test_modeling_jukebox.py 18.2 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
Arthur's avatar
Arthur committed
16
from unittest import skip
17
18

from transformers import is_torch_available
19
20
21
22
23
24
25
from transformers.testing_utils import (
    require_torch,
    require_torch_accelerator,
    require_torch_fp16,
    slow,
    torch_device,
)
26
27
28
29
30
31
from transformers.trainer_utils import set_seed


if is_torch_available():
    import torch

32
    from transformers import JukeboxModel, JukeboxPrior, JukeboxTokenizer
33
34
35
36
37
38


@require_torch
class Jukebox1bModelTester(unittest.TestCase):
    all_model_classes = (JukeboxModel,) if is_torch_available() else ()
    model_id = "openai/jukebox-1b-lyrics"
39
40
41
42
    metas = {
        "artist": "Zac Brown Band",
        "genres": "Country",
        "lyrics": """I met a traveller from an antique land,
43
44
45
46
47
48
49
50
51
52
53
54
55
56
    Who said "Two vast and trunkless legs of stone
    Stand in the desert. . . . Near them, on the sand,
    Half sunk a shattered visage lies, whose frown,
    And wrinkled lip, and sneer of cold command,
    Tell that its sculptor well those passions read
    Which yet survive, stamped on these lifeless things,
    The hand that mocked them, and the heart that fed;
    And on the pedestal, these words appear:
    My name is Ozymandias, King of Kings;
    Look on my Works, ye Mighty, and despair!
    Nothing beside remains. Round the decay
    Of that colossal Wreck, boundless and bare
    The lone and level sands stretch far away
    """,
57
    }
58
59
60
61
62
63
64
65
    # fmt: off
    EXPECTED_OUTPUT_2 = [
        1864, 1536, 1213, 1870, 1357, 1536, 519, 880, 1323, 789, 1082, 534,
        1000, 1445, 1105, 1130, 967, 515, 1434, 1620, 534, 1495, 283, 1445,
        333, 1307, 539, 1631, 1528, 375, 1434, 673, 627, 710, 778, 1883,
        1405, 1276, 1455, 1228
    ]

Yih-Dar's avatar
Yih-Dar committed
66
67
68
69
70
71
72
    EXPECTED_OUTPUT_2_PT_2 = [
        1489, 653, 653, 653, 653, 653, 653, 653, 653, 653, 653, 653,
        653, 653, 653, 653, 653, 653, 653, 653, 653, 653, 653, 653,
        653, 653, 653, 653, 653, 653, 653, 653, 653, 653, 653, 653,
        653, 653, 653, 653
    ]

73
74
75
76
77
78
    EXPECTED_OUTPUT_1 = [
        1125, 1751, 697, 1776, 1141, 1476, 391, 697, 1125, 684, 867, 416,
        844, 1372, 1274, 717, 1274, 844, 1299, 1419, 697, 1370, 317, 1125,
        191, 1440, 1370, 1440, 1370, 282, 1621, 1370, 368, 349, 867, 1872,
        1262, 869, 1728, 747
    ]
Yih-Dar's avatar
Yih-Dar committed
79
80
81
82
83
84
    EXPECTED_OUTPUT_1_PT_2 = [
        416, 416, 1125, 1125, 416, 416, 416, 416, 416, 416, 416, 416,
        416, 416, 416, 416, 416, 416, 416, 416, 416, 416, 416, 416,
        416, 416, 416, 416, 416, 416, 416, 416, 416, 416, 416, 416,
        416, 416, 416, 416
    ]
85
86
87
88
89
90
91

    EXPECTED_OUTPUT_0 = [
        1755, 842, 307, 1843, 1022, 1395, 234, 1554, 806, 739, 1022, 442,
        616, 556, 268, 1499, 933, 457, 1440, 1837, 755, 985, 308, 902,
        293, 1443, 1671, 1141, 1533, 555, 1562, 1061, 287, 417, 1022, 2008,
        1186, 1015, 1777, 268
    ]
Yih-Dar's avatar
Yih-Dar committed
92
93
94
95
96
97
    EXPECTED_OUTPUT_0_PT_2 = [
        854, 842, 1353, 114, 1353, 842, 185, 842, 185, 114, 591, 842,
        185, 417, 185, 842, 307, 842, 591, 842, 185, 842, 307, 842,
        591, 842, 1353, 842, 185, 842, 591, 842, 591, 114, 591, 842,
        185, 842, 591, 89
    ]
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162

    EXPECTED_Y_COND = [1058304, 0, 786432, 7169, 507, 76, 27, 40, 30, 76]

    EXPECTED_PRIMED_0 = [
        390, 1160, 1002, 1907, 1788, 1788, 1788, 1907, 1002, 1002, 1854, 1002,
        1002, 1002, 1002, 1002, 1002, 1160, 1160, 1606, 596, 596, 1160, 1002,
        1516, 596, 1002, 1002, 1002, 1907, 1788, 1788, 1788, 1854, 1788, 1907,
        1907, 1788, 596, 1626
    ]
    EXPECTED_PRIMED_1 = [
        1236, 1668, 1484, 1920, 1848, 1409, 139, 864, 1828, 1272, 1599, 824,
        1672, 139, 555, 1484, 824, 1920, 555, 596, 1579, 1599, 1231, 1599,
        1637, 1407, 212, 824, 1599, 116, 1433, 824, 258, 1599, 1433, 1895,
        1063, 1433, 1433, 1599
    ]
    EXPECTED_PRIMED_2 = [
        1684, 1873, 1119, 1189, 395, 611, 1901, 972, 890, 1337, 1392, 1927,
        96, 972, 672, 780, 1119, 890, 158, 771, 1073, 1927, 353, 1331,
        1269, 1459, 1333, 1645, 812, 1577, 1337, 606, 353, 981, 1466, 619,
        197, 391, 302, 1930
    ]
    EXPECTED_VQVAE_ENCODE = [
        390, 1160, 1002, 1907, 1788, 1788, 1788, 1907, 1002, 1002, 1854, 1002,
        1002, 1002, 1002, 1002, 1002, 1160, 1160, 1606, 596, 596, 1160, 1002,
        1516, 596, 1002, 1002, 1002, 1907, 1788, 1788, 1788, 1854, 1788, 1907,
        1907, 1788, 596, 1626
    ]
    EXPECTED_VQVAE_DECODE = [
        -0.0492, -0.0524, -0.0565, -0.0640, -0.0686, -0.0684, -0.0677, -0.0664,
        -0.0605, -0.0490, -0.0330, -0.0168, -0.0083, -0.0075, -0.0051, 0.0025,
        0.0136, 0.0261, 0.0386, 0.0497, 0.0580, 0.0599, 0.0583, 0.0614,
        0.0740, 0.0889, 0.1023, 0.1162, 0.1211, 0.1212, 0.1251, 0.1336,
        0.1502, 0.1686, 0.1883, 0.2148, 0.2363, 0.2458, 0.2507, 0.2531
    ]
    EXPECTED_AUDIO_COND = [
        0.0256, -0.0544, 0.1600, -0.0032, 0.1066, 0.0825, -0.0013, 0.3440,
        0.0210, 0.0412, -0.1777, -0.0892, -0.0164, 0.0285, -0.0613, -0.0617,
        -0.0137, -0.0201, -0.0175, 0.0215, -0.0627, 0.0520, -0.0730, 0.0970,
        -0.0100, 0.0442, -0.0586, 0.0207, -0.0015, -0.0082
    ]
    EXPECTED_META_COND = [
        0.0415, 0.0877, 0.0022, -0.0055, 0.0751, 0.0334, 0.0324, -0.0068,
        0.0011, 0.0017, -0.0676, 0.0655, -0.0143, 0.0399, 0.0303, 0.0743,
        -0.0168, -0.0394, -0.1113, 0.0124, 0.0442, 0.0267, -0.0003, -0.1536,
        -0.0116, -0.1837, -0.0180, -0.1026, -0.0777, -0.0456
    ]
    EXPECTED_LYRIC_COND = [
        76, 27, 40, 30, 76, 46, 44, 47, 40, 37, 38, 31, 45, 45, 76, 38, 31, 33,
        45, 76, 41, 32, 76, 45, 46, 41, 40, 31, 78, 76
    ]
    # fmt: on

    def prepare_inputs(self):
        tokenizer = JukeboxTokenizer.from_pretrained(self.model_id)
        tokens = tokenizer(**self.metas)["input_ids"]
        return tokens

    @slow
    def test_sampling(self):
        model = JukeboxModel.from_pretrained(self.model_id, min_duration=0).eval()
        labels = self.prepare_inputs()

        set_seed(0)
        zs = [torch.zeros(1, 0, dtype=torch.long).cpu() for _ in range(3)]
        zs = model._sample(zs, labels, [0], sample_length=40 * model.priors[0].raw_to_tokens, save_results=False)
Yih-Dar's avatar
Yih-Dar committed
163
        self.assertIn(zs[0][0].detach().cpu().tolist(), [self.EXPECTED_OUTPUT_2, self.EXPECTED_OUTPUT_2_PT_2])
164
165
166

        set_seed(0)
        zs = model._sample(zs, labels, [1], sample_length=40 * model.priors[1].raw_to_tokens, save_results=False)
Yih-Dar's avatar
Yih-Dar committed
167
        self.assertIn(zs[1][0].detach().cpu().tolist(), [self.EXPECTED_OUTPUT_1, self.EXPECTED_OUTPUT_1_PT_2])
168
169
170

        set_seed(0)
        zs = model._sample(zs, labels, [2], sample_length=40 * model.priors[2].raw_to_tokens, save_results=False)
Yih-Dar's avatar
Yih-Dar committed
171
        self.assertIn(zs[2][0].detach().cpu().tolist(), [self.EXPECTED_OUTPUT_0, self.EXPECTED_OUTPUT_0_PT_2])
172
173
174
175

    @slow
    def test_conditioning(self):
        torch.backends.cuda.matmul.allow_tf32 = False
176
        torch.backends.cudnn.allow_tf32 = False
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
        model = JukeboxModel.from_pretrained(self.model_id, min_duration=0).eval()

        labels = self.prepare_inputs()
        set_seed(0)
        zs = [torch.zeros(1, 0, dtype=torch.long) for _ in range(3)]

        top_prior = model.priors[0]
        start = 0
        music_token_conds = top_prior.get_music_tokens_conds(zs, start=start, end=start + top_prior.n_ctx)
        metadata = top_prior.get_metadata(labels[0].clone(), start, 1058304, 0)

        self.assertIsNone(music_token_conds)
        self.assertListEqual(metadata.numpy()[0][:10].tolist(), self.EXPECTED_Y_COND)

        audio_conditioning, metadata_conditioning, lyric_tokens = top_prior.get_cond(music_token_conds, metadata)
192
        torch.testing.assert_close(
193
194
            audio_conditioning[0][0][:30].detach(), torch.tensor(self.EXPECTED_AUDIO_COND), atol=1e-4, rtol=1e-4
        )
195
        torch.testing.assert_close(
196
197
            metadata_conditioning[0][0][:30].detach(), torch.tensor(self.EXPECTED_META_COND), atol=1e-4, rtol=1e-4
        )
198
        torch.testing.assert_close(
199
200
201
202
203
204
            lyric_tokens[0, :30].detach(), torch.tensor(self.EXPECTED_LYRIC_COND), atol=1e-4, rtol=1e-4
        )

    @slow
    def test_primed_sampling(self):
        torch.backends.cuda.matmul.allow_tf32 = False
205
        torch.backends.cudnn.allow_tf32 = False
206
207
208
209

        model = JukeboxModel.from_pretrained(self.model_id, min_duration=0).eval()
        set_seed(0)
        waveform = torch.rand((1, 5120, 1))
210
        tokens = list(self.prepare_inputs())
211
212
213
214
215

        zs = [model.vqvae.encode(waveform, start_level=2, bs_chunks=waveform.shape[0])[0], None, None]
        zs = model._sample(
            zs, tokens, sample_levels=[0], save_results=False, sample_length=40 * model.priors[0].raw_to_tokens
        )
216
        torch.testing.assert_close(zs[0][0][:40], torch.tensor(self.EXPECTED_PRIMED_0))
217
218
219
220
221
222

        upper_2 = torch.cat((zs[0], torch.zeros(1, 2048 - zs[0].shape[-1])), dim=-1).long()
        zs = [upper_2, model.vqvae.encode(waveform, start_level=1, bs_chunks=waveform.shape[0])[0], None]
        zs = model._sample(
            zs, tokens, sample_levels=[1], save_results=False, sample_length=40 * model.priors[1].raw_to_tokens
        )
223
        torch.testing.assert_close(zs[1][0][:40], torch.tensor(self.EXPECTED_PRIMED_1))
224
225
226
227
228
229

        upper_1 = torch.cat((zs[1], torch.zeros(1, 2048 - zs[1].shape[-1])), dim=-1).long()
        zs = [upper_2, upper_1, model.vqvae.encode(waveform, start_level=0, bs_chunks=waveform.shape[0])[0]]
        zs = model._sample(
            zs, tokens, sample_levels=[2], save_results=False, sample_length=40 * model.priors[2].raw_to_tokens
        )
230
        torch.testing.assert_close(zs[2][0][:40].cpu(), torch.tensor(self.EXPECTED_PRIMED_2))
231
232
233
234
235
236
237
238

    @slow
    def test_vqvae(self):
        model = JukeboxModel.from_pretrained(self.model_id, min_duration=0).eval()
        set_seed(0)
        x = torch.rand((1, 5120, 1))
        with torch.no_grad():
            zs = model.vqvae.encode(x, start_level=2, bs_chunks=x.shape[0])
239
        torch.testing.assert_close(zs[0][0], torch.tensor(self.EXPECTED_VQVAE_ENCODE))
240
241
242

        with torch.no_grad():
            x = model.vqvae.decode(zs, start_level=2, bs_chunks=x.shape[0])
243
        torch.testing.assert_close(x[0, :40, 0], torch.tensor(self.EXPECTED_VQVAE_DECODE), atol=1e-4, rtol=1e-4)
244
245
246
247
248
249


@require_torch
class Jukebox5bModelTester(unittest.TestCase):
    all_model_classes = (JukeboxModel,) if is_torch_available() else ()
    model_id = "openai/jukebox-5b-lyrics"
250
251
252
253
    metas = {
        "artist": "Zac Brown Band",
        "genres": "Country",
        "lyrics": """I met a traveller from an antique land,
254
255
256
257
258
259
260
261
262
263
264
265
266
267
    Who said "Two vast and trunkless legs of stone
    Stand in the desert. . . . Near them, on the sand,
    Half sunk a shattered visage lies, whose frown,
    And wrinkled lip, and sneer of cold command,
    Tell that its sculptor well those passions read
    Which yet survive, stamped on these lifeless things,
    The hand that mocked them, and the heart that fed;
    And on the pedestal, these words appear:
    My name is Ozymandias, King of Kings;
    Look on my Works, ye Mighty, and despair!
    Nothing beside remains. Round the decay
    Of that colossal Wreck, boundless and bare
    The lone and level sands stretch far away
    """,
268
    }
269
270
271
272
273
274
275
276
277

    # fmt: off
    EXPECTED_OUTPUT_2 = [
        1489, 653, 653, 653, 653, 653, 653, 653, 653, 653, 653, 653,
        653, 653, 653, 653, 653, 653, 653, 653, 653, 653, 653, 653,
        653, 653, 653, 653, 653, 653, 653, 653, 653, 653, 653, 653,
        653, 653, 653, 653, 653, 653, 653, 653, 653, 653, 653, 653,
        1489, 1489, 1489, 1489, 1150, 1853, 1509, 1150, 1357, 1509, 6, 1272
    ]
Yih-Dar's avatar
Yih-Dar committed
278
279
280
281
282
283
284
    EXPECTED_OUTPUT_2_PT_2 = [
        1489, 653, 653, 653, 653, 653, 653, 653, 653, 653, 653, 653,
        653, 653, 653, 653, 653, 653, 653, 653, 653, 653, 653, 653,
        653, 653, 653, 653, 653, 653, 653, 653, 653, 653, 653, 653,
        653, 653, 653, 653, 653, 653, 653, 653, 653, 653, 653, 653,
        653, 653, 653, 653, 653, 653, 653, 653, 653, 653, 653, 653
    ]
285
286
287
288
289
290
291
292

    EXPECTED_OUTPUT_1 = [
        1125, 416, 1125, 1125, 1125, 1125, 1125, 416, 416, 416, 416, 416,
        416, 416, 416, 416, 416, 416, 416, 416, 416, 416, 416, 416,
        416, 416, 416, 416, 416, 416, 416, 416, 416, 416, 416, 416,
        416, 416, 416, 416, 416, 416, 416, 416, 416, 416, 416, 416,
        416, 416, 416, 416, 416, 416, 416, 416, 416, 416, 416, 416
    ]
Yih-Dar's avatar
Yih-Dar committed
293
294
295
296
297
298
299
    EXPECTED_OUTPUT_1_PT_2 = [
        416, 416, 1125, 1125, 416, 416, 416, 416, 416, 416, 416, 416, 416,
        416, 416, 416, 416, 416, 416, 416, 416, 416, 416, 416, 416, 416,
        416, 416, 416, 416, 416, 416, 416, 416, 416, 416, 416, 416, 416,
        416, 416, 416, 416, 416, 416, 416, 416, 416, 416, 416, 416, 416,
        416, 416, 416, 416, 416, 416, 416, 416
    ]
300
301
302
303
304
305
306
307

    EXPECTED_OUTPUT_0 = [
        1755, 1061, 234, 1755, 1061, 1755, 185, 290, 307, 307, 616, 616,
        616, 616, 616, 616, 307, 290, 417, 1755, 234, 1755, 185, 290,
        290, 290, 307, 616, 616, 616, 616, 616, 290, 234, 234, 1755,
        234, 234, 1755, 234, 185, 185, 307, 616, 616, 616, 616, 290,
        1755, 1755, 1755, 234, 234, 1755, 1572, 290, 307, 616, 34, 616
    ]
Yih-Dar's avatar
Yih-Dar committed
308
309
310
311
312
313
314
    EXPECTED_OUTPUT_0_PT_2 = [
        854, 842, 1353, 114, 1353, 842, 185, 842, 185, 114, 591, 842, 185,
        417, 185, 842, 307, 842, 591, 842, 185, 842, 185, 842, 591, 842,
        1353, 842, 185, 842, 591, 842, 591, 114, 591, 842, 185, 842, 591,
        89, 591, 842, 591, 842, 591, 417, 1372, 842, 1372, 842, 34, 842,
        185, 89, 591, 842, 185, 842, 591, 632
    ]
315
316
317
318
319
320
321
322

    EXPECTED_GPU_OUTPUTS_2 = [
        1489, 653, 653, 653, 653, 653, 653, 653, 653, 653, 653, 653,
        653, 653, 653, 653, 653, 653, 653, 653, 653, 653, 653, 653,
        653, 653, 653, 653, 653, 653, 653, 653, 653, 653, 653, 653,
        653, 653, 653, 653, 653, 653, 653, 653, 653, 653, 653, 653,
        653, 653, 653, 653, 653, 653, 653, 653, 653, 653, 653, 653
    ]
Yih-Dar's avatar
Yih-Dar committed
323
324
325
326
327
328
329
330
331
    EXPECTED_GPU_OUTPUTS_2_PT_2 = [
        1489, 653, 653, 653, 653, 653, 653, 653, 653, 653, 653, 653,
        653, 653, 653, 653, 653, 653, 653, 653, 653, 653, 653, 653,
        653, 653, 653, 653, 653, 653, 653, 1853, 1177, 1536, 1228,
        710, 475, 1489, 1229, 1224, 231, 1224, 252, 1434, 653, 475,
        1106, 1877, 1599, 1228, 1600, 1683, 1182, 1853, 475, 1864,
        252, 1229, 1434, 2001
    ]

332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
    EXPECTED_GPU_OUTPUTS_1 = [
        1125, 1125, 416, 1125, 1125, 416, 1125, 1125, 416, 416, 1125, 416,
        416, 416, 416, 416, 416, 416, 416, 416, 416, 416, 416, 416,
        416, 416, 416, 416, 416, 416, 416, 416, 416, 416, 416, 416,
        416, 416, 416, 416, 416, 416, 416, 416, 416, 416, 416, 416,
        416, 416, 416, 416, 416, 416, 416, 416, 416, 416, 416, 416
    ]
    EXPECTED_GPU_OUTPUTS_0 = [
        491, 1755, 34, 1613, 1755, 417, 992, 1613, 222, 842, 1353, 1613,
        844, 632, 185, 1613, 844, 632, 185, 1613, 185, 842, 677, 1613,
        185, 114, 1353, 1613, 307, 89, 844, 1613, 307, 1332, 234, 1979,
        307, 89, 1353, 616, 34, 842, 185, 842, 34, 842, 185, 842,
        307, 114, 185, 89, 34, 1268, 185, 89, 34, 842, 185, 89
    ]
    # fmt: on

    def prepare_inputs(self, model_id):
        tokenizer = JukeboxTokenizer.from_pretrained(model_id)
        tokens = tokenizer(**self.metas)["input_ids"]
        return tokens

    @slow
    def test_sampling(self):
        model = JukeboxModel.from_pretrained(self.model_id, min_duration=0).eval()
        labels = self.prepare_inputs(self.model_id)

        set_seed(0)
        zs = [torch.zeros(1, 0, dtype=torch.long).cpu() for _ in range(3)]
        zs = model._sample(zs, labels, [0], sample_length=60 * model.priors[0].raw_to_tokens, save_results=False)
Yih-Dar's avatar
Yih-Dar committed
361
        self.assertIn(zs[0][0].detach().cpu().tolist(), [self.EXPECTED_OUTPUT_2, self.EXPECTED_OUTPUT_2_PT_2])
362
363
364

        set_seed(0)
        zs = model._sample(zs, labels, [1], sample_length=60 * model.priors[1].raw_to_tokens, save_results=False)
Yih-Dar's avatar
Yih-Dar committed
365
        self.assertIn(zs[1][0].detach().cpu().tolist(), [self.EXPECTED_OUTPUT_1, self.EXPECTED_OUTPUT_1_PT_2])
366
367
368

        set_seed(0)
        zs = model._sample(zs, labels, [2], sample_length=60 * model.priors[2].raw_to_tokens, save_results=False)
Yih-Dar's avatar
Yih-Dar committed
369
        self.assertIn(zs[2][0].detach().cpu().tolist(), [self.EXPECTED_OUTPUT_0, self.EXPECTED_OUTPUT_0_PT_2])
370
371

    @slow
372
    @require_torch_accelerator
Arthur's avatar
Arthur committed
373
    @skip("Not enough GPU memory on CI runners")
374
    def test_slow_sampling(self):
375
        model = JukeboxModel.from_pretrained(self.model_id, min_duration=0).eval()
376
        labels = [i.to(torch_device) for i in self.prepare_inputs(self.model_id)]
377
378

        set_seed(0)
379
380
        model.priors[0].to(torch_device)
        zs = [torch.zeros(1, 0, dtype=torch.long).to(torch_device) for _ in range(3)]
381
        zs = model._sample(zs, labels, [0], sample_length=60 * model.priors[0].raw_to_tokens, save_results=False)
382
        torch.testing.assert_close(zs[0][0].cpu(), torch.tensor(self.EXPECTED_GPU_OUTPUTS_2))
383
384
385
        model.priors[0].cpu()

        set_seed(0)
386
        model.priors[1].to(torch_device)
387
        zs = model._sample(zs, labels, [1], sample_length=60 * model.priors[1].raw_to_tokens, save_results=False)
388
        torch.testing.assert_close(zs[1][0].cpu(), torch.tensor(self.EXPECTED_GPU_OUTPUTS_1))
389
390
391
        model.priors[1].cpu()

        set_seed(0)
392
        model.priors[2].to(torch_device)
393
        zs = model._sample(zs, labels, [2], sample_length=60 * model.priors[2].raw_to_tokens, save_results=False)
394
        torch.testing.assert_close(zs[2][0].cpu(), torch.tensor(self.EXPECTED_GPU_OUTPUTS_0))
395
396

    @slow
397
398
    @require_torch_accelerator
    @require_torch_fp16
399
    def test_fp16_slow_sampling(self):
400
        prior_id = "ArthurZ/jukebox_prior_0"
401
        model = JukeboxPrior.from_pretrained(prior_id, min_duration=0).eval().half().to(torch_device)
402

403
        labels = self.prepare_inputs(prior_id)[0].to(torch_device)
404
        metadata = model.get_metadata(labels, 0, 7680, 0)
405
        set_seed(0)
406
        outputs = model.sample(1, metadata=metadata, sample_tokens=60)
Yih-Dar's avatar
Yih-Dar committed
407
        self.assertIn(outputs[0].cpu().tolist(), [self.EXPECTED_GPU_OUTPUTS_2, self.EXPECTED_GPU_OUTPUTS_2_PT_2])