test_finetune_trainer.py 7.95 KB
Newer Older
Suraj Patil's avatar
Suraj Patil committed
1
2
3
4
import os
import sys
from unittest.mock import patch

5
from transformers import BertTokenizer, EncoderDecoderModel
6
from transformers.file_utils import is_datasets_available
Stas Bekman's avatar
Stas Bekman committed
7
8
9
10
11
12
13
from transformers.testing_utils import (
    TestCasePlus,
    execute_subprocess_async,
    get_gpu_count,
    require_torch_non_multi_gpu_but_fix_me,
    slow,
)
Sylvain Gugger's avatar
Sylvain Gugger committed
14
15
from transformers.trainer_callback import TrainerState
from transformers.trainer_utils import set_seed
Suraj Patil's avatar
Suraj Patil committed
16

17
18
from .finetune_trainer import Seq2SeqTrainingArguments, main
from .seq2seq_trainer import Seq2SeqTrainer
Suraj Patil's avatar
Suraj Patil committed
19
from .test_seq2seq_examples import MBART_TINY
20

Suraj Patil's avatar
Suraj Patil committed
21

22
set_seed(42)
Suraj Patil's avatar
Suraj Patil committed
23
24
25
MARIAN_MODEL = "sshleifer/student_marian_en_ro_6_1"


26
27
28
29
30
31
32
class TestFinetuneTrainer(TestCasePlus):
    def test_finetune_trainer(self):
        output_dir = self.run_trainer(1, "12", MBART_TINY, 1)
        logs = TrainerState.load_from_json(os.path.join(output_dir, "trainer_state.json")).log_history
        eval_metrics = [log for log in logs if "eval_loss" in log.keys()]
        first_step_stats = eval_metrics[0]
        assert "eval_bleu" in first_step_stats
Suraj Patil's avatar
Suraj Patil committed
33

34
35
36
    @slow
    def test_finetune_trainer_slow(self):
        # There is a missing call to __init__process_group somewhere
37
        output_dir = self.run_trainer(eval_steps=2, max_len="128", model_name=MARIAN_MODEL, num_train_epochs=10)
Suraj Patil's avatar
Suraj Patil committed
38

39
40
41
42
43
        # Check metrics
        logs = TrainerState.load_from_json(os.path.join(output_dir, "trainer_state.json")).log_history
        eval_metrics = [log for log in logs if "eval_loss" in log.keys()]
        first_step_stats = eval_metrics[0]
        last_step_stats = eval_metrics[-1]
44

45
46
        assert first_step_stats["eval_bleu"] < last_step_stats["eval_bleu"]  # model learned nothing
        assert isinstance(last_step_stats["eval_bleu"], float)
47

48
49
50
51
52
        # test if do_predict saves generations and metrics
        contents = os.listdir(output_dir)
        contents = {os.path.basename(p) for p in contents}
        assert "test_generations.txt" in contents
        assert "test_results.json" in contents
53

54
    @slow
Stas Bekman's avatar
Stas Bekman committed
55
    @require_torch_non_multi_gpu_but_fix_me
56
57
58
59
60
61
62
63
64
65
    def test_finetune_bert2bert(self):
        if not is_datasets_available():
            return

        import datasets

        bert2bert = EncoderDecoderModel.from_encoder_decoder_pretrained("prajjwal1/bert-tiny", "prajjwal1/bert-tiny")
        tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")

        bert2bert.config.vocab_size = bert2bert.config.encoder.vocab_size
66
        bert2bert.config.eos_token_id = tokenizer.sep_token_id
67
        bert2bert.config.decoder_start_token_id = tokenizer.cls_token_id
68
        bert2bert.config.max_length = 128
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147

        train_dataset = datasets.load_dataset("cnn_dailymail", "3.0.0", split="train[:1%]")
        val_dataset = datasets.load_dataset("cnn_dailymail", "3.0.0", split="validation[:1%]")

        train_dataset = train_dataset.select(range(32))
        val_dataset = val_dataset.select(range(16))

        rouge = datasets.load_metric("rouge")

        batch_size = 4

        def _map_to_encoder_decoder_inputs(batch):
            # Tokenizer will automatically set [BOS] <text> [EOS]
            inputs = tokenizer(batch["article"], padding="max_length", truncation=True, max_length=512)
            outputs = tokenizer(batch["highlights"], padding="max_length", truncation=True, max_length=128)
            batch["input_ids"] = inputs.input_ids
            batch["attention_mask"] = inputs.attention_mask

            batch["decoder_input_ids"] = outputs.input_ids
            batch["labels"] = outputs.input_ids.copy()
            batch["labels"] = [
                [-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch["labels"]
            ]
            batch["decoder_attention_mask"] = outputs.attention_mask

            assert all([len(x) == 512 for x in inputs.input_ids])
            assert all([len(x) == 128 for x in outputs.input_ids])

            return batch

        def _compute_metrics(pred):
            labels_ids = pred.label_ids
            pred_ids = pred.predictions

            # all unnecessary tokens are removed
            pred_str = tokenizer.batch_decode(pred_ids, skip_special_tokens=True)
            label_str = tokenizer.batch_decode(labels_ids, skip_special_tokens=True)

            rouge_output = rouge.compute(predictions=pred_str, references=label_str, rouge_types=["rouge2"])[
                "rouge2"
            ].mid

            return {
                "rouge2_precision": round(rouge_output.precision, 4),
                "rouge2_recall": round(rouge_output.recall, 4),
                "rouge2_fmeasure": round(rouge_output.fmeasure, 4),
            }

        # map train dataset
        train_dataset = train_dataset.map(
            _map_to_encoder_decoder_inputs,
            batched=True,
            batch_size=batch_size,
            remove_columns=["article", "highlights"],
        )
        train_dataset.set_format(
            type="torch",
            columns=["input_ids", "attention_mask", "decoder_input_ids", "decoder_attention_mask", "labels"],
        )

        # same for validation dataset
        val_dataset = val_dataset.map(
            _map_to_encoder_decoder_inputs,
            batched=True,
            batch_size=batch_size,
            remove_columns=["article", "highlights"],
        )
        val_dataset.set_format(
            type="torch",
            columns=["input_ids", "attention_mask", "decoder_input_ids", "decoder_attention_mask", "labels"],
        )

        output_dir = self.get_auto_remove_tmp_dir()

        training_args = Seq2SeqTrainingArguments(
            output_dir=output_dir,
            per_device_train_batch_size=batch_size,
            per_device_eval_batch_size=batch_size,
            predict_with_generate=True,
Sylvain Gugger's avatar
Sylvain Gugger committed
148
            evaluation_strategy="steps",
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
            do_train=True,
            do_eval=True,
            warmup_steps=0,
            eval_steps=2,
            logging_steps=2,
        )

        # instantiate trainer
        trainer = Seq2SeqTrainer(
            model=bert2bert,
            args=training_args,
            compute_metrics=_compute_metrics,
            train_dataset=train_dataset,
            eval_dataset=val_dataset,
        )

        # start training
        trainer.train()

168
    def run_trainer(self, eval_steps: int, max_len: str, model_name: str, num_train_epochs: int):
169
        data_dir = self.examples_dir / "seq2seq/test_data/wmt_en_ro"
170
        output_dir = self.get_auto_remove_tmp_dir()
171
        args = f"""
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
            --model_name_or_path {model_name}
            --data_dir {data_dir}
            --output_dir {output_dir}
            --overwrite_output_dir
            --n_train 8
            --n_val 8
            --max_source_length {max_len}
            --max_target_length {max_len}
            --val_max_target_length {max_len}
            --do_train
            --do_eval
            --do_predict
            --num_train_epochs {str(num_train_epochs)}
            --per_device_train_batch_size 4
            --per_device_eval_batch_size 4
187
            --learning_rate 3e-3
188
            --warmup_steps 8
Sylvain Gugger's avatar
Sylvain Gugger committed
189
            --evaluation_strategy steps
190
191
192
193
194
195
196
197
198
199
200
201
            --predict_with_generate
            --logging_steps 0
            --save_steps {str(eval_steps)}
            --eval_steps {str(eval_steps)}
            --sortish_sampler
            --label_smoothing 0.1
            --adafactor
            --task translation
            --tgt_lang ro_RO
            --src_lang en_XX
        """.split()
        # --eval_beams  2
202

203
        n_gpu = get_gpu_count()
204
        if n_gpu > 1:
205
206
207
208
209
210
211
            distributed_args = f"""
                -m torch.distributed.launch
                --nproc_per_node={n_gpu}
                {self.test_file_dir}/finetune_trainer.py
            """.split()
            cmd = [sys.executable] + distributed_args + args
            execute_subprocess_async(cmd, env=self.get_env())
212
213
        else:
            # 0 or 1 gpu
214
            testargs = ["finetune_trainer.py"] + args
215
216
            with patch.object(sys, "argv", testargs):
                main()
217

218
        return output_dir