", "start": 23, "end": 23},
262
263
264
265
266
            ],
        )

        outputs = dqa_pipeline({"image": image, "question": question}, top_k=2)
        self.assertEqual(
267
            nested_simplify(outputs, decimals=3),
268
            [
269
270
                {"score": 0.425, "answer": "us-001", "start": 16, "end": 16},
                {"score": 0.082, "answer": "1110212019", "start": 23, "end": 23},
271
272
273
274
275
276
277
            ],
        )

        outputs = dqa_pipeline(
            [{"image": image, "question": question}, {"image": image, "question": question}], top_k=2
        )
        self.assertEqual(
278
            nested_simplify(outputs, decimals=3),
279
280
            [
                [
281
282
                    {"score": 0.425, "answer": "us-001", "start": 16, "end": 16},
                    {"score": 0.082, "answer": "1110212019", "start": 23, "end": 23},
283
284
285
286
287
288
289
290
291
292
                ]
            ]
            * 2,
        )

        word_boxes = list(zip(*apply_tesseract(load_image(image), None, "")))

        # This model should also work if `image` is set to None
        outputs = dqa_pipeline({"image": None, "word_boxes": word_boxes, "question": question}, top_k=2)
        self.assertEqual(
293
            nested_simplify(outputs, decimals=3),
294
            [
295
296
                {"score": 0.425, "answer": "us-001", "start": 16, "end": 16},
                {"score": 0.082, "answer": "1110212019", "start": 23, "end": 23},
297
298
299
            ],
        )

300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
    @slow
    @require_torch
    @require_pytesseract
    @require_vision
    def test_large_model_pt_layoutlm_chunk(self):
        tokenizer = AutoTokenizer.from_pretrained(
            "impira/layoutlm-document-qa", revision="3dc6de3", add_prefix_space=True
        )
        dqa_pipeline = pipeline(
            "document-question-answering",
            model="impira/layoutlm-document-qa",
            tokenizer=tokenizer,
            revision="3dc6de3",
            max_seq_len=50,
        )
        image = INVOICE_URL
        question = "What is the invoice number?"

        outputs = dqa_pipeline(image=image, question=question, top_k=2)
        self.assertEqual(
            nested_simplify(outputs, decimals=4),
            [
322
323
                {"score": 0.9999, "answer": "us-001", "start": 16, "end": 16},
                {"score": 0.9998, "answer": "us-001", "start": 16, "end": 16},
324
325
326
327
328
329
330
331
332
333
            ],
        )

        outputs = dqa_pipeline(
            [{"image": image, "question": question}, {"image": image, "question": question}], top_k=2
        )
        self.assertEqual(
            nested_simplify(outputs, decimals=4),
            [
                [
334
335
                    {"score": 0.9999, "answer": "us-001", "start": 16, "end": 16},
                    {"score": 0.9998, "answer": "us-001", "start": 16, "end": 16},
336
337
338
339
340
341
342
343
344
345
346
347
                ]
            ]
            * 2,
        )

        word_boxes = list(zip(*apply_tesseract(load_image(image), None, "")))

        # This model should also work if `image` is set to None
        outputs = dqa_pipeline({"image": None, "word_boxes": word_boxes, "question": question}, top_k=2)
        self.assertEqual(
            nested_simplify(outputs, decimals=4),
            [
348
349
                {"score": 0.9999, "answer": "us-001", "start": 16, "end": 16},
                {"score": 0.9998, "answer": "us-001", "start": 16, "end": 16},
350
351
352
            ],
        )

353
354
355
356
357
358
359
    @slow
    @require_torch
    def test_large_model_pt_donut(self):
        dqa_pipeline = pipeline(
            "document-question-answering",
            model="naver-clova-ix/donut-base-finetuned-docvqa",
            tokenizer=AutoTokenizer.from_pretrained("naver-clova-ix/donut-base-finetuned-docvqa"),
360
            image_processor="naver-clova-ix/donut-base-finetuned-docvqa",
361
362
363
364
365
        )

        image = INVOICE_URL
        question = "What is the invoice number?"
        outputs = dqa_pipeline(image=image, question=question, top_k=2)
366
        self.assertEqual(nested_simplify(outputs, decimals=4), [{"answer": "us-001"}])
367
368
369
370
371

    @require_tf
    @unittest.skip("Document question answering not implemented in TF")
    def test_small_model_tf(self):
        pass