test_seq2seq_examples.py 17.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
import argparse
import logging
import os
import sys
import tempfile
import unittest
from pathlib import Path
from unittest.mock import patch

import pytest
11
import pytorch_lightning as pl
12
import torch
13
from pytest import param
14
15
from torch.utils.data import DataLoader

16
import lightning_base
17
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
18
from transformers.testing_utils import require_multigpu
19
20

from .distillation import distill_main, evaluate_checkpoint
21
from .finetune import SummarizationModule, main
22
from .pack_dataset import pack_data_dir
23
from .run_eval import generate_summaries_or_translations, run_generate
24
from .utils import Seq2SeqDataset, TranslationDataset, label_smoothed_nll_loss, lmap, load_json
25
26
27
28
29
30
31


logging.basicConfig(level=logging.DEBUG)

logger = logging.getLogger()
CUDA_AVAILABLE = torch.cuda.is_available()
CHEAP_ARGS = {
32
33
    "label_smoothing": 0.2,
    "early_stopping_patience": 2,
34
    "logger_name": "default",
35
36
37
38
39
40
41
42
43
44
45
46
47
    "length_penalty": 0.5,
    "cache_dir": "",
    "task": "summarization",
    "num_workers": 2,
    "alpha_hid": 0,
    "freeze_embeds": True,
    "enc_only": False,
    "tgt_suffix": "",
    "resume_from_checkpoint": None,
    "sortish_sampler": True,
    "student_decoder_layers": 1,
    "val_check_interval": 1.0,
    "output_dir": "",
Sam Shleifer's avatar
Sam Shleifer committed
48
    "fp16": False,  # TODO(SS): set this to CUDA_AVAILABLE if ci installs apex or start using native amp
49
50
51
52
53
54
55
    "no_teacher": False,
    "fp16_opt_level": "O1",
    "gpus": 1 if CUDA_AVAILABLE else 0,
    "n_tpu_cores": 0,
    "max_grad_norm": 1.0,
    "do_train": True,
    "do_predict": True,
56
    "accumulate_grad_batches": 1,
57
58
59
60
61
62
63
64
    "server_ip": "",
    "server_port": "",
    "seed": 42,
    "model_name_or_path": "sshleifer/bart-tiny-random",
    "config_name": "",
    "tokenizer_name": "facebook/bart-large",
    "do_lower_case": False,
    "learning_rate": 0.3,
65
    "lr_scheduler": "linear",
66
67
68
    "weight_decay": 0.0,
    "adam_epsilon": 1e-08,
    "warmup_steps": 0,
69
    "max_epochs": 1,
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
    "train_batch_size": 2,
    "eval_batch_size": 2,
    "max_source_length": 12,
    "max_target_length": 12,
    "val_max_target_length": 12,
    "test_max_target_length": 12,
    "fast_dev_run": False,
    "no_cache": False,
    "n_train": -1,
    "n_val": -1,
    "n_test": -1,
    "student_encoder_layers": 1,
    "alpha_loss_encoder": 0.0,
    "freeze_encoder": False,
    "auto_scale_batch_size": False,
}


def _dump_articles(path: Path, articles: list):
89
90
    content = "\n".join(articles)
    Path(path).open("w").writelines(content)
91
92


93
ARTICLES = [" Sam ate lunch today.", "Sams lunch ingredients."]
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
SUMMARIES = ["A very interesting story about what I ate for lunch.", "Avocado, celery, turkey, coffee"]
T5_TINY = "patrickvonplaten/t5-tiny-random"
BART_TINY = "sshleifer/bart-tiny-random"
MBART_TINY = "sshleifer/tiny-mbart"
MARIAN_TINY = "sshleifer/tiny-marian-en-de"
stream_handler = logging.StreamHandler(sys.stdout)
logger.addHandler(stream_handler)
logging.disable(logging.CRITICAL)  # remove noisy download output from tracebacks


def make_test_data_dir(**kwargs):
    tmp_dir = Path(tempfile.mkdtemp(**kwargs))
    for split in ["train", "val", "test"]:
        _dump_articles((tmp_dir / f"{split}.source"), ARTICLES)
        _dump_articles((tmp_dir / f"{split}.target"), SUMMARIES)
    return tmp_dir


class TestSummarizationDistiller(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
        logging.disable(logging.CRITICAL)  # remove noisy download output from tracebacks
        return cls

118
    @require_multigpu
119
120
121
122
123
124
125
126
127
128
129
130
    def test_multigpu(self):
        updates = dict(no_teacher=True, freeze_encoder=True, gpus=2, sortish_sampler=False,)
        self._test_distiller_cli(updates)

    def test_distill_no_teacher(self):
        updates = dict(student_encoder_layers=2, student_decoder_layers=1, no_teacher=True)
        self._test_distiller_cli(updates)

    def test_distill_checkpointing_with_teacher(self):
        updates = dict(
            student_encoder_layers=2,
            student_decoder_layers=1,
131
            max_epochs=4,
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
            val_check_interval=0.25,
            alpha_hid=2.0,
            model_name_or_path="IGNORE_THIS_IT_DOESNT_GET_USED",
        )
        model = self._test_distiller_cli(updates, check_contents=False)

        ckpts = list(Path(model.output_dir).glob("*.ckpt"))
        self.assertEqual(1, len(ckpts))
        transformer_ckpts = list(Path(model.output_dir).glob("**/*.bin"))
        self.assertEqual(len(transformer_ckpts), 2)
        examples = lmap(str.strip, model.hparams.data_dir.joinpath("test.source").open().readlines())
        out_path = tempfile.mktemp()
        generate_summaries_or_translations(examples, out_path, str(model.output_dir / "best_tfmr"))
        self.assertTrue(Path(out_path).exists())

        evaluate_checkpoint(ckpts[0], dest_dir=Path(tempfile.mkdtemp()))

149
    def test_loss_fn(self):
150
        model = AutoModelForSeq2SeqLM.from_pretrained(BART_TINY, return_dict=True)
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
        input_ids, mask = model.dummy_inputs["input_ids"], model.dummy_inputs["attention_mask"]
        target_ids = torch.tensor([[0, 4, 8, 2], [0, 8, 2, 1]], dtype=torch.long, device=model.device)
        decoder_input_ids = target_ids[:, :-1].contiguous()  # Why this line?
        lm_labels = target_ids[:, 1:].clone()  # why clone?
        model_computed_loss = model(
            input_ids, attention_mask=mask, decoder_input_ids=decoder_input_ids, labels=lm_labels, use_cache=False
        ).loss

        logits = model(input_ids, attention_mask=mask, decoder_input_ids=decoder_input_ids, use_cache=False).logits

        lprobs = torch.nn.functional.log_softmax(logits, dim=-1)
        smoothed_loss, nll_loss = label_smoothed_nll_loss(
            lprobs, lm_labels, 0.1, ignore_index=model.config.pad_token_id
        )
        with self.assertRaises(AssertionError):
            # TODO: understand why this breaks
            self.assertEqual(nll_loss, model_computed_loss)

169
170
171
172
173
174
175
176
177
178
179
180
181
182
    @unittest.skip("T5 distillation is broken at the moment")
    def test_distill_t5(self):
        updates = dict(
            student_encoder_layers=1,
            student_decoder_layers=1,
            alpha_hid=2.0,
            teacher=T5_TINY,
            model_name_or_path=T5_TINY,
            tokenizer_name=T5_TINY,
        )
        self._test_distiller_cli(updates)

    def _test_distiller_cli(self, updates, check_contents=True):
        default_updates = dict(
183
184
            label_smoothing_eps=0.0,
            early_stopping_patience=-1,
185
186
            train_batch_size=1,
            eval_batch_size=2,
187
            max_epochs=2,
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
            alpha_mlm=0.2,
            alpha_ce=0.8,
            do_predict=True,
            model_name_or_path="sshleifer/tinier_bart",
            teacher=CHEAP_ARGS["model_name_or_path"],
            val_check_interval=0.5,
            alpha_encoder_loss=0.4,
        )
        default_updates.update(updates)
        args_d: dict = CHEAP_ARGS.copy()
        tmp_dir = make_test_data_dir()
        output_dir = tempfile.mkdtemp(prefix="output_")

        args_d.update(data_dir=tmp_dir, output_dir=output_dir, **default_updates)
        model = distill_main(argparse.Namespace(**args_d))
        if not check_contents:
            return model
        contents = os.listdir(output_dir)
        ckpt_name = "val_avg_rouge2=0.0000-step_count=2.ckpt"  # "val_avg_rouge2=0.0000-epoch=1.ckpt"  # "epoch=1-val_avg_rouge2=0.0000.ckpt"
        contents = {os.path.basename(p) for p in contents}
        self.assertIn(ckpt_name, contents)

        self.assertIn("test_generations.txt", contents)
        self.assertIn("test_results.txt", contents)

        metrics = load_json(model.metrics_save_path)
        last_step_stats = metrics["val"][-1]
        self.assertGreaterEqual(last_step_stats["val_avg_gen_time"], 0.01)
        self.assertGreaterEqual(1.0, last_step_stats["val_avg_gen_time"])
        self.assertIsInstance(last_step_stats[f"val_avg_{model.val_metric}"], float)
218
        desired_n_evals = int(args_d["max_epochs"] * (1 / args_d["val_check_interval"]) + 1)
219
220
221
222
223
224
225
        self.assertEqual(len(metrics["val"]), desired_n_evals)
        self.assertEqual(len(metrics["test"]), 1)
        return model


@pytest.mark.parametrize(["model"], [pytest.param(T5_TINY), pytest.param(BART_TINY), pytest.param(MBART_TINY)])
def test_run_eval_bart(model):
226
227
    input_file_name = Path(tempfile.mkdtemp()) / "utest_input.source"
    output_file_name = input_file_name.parent / "utest_output.txt"
228
229
    assert not output_file_name.exists()
    articles = [" New York (CNN)When Liana Barrientos was 23 years old, she got married in Westchester County."]
230
    _dump_articles(input_file_name, articles)
231
    testargs = ["run_eval.py", model, str(input_file_name), str(output_file_name)]  # TODO: test score_path
232
233
234
235
236
237
238
    with patch.object(sys, "argv", testargs):
        run_generate()
        assert Path(output_file_name).exists()
        os.remove(Path(output_file_name))


@pytest.mark.parametrize(
239
    ["model"], [pytest.param(T5_TINY), pytest.param(BART_TINY), pytest.param(MBART_TINY), pytest.param(MARIAN_TINY)],
240
241
242
243
)
def test_finetune(model):
    args_d: dict = CHEAP_ARGS.copy()
    task = "translation" if model in [MBART_TINY, MARIAN_TINY] else "summarization"
244
245
    args_d["label_smoothing"] = 0.1 if task == "translation" else 0

246
247
248
249
250
251
252
253
254
255
256
    tmp_dir = make_test_data_dir()
    output_dir = tempfile.mkdtemp(prefix="output_")
    args_d.update(
        data_dir=tmp_dir,
        model_name_or_path=model,
        tokenizer_name=None,
        train_batch_size=2,
        eval_batch_size=2,
        output_dir=output_dir,
        do_predict=True,
        task=task,
257
258
259
260
        src_lang="en_XX",
        tgt_lang="ro_RO",
        freeze_encoder=True,
        freeze_embeds=True,
261
262
263
    )
    assert "n_train" in args_d
    args = argparse.Namespace(**args_d)
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
    module = main(args)

    input_embeds = module.model.get_input_embeddings()
    assert not input_embeds.weight.requires_grad
    if model == T5_TINY:
        lm_head = module.model.lm_head
        assert not lm_head.weight.requires_grad
        assert (lm_head.weight == input_embeds.weight).all().item()

    else:
        bart = module.model.model
        embed_pos = bart.decoder.embed_positions
        assert not embed_pos.weight.requires_grad
        assert not bart.shared.weight.requires_grad
        # check that embeds are the same
        assert bart.decoder.embed_tokens == bart.encoder.embed_tokens
        assert bart.decoder.embed_tokens == bart.shared
281
282


283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
def test_finetune_extra_model_args():
    args_d: dict = CHEAP_ARGS.copy()

    task = "summarization"
    tmp_dir = make_test_data_dir()

    args_d.update(
        data_dir=tmp_dir,
        tokenizer_name=None,
        train_batch_size=2,
        eval_batch_size=2,
        do_predict=False,
        task=task,
        src_lang="en_XX",
        tgt_lang="ro_RO",
        freeze_encoder=True,
        freeze_embeds=True,
    )

    # test models whose config includes the extra_model_args
    model = BART_TINY
    output_dir = tempfile.mkdtemp(prefix="output_1_")
    args_d1 = args_d.copy()
    args_d1.update(
        model_name_or_path=model, output_dir=output_dir,
    )
    extra_model_params = ("encoder_layerdrop", "decoder_layerdrop", "dropout", "attention_dropout")
    for p in extra_model_params:
        args_d1[p] = 0.5
    args = argparse.Namespace(**args_d1)
    model = main(args)
    for p in extra_model_params:
        assert getattr(model.config, p) == 0.5, f"failed to override the model config for param {p}"

    # test models whose config doesn't include the extra_model_args
    model = T5_TINY
    output_dir = tempfile.mkdtemp(prefix="output_2_")
    args_d2 = args_d.copy()
    args_d2.update(
        model_name_or_path=model, output_dir=output_dir,
    )
    unsupported_param = "encoder_layerdrop"
    args_d2[unsupported_param] = 0.5
    args = argparse.Namespace(**args_d2)
    with pytest.raises(Exception) as excinfo:
        model = main(args)
    assert str(excinfo.value) == f"model config doesn't have a `{unsupported_param}` attribute"


332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
def test_finetune_lr_shedulers(capsys):
    args_d: dict = CHEAP_ARGS.copy()

    task = "summarization"
    tmp_dir = make_test_data_dir()

    model = BART_TINY
    output_dir = tempfile.mkdtemp(prefix="output_1_")

    args_d.update(
        data_dir=tmp_dir,
        model_name_or_path=model,
        output_dir=output_dir,
        tokenizer_name=None,
        train_batch_size=2,
        eval_batch_size=2,
        do_predict=False,
        task=task,
        src_lang="en_XX",
        tgt_lang="ro_RO",
        freeze_encoder=True,
        freeze_embeds=True,
    )

    # emulate finetune.py
    parser = argparse.ArgumentParser()
    parser = pl.Trainer.add_argparse_args(parser)
    parser = SummarizationModule.add_model_specific_args(parser, os.getcwd())
    args = {"--help": True}

    # --help test
    with pytest.raises(SystemExit) as excinfo:
        args = parser.parse_args(args)
        assert False, "--help is expected to sys.exit"
    assert excinfo.type == SystemExit
    captured = capsys.readouterr()
    expected = lightning_base.arg_to_scheduler_metavar
    assert expected in captured.out, "--help is expected to list the supported schedulers"

    # --lr_scheduler=non_existing_scheduler test
    unsupported_param = "non_existing_scheduler"
    args = {f"--lr_scheduler={unsupported_param}"}
    with pytest.raises(SystemExit) as excinfo:
        args = parser.parse_args(args)
        assert False, "invalid argument is expected to sys.exit"
    assert excinfo.type == SystemExit
    captured = capsys.readouterr()
    expected = f"invalid choice: '{unsupported_param}'"
    assert expected in captured.err, f"should have bailed on invalid choice of scheduler {unsupported_param}"

    # --lr_scheduler=existing_scheduler test
    supported_param = "cosine"
    args_d1 = args_d.copy()
    args_d1["lr_scheduler"] = supported_param
    args = argparse.Namespace(**args_d1)
    model = main(args)
    assert getattr(model.hparams, "lr_scheduler") == supported_param, f"lr_scheduler={supported_param} shouldn't fail"


391
392
def test_pack_dataset():
    tokenizer = AutoTokenizer.from_pretrained("facebook/mbart-large-cc25")
393

394
    tmp_dir = Path(make_test_data_dir())
395
    orig_examples = tmp_dir.joinpath("train.source").open().readlines()
396
397
398
399
    save_dir = Path(tempfile.mkdtemp(prefix="packed_"))
    pack_data_dir(tokenizer, tmp_dir, 128, save_dir)
    orig_paths = {x.name for x in tmp_dir.iterdir()}
    new_paths = {x.name for x in save_dir.iterdir()}
400
401
402
403
404
405
    packed_examples = save_dir.joinpath("train.source").open().readlines()
    # orig: [' Sam ate lunch today.\n', 'Sams lunch ingredients.']
    # desired_packed: [' Sam ate lunch today.\n Sams lunch ingredients.']
    assert len(packed_examples) < len(orig_examples)
    assert len(packed_examples) == 1
    assert len(packed_examples[0]) == sum(len(x) for x in orig_examples)
406
407
408
    assert orig_paths == new_paths


409
410
411
@pytest.mark.parametrize(["tok_name"], [pytest.param(MBART_TINY), pytest.param(MARIAN_TINY)])
def test_mbart_dataset_truncation(tok_name):
    tokenizer = AutoTokenizer.from_pretrained(tok_name)
412
413
414
    tmp_dir = make_test_data_dir()
    max_len_source = max(len(tokenizer.encode(a)) for a in ARTICLES)
    max_len_target = max(len(tokenizer.encode(a)) for a in SUMMARIES)
415
416
417
418
    max_src_len = 4
    max_tgt_len = 8
    assert max_len_target > max_src_len  # Truncated
    assert max_len_source > max_src_len
419
    src_lang, tgt_lang = "ro_RO", "de_DE"  # NOT WHAT IT WAS TRAINED ON
420
    train_dataset = TranslationDataset(
421
422
423
        tokenizer,
        data_dir=tmp_dir,
        type_path="train",
424
425
        max_source_length=max_src_len,
        max_target_length=max_tgt_len,  # ignored
426
427
428
429
430
431
432
433
        src_lang=src_lang,
        tgt_lang=tgt_lang,
    )
    dataloader = DataLoader(train_dataset, batch_size=2, collate_fn=train_dataset.collate_fn)
    for batch in dataloader:
        assert isinstance(batch, dict)
        assert batch["attention_mask"].shape == batch["input_ids"].shape
        # show that articles were trimmed.
434
        assert batch["input_ids"].shape[1] == max_src_len
435
        # show that targets are the same len
436
        assert batch["decoder_input_ids"].shape[1] == max_tgt_len
437
438
        if tok_name == MARIAN_TINY:
            continue
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
        # check language codes in correct place
        assert batch["decoder_input_ids"][0, 0].item() == tokenizer.lang_code_to_id[tgt_lang]
        assert batch["decoder_input_ids"][0, -1].item() == tokenizer.eos_token_id
        assert batch["input_ids"][0, -2].item() == tokenizer.eos_token_id
        assert batch["input_ids"][0, -1].item() == tokenizer.lang_code_to_id[src_lang]

        break  # No need to test every batch


@pytest.mark.parametrize(["tok"], [pytest.param(T5_TINY), pytest.param(BART_TINY), param(MARIAN_TINY)])
def test_summarization_dataset_truncation(tok):
    tokenizer = AutoTokenizer.from_pretrained(tok)
    tmp_dir = make_test_data_dir()
    max_len_source = max(len(tokenizer.encode(a)) for a in ARTICLES)
    max_len_target = max(len(tokenizer.encode(a)) for a in SUMMARIES)
    trunc_target = 4
    train_dataset = Seq2SeqDataset(
        tokenizer, data_dir=tmp_dir, type_path="train", max_source_length=20, max_target_length=trunc_target,
457
458
459
460
461
462
463
464
465
466
    )
    dataloader = DataLoader(train_dataset, batch_size=2, collate_fn=train_dataset.collate_fn)
    for batch in dataloader:
        assert batch["attention_mask"].shape == batch["input_ids"].shape
        # show that articles were trimmed.
        assert batch["input_ids"].shape[1] == max_len_source
        assert 20 >= batch["input_ids"].shape[1]  # trimmed significantly
        # show that targets were truncated
        assert batch["decoder_input_ids"].shape[1] == trunc_target  # Truncated
        assert max_len_target > trunc_target  # Truncated
467
        break  # No need to test every batch