test_modeling_electra.py 13.2 KB
Newer Older
Lysandre Debut's avatar
Lysandre Debut committed
1
# coding=utf-8
Sylvain Gugger's avatar
Sylvain Gugger committed
2
# Copyright 2020 The HuggingFace Team. All rights reserved.
Lysandre Debut's avatar
Lysandre Debut committed
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import unittest

from transformers import is_torch_available
20
from transformers.models.auto import get_values
21
from transformers.testing_utils import require_torch, slow, torch_device
Lysandre Debut's avatar
Lysandre Debut committed
22
23

from .test_configuration_common import ConfigTester
24
from .test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
Lysandre Debut's avatar
Lysandre Debut committed
25
26
27


if is_torch_available():
28
29
    import torch

Lysandre Debut's avatar
Lysandre Debut committed
30
    from transformers import (
31
        MODEL_FOR_PRETRAINING_MAPPING,
Lysandre Debut's avatar
Lysandre Debut committed
32
33
        ElectraConfig,
        ElectraForMaskedLM,
Suraj Patil's avatar
Suraj Patil committed
34
        ElectraForMultipleChoice,
35
        ElectraForPreTraining,
36
        ElectraForQuestionAnswering,
37
38
39
        ElectraForSequenceClassification,
        ElectraForTokenClassification,
        ElectraModel,
Lysandre Debut's avatar
Lysandre Debut committed
40
    )
Sylvain Gugger's avatar
Sylvain Gugger committed
41
    from transformers.models.electra.modeling_electra import ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST
Lysandre Debut's avatar
Lysandre Debut committed
42
43


44
45
class ElectraModelTester:
    def __init__(
Lysandre's avatar
Lysandre committed
46
47
        self,
        parent,
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
    ):
        self.parent = parent
        self.batch_size = 13
        self.seq_length = 7
        self.is_training = True
        self.use_input_mask = True
        self.use_token_type_ids = True
        self.use_labels = True
        self.vocab_size = 99
        self.hidden_size = 32
        self.num_hidden_layers = 5
        self.num_attention_heads = 4
        self.intermediate_size = 37
        self.hidden_act = "gelu"
        self.hidden_dropout_prob = 0.1
        self.attention_probs_dropout_prob = 0.1
        self.max_position_embeddings = 512
        self.type_vocab_size = 16
        self.type_sequence_label_size = 2
        self.initializer_range = 0.02
        self.num_labels = 3
        self.num_choices = 4
        self.scope = None
Lysandre Debut's avatar
Lysandre Debut committed
71

72
73
    def prepare_config_and_inputs(self):
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
Lysandre Debut's avatar
Lysandre Debut committed
74

75
76
        input_mask = None
        if self.use_input_mask:
77
            input_mask = random_attention_mask([self.batch_size, self.seq_length])
Lysandre Debut's avatar
Lysandre Debut committed
78

79
80
81
        token_type_ids = None
        if self.use_token_type_ids:
            token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
Lysandre Debut's avatar
Lysandre Debut committed
82

83
84
85
86
87
88
89
90
        sequence_labels = None
        token_labels = None
        choice_labels = None
        if self.use_labels:
            sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
            token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
            choice_labels = ids_tensor([self.batch_size], self.num_choices)
            fake_token_labels = ids_tensor([self.batch_size, self.seq_length], 1)
Lysandre Debut's avatar
Lysandre Debut committed
91

92
93
94
95
96
97
98
99
100
101
102
103
104
105
        config = ElectraConfig(
            vocab_size=self.vocab_size,
            hidden_size=self.hidden_size,
            num_hidden_layers=self.num_hidden_layers,
            num_attention_heads=self.num_attention_heads,
            intermediate_size=self.intermediate_size,
            hidden_act=self.hidden_act,
            hidden_dropout_prob=self.hidden_dropout_prob,
            attention_probs_dropout_prob=self.attention_probs_dropout_prob,
            max_position_embeddings=self.max_position_embeddings,
            type_vocab_size=self.type_vocab_size,
            is_decoder=False,
            initializer_range=self.initializer_range,
        )
Lysandre Debut's avatar
Lysandre Debut committed
106

107
        return (
Lysandre Debut's avatar
Lysandre Debut committed
108
109
110
111
112
113
114
115
            config,
            input_ids,
            token_type_ids,
            input_mask,
            sequence_labels,
            token_labels,
            choice_labels,
            fake_token_labels,
116
        )
Lysandre Debut's avatar
Lysandre Debut committed
117

118
119
120
121
122
123
124
125
126
127
128
129
130
131
    def create_and_check_electra_model(
        self,
        config,
        input_ids,
        token_type_ids,
        input_mask,
        sequence_labels,
        token_labels,
        choice_labels,
        fake_token_labels,
    ):
        model = ElectraModel(config=config)
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
132
133
134
        result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids)
        result = model(input_ids, token_type_ids=token_type_ids)
        result = model(input_ids)
Stas Bekman's avatar
Stas Bekman committed
135
        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
Lysandre Debut's avatar
Lysandre Debut committed
136

137
138
139
140
141
142
143
144
145
146
147
148
149
150
    def create_and_check_electra_for_masked_lm(
        self,
        config,
        input_ids,
        token_type_ids,
        input_mask,
        sequence_labels,
        token_labels,
        choice_labels,
        fake_token_labels,
    ):
        model = ElectraForMaskedLM(config=config)
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
151
        result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels)
Stas Bekman's avatar
Stas Bekman committed
152
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
Lysandre Debut's avatar
Lysandre Debut committed
153

154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
    def create_and_check_electra_for_token_classification(
        self,
        config,
        input_ids,
        token_type_ids,
        input_mask,
        sequence_labels,
        token_labels,
        choice_labels,
        fake_token_labels,
    ):
        config.num_labels = self.num_labels
        model = ElectraForTokenClassification(config=config)
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
169
        result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels)
Stas Bekman's avatar
Stas Bekman committed
170
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels))
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186

    def create_and_check_electra_for_pretraining(
        self,
        config,
        input_ids,
        token_type_ids,
        input_mask,
        sequence_labels,
        token_labels,
        choice_labels,
        fake_token_labels,
    ):
        config.num_labels = self.num_labels
        model = ElectraForPreTraining(config=config)
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
187
        result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=fake_token_labels)
Stas Bekman's avatar
Stas Bekman committed
188
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length))
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204

    def create_and_check_electra_for_sequence_classification(
        self,
        config,
        input_ids,
        token_type_ids,
        input_mask,
        sequence_labels,
        token_labels,
        choice_labels,
        fake_token_labels,
    ):
        config.num_labels = self.num_labels
        model = ElectraForSequenceClassification(config)
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
205
        result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=sequence_labels)
Stas Bekman's avatar
Stas Bekman committed
206
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221

    def create_and_check_electra_for_question_answering(
        self,
        config,
        input_ids,
        token_type_ids,
        input_mask,
        sequence_labels,
        token_labels,
        choice_labels,
        fake_token_labels,
    ):
        model = ElectraForQuestionAnswering(config=config)
        model.to(torch_device)
        model.eval()
Sylvain Gugger's avatar
Sylvain Gugger committed
222
        result = model(
223
            input_ids,
224
225
226
227
228
            attention_mask=input_mask,
            token_type_ids=token_type_ids,
            start_positions=sequence_labels,
            end_positions=sequence_labels,
        )
Stas Bekman's avatar
Stas Bekman committed
229
230
        self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length))
        self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length))
231

Suraj Patil's avatar
Suraj Patil committed
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
    def create_and_check_electra_for_multiple_choice(
        self,
        config,
        input_ids,
        token_type_ids,
        input_mask,
        sequence_labels,
        token_labels,
        choice_labels,
        fake_token_labels,
    ):
        config.num_choices = self.num_choices
        model = ElectraForMultipleChoice(config=config)
        model.to(torch_device)
        model.eval()
        multiple_choice_inputs_ids = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
        multiple_choice_token_type_ids = token_type_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
        multiple_choice_input_mask = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
Sylvain Gugger's avatar
Sylvain Gugger committed
250
        result = model(
Suraj Patil's avatar
Suraj Patil committed
251
252
253
254
255
            multiple_choice_inputs_ids,
            attention_mask=multiple_choice_input_mask,
            token_type_ids=multiple_choice_token_type_ids,
            labels=choice_labels,
        )
Stas Bekman's avatar
Stas Bekman committed
256
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices))
Suraj Patil's avatar
Suraj Patil committed
257

258
259
260
    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        (
261
262
263
264
265
266
267
268
            config,
            input_ids,
            token_type_ids,
            input_mask,
            sequence_labels,
            token_labels,
            choice_labels,
            fake_token_labels,
269
270
271
272
273
274
275
        ) = config_and_inputs
        inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
        return config, inputs_dict


@require_torch
class ElectraModelTest(ModelTesterMixin, unittest.TestCase):
276

277
278
279
280
281
    all_model_classes = (
        (
            ElectraModel,
            ElectraForPreTraining,
            ElectraForMaskedLM,
282
            ElectraForMultipleChoice,
283
284
285
286
287
288
289
            ElectraForTokenClassification,
            ElectraForSequenceClassification,
            ElectraForQuestionAnswering,
        )
        if is_torch_available()
        else ()
    )
Lysandre Debut's avatar
Lysandre Debut committed
290

291
292
293
294
295
    # special case for ForPreTraining model
    def _prepare_for_class(self, inputs_dict, model_class, return_labels=False):
        inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels)

        if return_labels:
296
            if model_class in get_values(MODEL_FOR_PRETRAINING_MAPPING):
297
298
299
300
301
                inputs_dict["labels"] = torch.zeros(
                    (self.model_tester.batch_size, self.model_tester.seq_length), dtype=torch.long, device=torch_device
                )
        return inputs_dict

Lysandre Debut's avatar
Lysandre Debut committed
302
    def setUp(self):
303
        self.model_tester = ElectraModelTester(self)
Lysandre Debut's avatar
Lysandre Debut committed
304
305
306
307
308
309
310
311
312
        self.config_tester = ConfigTester(self, config_class=ElectraConfig, hidden_size=37)

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_electra_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_electra_model(*config_and_inputs)

313
314
315
316
317
318
    def test_electra_model_various_embeddings(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        for type in ["absolute", "relative_key", "relative_key_query"]:
            config_and_inputs[0].position_embedding_type = type
            self.model_tester.create_and_check_electra_model(*config_and_inputs)

Lysandre Debut's avatar
Lysandre Debut committed
319
320
321
322
323
324
325
326
327
328
329
330
    def test_for_masked_lm(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_electra_for_masked_lm(*config_and_inputs)

    def test_for_token_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_electra_for_token_classification(*config_and_inputs)

    def test_for_pre_training(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_electra_for_pretraining(*config_and_inputs)

331
332
333
334
    def test_for_sequence_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_electra_for_sequence_classification(*config_and_inputs)

335
336
337
338
    def test_for_question_answering(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_electra_for_question_answering(*config_and_inputs)

Suraj Patil's avatar
Suraj Patil committed
339
340
341
342
    def test_for_multiple_choice(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_electra_for_multiple_choice(*config_and_inputs)

Lysandre Debut's avatar
Lysandre Debut committed
343
344
    @slow
    def test_model_from_pretrained(self):
345
        for model_name in ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
346
            model = ElectraModel.from_pretrained(model_name)
Lysandre Debut's avatar
Lysandre Debut committed
347
            self.assertIsNotNone(model)
348
349
350
351
352
353


@require_torch
class ElectraModelIntegrationTest(unittest.TestCase):
    @slow
    def test_inference_no_head_absolute_embedding(self):
354
        model = ElectraModel.from_pretrained("google/electra-small-discriminator")
355
        input_ids = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]])
356
357
358
        attention_mask = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]])
        output = model(input_ids, attention_mask=attention_mask)[0]
        expected_shape = torch.Size((1, 11, 256))
359
360
        self.assertEqual(output.shape, expected_shape)
        expected_slice = torch.tensor(
361
            [[[0.4471, 0.6821, -0.3265], [0.4627, 0.5255, -0.3668], [0.4532, 0.3313, -0.4344]]]
362
363
        )

364
        self.assertTrue(torch.allclose(output[:, 1:4, 1:4], expected_slice, atol=1e-4))