test_pipelines_document_question_answering.py 13.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest

from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available
from transformers.pipelines import pipeline
from transformers.pipelines.document_question_answering import apply_tesseract
from transformers.testing_utils import (
21
    is_pipeline_test,
22
23
24
25
26
27
28
29
30
    nested_simplify,
    require_detectron2,
    require_pytesseract,
    require_tf,
    require_torch,
    require_vision,
    slow,
)

31
from .test_pipelines_common import ANY
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55


if is_vision_available():
    from PIL import Image

    from transformers.image_utils import load_image
else:

    class Image:
        @staticmethod
        def open(*args, **kwargs):
            pass

    def load_image(_):
        return None


# This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace,
# so we can expect it to be available.
INVOICE_URL = (
    "https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png"
)


56
@is_pipeline_test
57
58
@require_torch
@require_vision
59
class DocumentQuestionAnsweringPipelineTests(unittest.TestCase):
60
61
62
63
    model_mapping = MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING

    @require_pytesseract
    @require_vision
64
    def get_test_pipeline(self, model, tokenizer, processor):
65
        dqa_pipeline = pipeline(
Yih-Dar's avatar
Yih-Dar committed
66
            "document-question-answering", model=model, tokenizer=tokenizer, image_processor=processor
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
        )

        image = INVOICE_URL
        word_boxes = list(zip(*apply_tesseract(load_image(image), None, "")))
        question = "What is the placebo?"
        examples = [
            {
                "image": load_image(image),
                "question": question,
            },
            {
                "image": image,
                "question": question,
            },
            {
                "image": image,
                "question": question,
                "word_boxes": word_boxes,
            },
        ]
        return dqa_pipeline, examples

    def run_pipeline_test(self, dqa_pipeline, examples):
        outputs = dqa_pipeline(examples, top_k=2)
        self.assertEqual(
            outputs,
            [
                [
                    {"score": ANY(float), "answer": ANY(str), "start": ANY(int), "end": ANY(int)},
                    {"score": ANY(float), "answer": ANY(str), "start": ANY(int), "end": ANY(int)},
                ]
            ]
Yih-Dar's avatar
Yih-Dar committed
99
            * 3,
100
101
102
103
104
105
106
107
108
109
110
        )

    @require_torch
    @require_detectron2
    @require_pytesseract
    def test_small_model_pt(self):
        dqa_pipeline = pipeline("document-question-answering", model="hf-internal-testing/tiny-random-layoutlmv2")
        image = INVOICE_URL
        question = "How many cats are there?"

        expected_output = [
111
112
            {"score": 0.0001, "answer": "oy 2312/2019", "start": 38, "end": 39},
            {"score": 0.0001, "answer": "oy 2312/2019 DUE", "start": 38, "end": 40},
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
        ]
        outputs = dqa_pipeline(image=image, question=question, top_k=2)
        self.assertEqual(nested_simplify(outputs, decimals=4), expected_output)

        outputs = dqa_pipeline({"image": image, "question": question}, top_k=2)
        self.assertEqual(nested_simplify(outputs, decimals=4), expected_output)

        # This image does not detect ANY text in it, meaning layoutlmv2 should fail.
        # Empty answer probably
        image = "./tests/fixtures/tests_samples/COCO/000000039769.png"
        outputs = dqa_pipeline(image=image, question=question, top_k=2)
        self.assertEqual(outputs, [])

        # We can optionnally pass directly the words and bounding boxes
        image = "./tests/fixtures/tests_samples/COCO/000000039769.png"
        words = []
        boxes = []
        outputs = dqa_pipeline(image=image, question=question, words=words, boxes=boxes, top_k=2)
        self.assertEqual(outputs, [])

    # 	 TODO: Enable this once hf-internal-testing/tiny-random-donut is implemented
    #    @require_torch
    #    def test_small_model_pt_donut(self):
    #        dqa_pipeline = pipeline("document-question-answering", model="hf-internal-testing/tiny-random-donut")
    #        # dqa_pipeline = pipeline("document-question-answering", model="../tiny-random-donut")
    #        image = "https://templates.invoicehome.com/invoice-template-us-neat-750px.png"
    #        question = "How many cats are there?"
    #
    #        outputs = dqa_pipeline(image=image, question=question, top_k=2)
    #        self.assertEqual(
    #            nested_simplify(outputs, decimals=4), [{"score": 0.8799, "answer": "2"}, {"score": 0.296, "answer": "1"}]
    #        )

    @slow
    @require_torch
    @require_detectron2
    @require_pytesseract
    def test_large_model_pt(self):
        dqa_pipeline = pipeline(
            "document-question-answering",
            model="tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa",
            revision="9977165",
        )
        image = INVOICE_URL
        question = "What is the invoice number?"

        outputs = dqa_pipeline(image=image, question=question, top_k=2)
        self.assertEqual(
            nested_simplify(outputs, decimals=4),
            [
163
164
                {"score": 0.9944, "answer": "us-001", "start": 16, "end": 16},
                {"score": 0.0009, "answer": "us-001", "start": 16, "end": 16},
165
166
167
168
169
170
171
            ],
        )

        outputs = dqa_pipeline({"image": image, "question": question}, top_k=2)
        self.assertEqual(
            nested_simplify(outputs, decimals=4),
            [
172
173
                {"score": 0.9944, "answer": "us-001", "start": 16, "end": 16},
                {"score": 0.0009, "answer": "us-001", "start": 16, "end": 16},
174
175
176
177
178
179
180
181
182
183
            ],
        )

        outputs = dqa_pipeline(
            [{"image": image, "question": question}, {"image": image, "question": question}], top_k=2
        )
        self.assertEqual(
            nested_simplify(outputs, decimals=4),
            [
                [
184
185
                    {"score": 0.9944, "answer": "us-001", "start": 16, "end": 16},
                    {"score": 0.0009, "answer": "us-001", "start": 16, "end": 16},
186
187
188
189
190
                ],
            ]
            * 2,
        )

191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
    @slow
    @require_torch
    @require_detectron2
    @require_pytesseract
    def test_large_model_pt_chunk(self):
        dqa_pipeline = pipeline(
            "document-question-answering",
            model="tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa",
            revision="9977165",
            max_seq_len=50,
        )
        image = INVOICE_URL
        question = "What is the invoice number?"

        outputs = dqa_pipeline(image=image, question=question, top_k=2)
        self.assertEqual(
            nested_simplify(outputs, decimals=4),
            [
209
210
                {"score": 0.9974, "answer": "1110212019", "start": 23, "end": 23},
                {"score": 0.9948, "answer": "us-001", "start": 16, "end": 16},
211
212
213
214
215
216
217
            ],
        )

        outputs = dqa_pipeline({"image": image, "question": question}, top_k=2)
        self.assertEqual(
            nested_simplify(outputs, decimals=4),
            [
218
219
                {"score": 0.9974, "answer": "1110212019", "start": 23, "end": 23},
                {"score": 0.9948, "answer": "us-001", "start": 16, "end": 16},
220
221
222
223
224
225
226
227
228
229
            ],
        )

        outputs = dqa_pipeline(
            [{"image": image, "question": question}, {"image": image, "question": question}], top_k=2
        )
        self.assertEqual(
            nested_simplify(outputs, decimals=4),
            [
                [
230
231
                    {"score": 0.9974, "answer": "1110212019", "start": 23, "end": 23},
                    {"score": 0.9948, "answer": "us-001", "start": 16, "end": 16},
232
233
234
235
236
                ]
            ]
            * 2,
        )

237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
    @slow
    @require_torch
    @require_pytesseract
    @require_vision
    def test_large_model_pt_layoutlm(self):
        tokenizer = AutoTokenizer.from_pretrained(
            "impira/layoutlm-document-qa", revision="3dc6de3", add_prefix_space=True
        )
        dqa_pipeline = pipeline(
            "document-question-answering",
            model="impira/layoutlm-document-qa",
            tokenizer=tokenizer,
            revision="3dc6de3",
        )
        image = INVOICE_URL
        question = "What is the invoice number?"

        outputs = dqa_pipeline(image=image, question=question, top_k=2)
        self.assertEqual(
            nested_simplify(outputs, decimals=4),
            [
258
259
                {"score": 0.4251, "answer": "us-001", "start": 16, "end": 16},
                {"score": 0.0819, "answer": "1110212019", "start": 23, "end": 23},
260
261
262
263
264
265
266
            ],
        )

        outputs = dqa_pipeline({"image": image, "question": question}, top_k=2)
        self.assertEqual(
            nested_simplify(outputs, decimals=4),
            [
267
268
                {"score": 0.4251, "answer": "us-001", "start": 16, "end": 16},
                {"score": 0.0819, "answer": "1110212019", "start": 23, "end": 23},
269
270
271
272
273
274
275
276
277
278
            ],
        )

        outputs = dqa_pipeline(
            [{"image": image, "question": question}, {"image": image, "question": question}], top_k=2
        )
        self.assertEqual(
            nested_simplify(outputs, decimals=4),
            [
                [
279
280
                    {"score": 0.4251, "answer": "us-001", "start": 16, "end": 16},
                    {"score": 0.0819, "answer": "1110212019", "start": 23, "end": 23},
281
282
283
284
285
286
287
288
289
290
291
292
                ]
            ]
            * 2,
        )

        word_boxes = list(zip(*apply_tesseract(load_image(image), None, "")))

        # This model should also work if `image` is set to None
        outputs = dqa_pipeline({"image": None, "word_boxes": word_boxes, "question": question}, top_k=2)
        self.assertEqual(
            nested_simplify(outputs, decimals=4),
            [
293
294
                {"score": 0.4251, "answer": "us-001", "start": 16, "end": 16},
                {"score": 0.0819, "answer": "1110212019", "start": 23, "end": 23},
295
296
297
            ],
        )

298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
    @slow
    @require_torch
    @require_pytesseract
    @require_vision
    def test_large_model_pt_layoutlm_chunk(self):
        tokenizer = AutoTokenizer.from_pretrained(
            "impira/layoutlm-document-qa", revision="3dc6de3", add_prefix_space=True
        )
        dqa_pipeline = pipeline(
            "document-question-answering",
            model="impira/layoutlm-document-qa",
            tokenizer=tokenizer,
            revision="3dc6de3",
            max_seq_len=50,
        )
        image = INVOICE_URL
        question = "What is the invoice number?"

        outputs = dqa_pipeline(image=image, question=question, top_k=2)
        self.assertEqual(
            nested_simplify(outputs, decimals=4),
            [
320
321
                {"score": 0.9999, "answer": "us-001", "start": 16, "end": 16},
                {"score": 0.9998, "answer": "us-001", "start": 16, "end": 16},
322
323
324
325
326
327
328
329
330
331
            ],
        )

        outputs = dqa_pipeline(
            [{"image": image, "question": question}, {"image": image, "question": question}], top_k=2
        )
        self.assertEqual(
            nested_simplify(outputs, decimals=4),
            [
                [
332
333
                    {"score": 0.9999, "answer": "us-001", "start": 16, "end": 16},
                    {"score": 0.9998, "answer": "us-001", "start": 16, "end": 16},
334
335
336
337
338
339
340
341
342
343
344
345
                ]
            ]
            * 2,
        )

        word_boxes = list(zip(*apply_tesseract(load_image(image), None, "")))

        # This model should also work if `image` is set to None
        outputs = dqa_pipeline({"image": None, "word_boxes": word_boxes, "question": question}, top_k=2)
        self.assertEqual(
            nested_simplify(outputs, decimals=4),
            [
346
347
                {"score": 0.9999, "answer": "us-001", "start": 16, "end": 16},
                {"score": 0.9998, "answer": "us-001", "start": 16, "end": 16},
348
349
350
            ],
        )

351
352
353
354
355
356
357
358
359
360
361
362
363
    @slow
    @require_torch
    def test_large_model_pt_donut(self):
        dqa_pipeline = pipeline(
            "document-question-answering",
            model="naver-clova-ix/donut-base-finetuned-docvqa",
            tokenizer=AutoTokenizer.from_pretrained("naver-clova-ix/donut-base-finetuned-docvqa"),
            feature_extractor="naver-clova-ix/donut-base-finetuned-docvqa",
        )

        image = INVOICE_URL
        question = "What is the invoice number?"
        outputs = dqa_pipeline(image=image, question=question, top_k=2)
364
        self.assertEqual(nested_simplify(outputs, decimals=4), [{"answer": "us-001"}])
365
366
367
368
369

    @require_tf
    @unittest.skip("Document question answering not implemented in TF")
    def test_small_model_tf(self):
        pass