run_swag.py 29.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
16
17
18
"""BERT finetuning runner.
   Finetuning the library models for multiple choice on SWAG (Bert).
"""
Aymeric Augustin's avatar
Aymeric Augustin committed
19

20
21

import argparse
22
import csv
Aymeric Augustin's avatar
Aymeric Augustin committed
23
24
import glob
import logging
25
26
27
28
29
import os
import random

import numpy as np
import torch
30
from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset
31
from torch.utils.data.distributed import DistributedSampler
Aymeric Augustin's avatar
Aymeric Augustin committed
32
33
from tqdm import tqdm, trange

34
import transformers
35
36
from transformers import WEIGHTS_NAME, AdamW, AutoConfig, AutoTokenizer, get_linear_schedule_with_warmup
from transformers.modeling_auto import AutoModelForMultipleChoice
37
from transformers.trainer_utils import is_main_process
Aymeric Augustin's avatar
Aymeric Augustin committed
38

39

40
41
try:
    from torch.utils.tensorboard import SummaryWriter
42
except ImportError:
43
44
    from tensorboardX import SummaryWriter

45
46
47

logger = logging.getLogger(__name__)

48

49
50
class SwagExample(object):
    """A single training/test example for the SWAG dataset."""
51
52

    def __init__(self, swag_id, context_sentence, start_ending, ending_0, ending_1, ending_2, ending_3, label=None):
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
        self.swag_id = swag_id
        self.context_sentence = context_sentence
        self.start_ending = start_ending
        self.endings = [
            ending_0,
            ending_1,
            ending_2,
            ending_3,
        ]
        self.label = label

    def __str__(self):
        return self.__repr__()

    def __repr__(self):
68
        attributes = [
69
70
71
72
73
74
75
76
77
78
            "swag_id: {}".format(self.swag_id),
            "context_sentence: {}".format(self.context_sentence),
            "start_ending: {}".format(self.start_ending),
            "ending_0: {}".format(self.endings[0]),
            "ending_1: {}".format(self.endings[1]),
            "ending_2: {}".format(self.endings[2]),
            "ending_3: {}".format(self.endings[3]),
        ]

        if self.label is not None:
79
            attributes.append("label: {}".format(self.label))
80

81
        return ", ".join(attributes)
82
83


84
85
class InputFeatures(object):
    def __init__(self, example_id, choices_features, label):
86
87
        self.example_id = example_id
        self.choices_features = [
88
            {"input_ids": input_ids, "input_mask": input_mask, "segment_ids": segment_ids}
89
90
91
92
            for _, input_ids, input_mask, segment_ids in choices_features
        ]
        self.label = label

93

94
def read_swag_examples(input_file, is_training=True):
95
    with open(input_file, "r", encoding="utf-8") as f:
96
        lines = list(csv.reader(f))
97

98
99
    if is_training and lines[0][-1] != "label":
        raise ValueError("For training, the input file must contain a label column.")
100
101
102

    examples = [
        SwagExample(
103
104
105
106
107
108
109
110
111
112
113
114
            swag_id=line[2],
            context_sentence=line[4],
            start_ending=line[5],  # in the swag dataset, the
            # common beginning of each
            # choice is stored in "sent2".
            ending_0=line[7],
            ending_1=line[8],
            ending_2=line[9],
            ending_3=line[10],
            label=int(line[11]) if is_training else None,
        )
        for line in lines[1:]  # we skip the line with the column names
115
116
117
118
    ]

    return examples

119
120

def convert_examples_to_features(examples, tokenizer, max_seq_length, is_training):
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
    """Loads a data file into a list of `InputBatch`s."""

    # Swag is a multiple choice task. To perform this task using Bert,
    # we will use the formatting proposed in "Improving Language
    # Understanding by Generative Pre-Training" and suggested by
    # @jacobdevlin-google in this issue
    # https://github.com/google-research/bert/issues/38.
    #
    # Each choice will correspond to a sample on which we run the
    # inference. For a given Swag example, we will create the 4
    # following inputs:
    # - [CLS] context [SEP] choice_1 [SEP]
    # - [CLS] context [SEP] choice_2 [SEP]
    # - [CLS] context [SEP] choice_3 [SEP]
    # - [CLS] context [SEP] choice_4 [SEP]
    # The model will output a single value for each input. To get the
    # final decision of the model, we will run a softmax over these 4
    # outputs.
    features = []
140
    for example_index, example in tqdm(enumerate(examples)):
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
        context_tokens = tokenizer.tokenize(example.context_sentence)
        start_ending_tokens = tokenizer.tokenize(example.start_ending)

        choices_features = []
        for ending_index, ending in enumerate(example.endings):
            # We create a copy of the context tokens in order to be
            # able to shrink it according to ending_tokens
            context_tokens_choice = context_tokens[:]
            ending_tokens = start_ending_tokens + tokenizer.tokenize(ending)
            # Modifies `context_tokens_choice` and `ending_tokens` in
            # place so that the total length is less than the
            # specified length.  Account for [CLS], [SEP], [SEP] with
            # "- 3"
            _truncate_seq_pair(context_tokens_choice, ending_tokens, max_seq_length - 3)

            tokens = ["[CLS]"] + context_tokens_choice + ["[SEP]"] + ending_tokens + ["[SEP]"]
            segment_ids = [0] * (len(context_tokens_choice) + 2) + [1] * (len(ending_tokens) + 1)

            input_ids = tokenizer.convert_tokens_to_ids(tokens)
            input_mask = [1] * len(input_ids)

            # Zero-pad up to the sequence length.
            padding = [0] * (max_seq_length - len(input_ids))
            input_ids += padding
            input_mask += padding
            segment_ids += padding

            assert len(input_ids) == max_seq_length
            assert len(input_mask) == max_seq_length
            assert len(segment_ids) == max_seq_length

            choices_features.append((tokens, input_ids, input_mask, segment_ids))

        label = example.label
        if example_index < 5:
            logger.info("*** Example ***")
            logger.info("swag_id: {}".format(example.swag_id))
            for choice_idx, (tokens, input_ids, input_mask, segment_ids) in enumerate(choices_features):
                logger.info("choice: {}".format(choice_idx))
180
181
182
183
                logger.info("tokens: {}".format(" ".join(tokens)))
                logger.info("input_ids: {}".format(" ".join(map(str, input_ids))))
                logger.info("input_mask: {}".format(" ".join(map(str, input_mask))))
                logger.info("segment_ids: {}".format(" ".join(map(str, segment_ids))))
184
185
186
            if is_training:
                logger.info("label: {}".format(label))

187
        features.append(InputFeatures(example_id=example.swag_id, choices_features=choices_features, label=label))
188
189
190

    return features

191

192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
def _truncate_seq_pair(tokens_a, tokens_b, max_length):
    """Truncates a sequence pair in place to the maximum length."""

    # This is a simple heuristic which will always truncate the longer sequence
    # one token at a time. This makes more sense than truncating an equal percent
    # of tokens from each, since if one sequence is very short then each token
    # that's truncated likely contains more information than a longer sequence.
    while True:
        total_length = len(tokens_a) + len(tokens_b)
        if total_length <= max_length:
            break
        if len(tokens_a) > len(tokens_b):
            tokens_a.pop()
        else:
            tokens_b.pop()

208

209
210
211
212
def accuracy(out, labels):
    outputs = np.argmax(out, axis=1)
    return np.sum(outputs == labels)

213

214
def select_field(features, field):
215
    return [[choice[field] for choice in feature.choices_features] for feature in features]
216

217
218
219
220
221
222
223
224

def set_seed(args):
    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if args.n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)

225

226
227
228
229
230
231
def load_and_cache_examples(args, tokenizer, evaluate=False, output_examples=False):
    if args.local_rank not in [-1, 0]:
        torch.distributed.barrier()  # Make sure only the first process in distributed training process the dataset, and the others will use the cache

    # Load data features from cache or dataset file
    input_file = args.predict_file if evaluate else args.train_file
232
233
234
235
236
237
238
239
    cached_features_file = os.path.join(
        os.path.dirname(input_file),
        "cached_{}_{}_{}".format(
            "dev" if evaluate else "train",
            list(filter(None, args.model_name_or_path.split("/"))).pop(),
            str(args.max_seq_length),
        ),
    )
240
241
242
243
244
245
    if os.path.exists(cached_features_file) and not args.overwrite_cache and not output_examples:
        logger.info("Loading features from cached file %s", cached_features_file)
        features = torch.load(cached_features_file)
    else:
        logger.info("Creating features from dataset file at %s", input_file)
        examples = read_swag_examples(input_file)
246
        features = convert_examples_to_features(examples, tokenizer, args.max_seq_length, not evaluate)
247
248
249
250
251
252
253
254
255

        if args.local_rank in [-1, 0]:
            logger.info("Saving features into cached file %s", cached_features_file)
            torch.save(features, cached_features_file)

    if args.local_rank == 0:
        torch.distributed.barrier()  # Make sure only the first process in distributed training process the dataset, and the others will use the cache

    # Convert to Tensors and build dataset
256
257
258
    all_input_ids = torch.tensor(select_field(features, "input_ids"), dtype=torch.long)
    all_input_mask = torch.tensor(select_field(features, "input_mask"), dtype=torch.long)
    all_segment_ids = torch.tensor(select_field(features, "segment_ids"), dtype=torch.long)
259
260
261
    all_label = torch.tensor([f.label for f in features], dtype=torch.long)

    if evaluate:
262
        dataset = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label)
263
    else:
264
        dataset = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label)
265
266
267
268

    if output_examples:
        return dataset, examples, features
    return dataset
269
270


271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
def train(args, train_dataset, model, tokenizer):
    """ Train the model """
    if args.local_rank in [-1, 0]:
        tb_writer = SummaryWriter()

    args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu)
    train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset)
    train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size)

    if args.max_steps > 0:
        t_total = args.max_steps
        args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1
    else:
        t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs

    # Prepare optimizer and schedule (linear warmup and decay)
287
    no_decay = ["bias", "LayerNorm.weight"]
288
    optimizer_grouped_parameters = [
289
290
291
292
293
294
        {
            "params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
            "weight_decay": args.weight_decay,
        },
        {"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], "weight_decay": 0.0},
    ]
295
    optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
296
297
298
    scheduler = get_linear_schedule_with_warmup(
        optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=t_total
    )
299
300
301
302
303
304
305
306
307
308
309
310
311
    if args.fp16:
        try:
            from apex import amp
        except ImportError:
            raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
        model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)

    # multi-gpu training (should be after apex fp16 initialization)
    if args.n_gpu > 1:
        model = torch.nn.DataParallel(model)

    # Distributed training (should be after apex fp16 initialization)
    if args.local_rank != -1:
312
313
314
        model = torch.nn.parallel.DistributedDataParallel(
            model, device_ids=[args.local_rank], output_device=args.local_rank, find_unused_parameters=True
        )
315
316
317
318
319
320

    # Train!
    logger.info("***** Running training *****")
    logger.info("  Num examples = %d", len(train_dataset))
    logger.info("  Num Epochs = %d", args.num_train_epochs)
    logger.info("  Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size)
321
322
323
324
325
326
    logger.info(
        "  Total train batch size (w. parallel, distributed & accumulation) = %d",
        args.train_batch_size
        * args.gradient_accumulation_steps
        * (torch.distributed.get_world_size() if args.local_rank != -1 else 1),
    )
327
328
329
330
331
332
333
    logger.info("  Gradient Accumulation steps = %d", args.gradient_accumulation_steps)
    logger.info("  Total optimization steps = %d", t_total)

    global_step = 0
    tr_loss, logging_loss = 0.0, 0.0
    model.zero_grad()
    train_iterator = trange(int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0])
334
    set_seed(args)  # Added here for reproductibility
335
336
337
338
339
    for _ in train_iterator:
        epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0])
        for step, batch in enumerate(epoch_iterator):
            model.train()
            batch = tuple(t.to(args.device) for t in batch)
340
341
342
            inputs = {
                "input_ids": batch[0],
                "attention_mask": batch[1],
343
                # 'token_type_ids':  None if args.model_type == 'xlm' else batch[2],
344
345
346
                "token_type_ids": batch[2],
                "labels": batch[3],
            }
347
348
349
350
            # if args.model_type in ['xlnet', 'xlm']:
            #     inputs.update({'cls_index': batch[5],
            #                    'p_mask':       batch[6]})
            outputs = model(**inputs)
351
            loss = outputs[0]  # model outputs are always tuple in transformers (see doc)
352
353

            if args.n_gpu > 1:
354
                loss = loss.mean()  # mean() to average on multi-gpu parallel (not distributed) training
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
            if args.gradient_accumulation_steps > 1:
                loss = loss / args.gradient_accumulation_steps

            if args.fp16:
                with amp.scale_loss(loss, optimizer) as scaled_loss:
                    scaled_loss.backward()
                torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm)
            else:
                loss.backward()
                torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)

            tr_loss += loss.item()
            if (step + 1) % args.gradient_accumulation_steps == 0:
                optimizer.step()
                scheduler.step()  # Update learning rate schedule
                model.zero_grad()
                global_step += 1

                if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0:
                    # Log metrics
375
376
377
                    if (
                        args.local_rank == -1 and args.evaluate_during_training
                    ):  # Only evaluate when single GPU otherwise metrics may not average well
378
379
                        results = evaluate(args, model, tokenizer)
                        for key, value in results.items():
380
381
382
                            tb_writer.add_scalar("eval_{}".format(key), value, global_step)
                    tb_writer.add_scalar("lr", scheduler.get_lr()[0], global_step)
                    tb_writer.add_scalar("loss", (tr_loss - logging_loss) / args.logging_steps, global_step)
383
384
385
386
                    logging_loss = tr_loss

                if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0:
                    # Save model checkpoint
387
388
389
390
                    output_dir = os.path.join(args.output_dir, "checkpoint-{}".format(global_step))
                    model_to_save = (
                        model.module if hasattr(model, "module") else model
                    )  # Take care of distributed/parallel training
391
392
                    model_to_save.save_pretrained(output_dir)
                    tokenizer.save_vocabulary(output_dir)
393
                    torch.save(args, os.path.join(output_dir, "training_args.bin"))
394
395
396
397
398
399
400
401
402
403
404
405
406
407
                    logger.info("Saving model checkpoint to %s", output_dir)

            if args.max_steps > 0 and global_step > args.max_steps:
                epoch_iterator.close()
                break
        if args.max_steps > 0 and global_step > args.max_steps:
            train_iterator.close()
            break

    if args.local_rank in [-1, 0]:
        tb_writer.close()

    return global_step, tr_loss / global_step

408

409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
def evaluate(args, model, tokenizer, prefix=""):
    dataset, examples, features = load_and_cache_examples(args, tokenizer, evaluate=True, output_examples=True)

    if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]:
        os.makedirs(args.output_dir)

    args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)
    # Note that DistributedSampler samples randomly
    eval_sampler = SequentialSampler(dataset) if args.local_rank == -1 else DistributedSampler(dataset)
    eval_dataloader = DataLoader(dataset, sampler=eval_sampler, batch_size=args.eval_batch_size)

    # Eval!
    logger.info("***** Running evaluation {} *****".format(prefix))
    logger.info("  Num examples = %d", len(dataset))
    logger.info("  Batch size = %d", args.eval_batch_size)

    eval_loss, eval_accuracy = 0, 0
    nb_eval_steps, nb_eval_examples = 0, 0

    for batch in tqdm(eval_dataloader, desc="Evaluating"):
        model.eval()
        batch = tuple(t.to(args.device) for t in batch)
        with torch.no_grad():
432
433
434
435
436
437
438
            inputs = {
                "input_ids": batch[0],
                "attention_mask": batch[1],
                # 'token_type_ids': None if args.model_type == 'xlm' else batch[2]  # XLM don't use segment_ids
                "token_type_ids": batch[2],
                "labels": batch[3],
            }
439
440
441
442
443
444
445
446
447

            # if args.model_type in ['xlnet', 'xlm']:
            #     inputs.update({'cls_index': batch[4],
            #                    'p_mask':    batch[5]})
            outputs = model(**inputs)
            tmp_eval_loss, logits = outputs[:2]
            eval_loss += tmp_eval_loss.mean().item()

        logits = logits.detach().cpu().numpy()
448
        label_ids = inputs["labels"].to("cpu").numpy()
449
450
451
452
        tmp_eval_accuracy = accuracy(logits, label_ids)
        eval_accuracy += tmp_eval_accuracy

        nb_eval_steps += 1
453
        nb_eval_examples += inputs["input_ids"].size(0)
454
455
456

    eval_loss = eval_loss / nb_eval_steps
    eval_accuracy = eval_accuracy / nb_eval_examples
457
    result = {"eval_loss": eval_loss, "eval_accuracy": eval_accuracy}
458
459
460
461
462
463
464
465
466
467

    output_eval_file = os.path.join(args.output_dir, "eval_results.txt")
    with open(output_eval_file, "w") as writer:
        logger.info("***** Eval results *****")
        for key in sorted(result.keys()):
            logger.info("%s = %s", key, str(result[key]))
            writer.write("%s = %s\n" % (key, str(result[key])))

    return result

468

469
470
471
def main():
    parser = argparse.ArgumentParser()

472
    # Required parameters
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
    parser.add_argument(
        "--train_file", default=None, type=str, required=True, help="SWAG csv for training. E.g., train.csv"
    )
    parser.add_argument(
        "--predict_file",
        default=None,
        type=str,
        required=True,
        help="SWAG csv for predictions. E.g., val.csv or test.csv",
    )
    parser.add_argument(
        "--model_name_or_path",
        default=None,
        type=str,
        required=True,
488
        help="Path to pretrained model or model identifier from huggingface.co/models",
489
490
491
492
493
494
495
496
    )
    parser.add_argument(
        "--output_dir",
        default=None,
        type=str,
        required=True,
        help="The output directory where the model checkpoints and predictions will be written.",
    )
497

498
    # Other parameters
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
    parser.add_argument(
        "--config_name", default="", type=str, help="Pretrained config name or path if not the same as model_name"
    )
    parser.add_argument(
        "--tokenizer_name",
        default="",
        type=str,
        help="Pretrained tokenizer name or path if not the same as model_name",
    )
    parser.add_argument(
        "--max_seq_length",
        default=384,
        type=int,
        help="The maximum total input sequence length after tokenization. Sequences "
        "longer than this will be truncated, and sequences shorter than this will be padded.",
    )
    parser.add_argument("--do_train", action="store_true", help="Whether to run training.")
    parser.add_argument("--do_eval", action="store_true", help="Whether to run eval on the dev set.")
    parser.add_argument(
        "--evaluate_during_training", action="store_true", help="Rul evaluation during training at each logging step."
    )

    parser.add_argument("--per_gpu_train_batch_size", default=8, type=int, help="Batch size per GPU/CPU for training.")
    parser.add_argument(
        "--per_gpu_eval_batch_size", default=8, type=int, help="Batch size per GPU/CPU for evaluation."
    )
    parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.")
    parser.add_argument(
        "--gradient_accumulation_steps",
        type=int,
        default=1,
        help="Number of updates steps to accumulate before performing a backward/update pass.",
    )
    parser.add_argument("--weight_decay", default=0.0, type=float, help="Weight deay if we apply some.")
    parser.add_argument("--adam_epsilon", default=1e-8, type=float, help="Epsilon for Adam optimizer.")
    parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
    parser.add_argument(
        "--num_train_epochs", default=3.0, type=float, help="Total number of training epochs to perform."
    )
    parser.add_argument(
        "--max_steps",
        default=-1,
        type=int,
        help="If > 0: set total number of training steps to perform. Override num_train_epochs.",
    )
    parser.add_argument("--warmup_steps", default=0, type=int, help="Linear warmup over warmup_steps.")

    parser.add_argument("--logging_steps", type=int, default=50, help="Log every X updates steps.")
    parser.add_argument("--save_steps", type=int, default=50, help="Save checkpoint every X updates steps.")
    parser.add_argument(
        "--eval_all_checkpoints",
        action="store_true",
        help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number",
    )
    parser.add_argument("--no_cuda", action="store_true", help="Whether not to use CUDA when available")
    parser.add_argument(
        "--overwrite_output_dir", action="store_true", help="Overwrite the content of the output directory"
    )
    parser.add_argument(
        "--overwrite_cache", action="store_true", help="Overwrite the cached training and evaluation sets"
    )
    parser.add_argument("--seed", type=int, default=42, help="random seed for initialization")

    parser.add_argument("--local_rank", type=int, default=-1, help="local_rank for distributed training on gpus")
    parser.add_argument(
        "--fp16",
        action="store_true",
        help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit",
    )
    parser.add_argument(
        "--fp16_opt_level",
        type=str,
        default="O1",
        help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
        "See details at https://nvidia.github.io/apex/amp.html",
    )
    parser.add_argument("--server_ip", type=str, default="", help="Can be used for distant debugging.")
    parser.add_argument("--server_port", type=str, default="", help="Can be used for distant debugging.")
577
578
    args = parser.parse_args()

579
580
581
582
583
584
585
586
587
588
589
    if (
        os.path.exists(args.output_dir)
        and os.listdir(args.output_dir)
        and args.do_train
        and not args.overwrite_output_dir
    ):
        raise ValueError(
            "Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format(
                args.output_dir
            )
        )
590
591
592
593
594

    # Setup distant debugging if needed
    if args.server_ip and args.server_port:
        # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
        import ptvsd
595

596
597
598
599
600
        print("Waiting for debugger attach")
        ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)
        ptvsd.wait_for_attach()

    # Setup CUDA, GPU & distributed training
601
602
    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
603
        args.n_gpu = 0 if args.no_cuda else torch.cuda.device_count()
604
    else:  # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
605
606
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
607
        torch.distributed.init_process_group(backend="nccl")
608
609
        args.n_gpu = 1
    args.device = device
610

611
    # Setup logging
612
613
614
615
616
617
618
619
620
621
622
623
624
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s -   %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN,
    )
    logger.warning(
        "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
        args.local_rank,
        device,
        args.n_gpu,
        bool(args.local_rank != -1),
        args.fp16,
    )
625
626
627
628
629
    # Set the verbosity to info of the Transformers logger (on main process only):
    if is_main_process(args.local_rank):
        transformers.utils.logging.set_verbosity_info()
        transformers.utils.logging.enable_default_handler()
        transformers.utils.logging.enable_explicit_format()
630

631
632
    # Set seed
    set_seed(args)
633

634
635
636
    # Load pretrained model and tokenizer
    if args.local_rank not in [-1, 0]:
        torch.distributed.barrier()  # Make sure only the first process in distributed training will download model & vocab
637

638
    config = AutoConfig.from_pretrained(args.config_name if args.config_name else args.model_name_or_path)
Lysandre's avatar
Lysandre committed
639
640
641
    tokenizer = AutoTokenizer.from_pretrained(
        args.tokenizer_name if args.tokenizer_name else args.model_name_or_path,
    )
642
    model = AutoModelForMultipleChoice.from_pretrained(
643
644
        args.model_name_or_path, from_tf=bool(".ckpt" in args.model_name_or_path), config=config
    )
645

646
647
    if args.local_rank == 0:
        torch.distributed.barrier()  # Make sure only the first process in distributed training will download model & vocab
648

649
    model.to(args.device)
650

651
    logger.info("Training/evaluation parameters %s", args)
652

653
    # Training
654
    if args.do_train:
655
656
657
        train_dataset = load_and_cache_examples(args, tokenizer, evaluate=False, output_examples=False)
        global_step, tr_loss = train(args, train_dataset, model, tokenizer)
        logger.info(" global_step = %s, average loss = %s", global_step, tr_loss)
658

659
660
661
662
663
    # Save the trained model and the tokenizer
    if args.local_rank == -1 or torch.distributed.get_rank() == 0:
        logger.info("Saving model checkpoint to %s", args.output_dir)
        # Save a trained model, configuration and tokenizer using `save_pretrained()`.
        # They can then be reloaded using `from_pretrained()`
664
665
666
        model_to_save = (
            model.module if hasattr(model, "module") else model
        )  # Take care of distributed/parallel training
667
668
        model_to_save.save_pretrained(args.output_dir)
        tokenizer.save_pretrained(args.output_dir)
669

670
        # Good practice: save your training arguments together with the trained model
671
        torch.save(args, os.path.join(args.output_dir, "training_args.bin"))
672
673

        # Load a trained model and vocabulary that you have fine-tuned
674
675
        model = AutoModelForMultipleChoice.from_pretrained(args.output_dir)
        tokenizer = AutoTokenizer.from_pretrained(args.output_dir)
676
        model.to(args.device)
677

678
679
680
681
682
683
684
685
686
687
    # Evaluation - we can ask to evaluate all the checkpoints (sub-directories) in a directory
    results = {}
    if args.do_eval and args.local_rank in [-1, 0]:
        if args.do_train:
            checkpoints = [args.output_dir]
        else:
            # if do_train is False and do_eval is true, load model directly from pretrained.
            checkpoints = [args.model_name_or_path]

        if args.eval_all_checkpoints:
688
689
690
            checkpoints = list(
                os.path.dirname(c) for c in sorted(glob.glob(args.output_dir + "/**/" + WEIGHTS_NAME, recursive=True))
            )
691
692
693
694
695

        logger.info("Evaluate the following checkpoints: %s", checkpoints)

        for checkpoint in checkpoints:
            # Reload the model
696
            global_step = checkpoint.split("-")[-1] if len(checkpoints) > 1 else ""
697
698
            model = AutoModelForMultipleChoice.from_pretrained(checkpoint)
            tokenizer = AutoTokenizer.from_pretrained(checkpoint)
699
            model.to(args.device)
700

701
702
            # Evaluate
            result = evaluate(args, model, tokenizer, prefix=global_step)
703

704
            result = dict((k + ("_{}".format(global_step) if global_step else ""), v) for k, v in result.items())
705
            results.update(result)
706

707
    logger.info("Results: {}".format(results))
708

709
    return results
710
711
712
713


if __name__ == "__main__":
    main()