"examples/research_projects/bertology/run_prune_gpt.py" did not exist on "e4b46d86ce0cbcbc9011375add7f3713eb5ef967"
test_modeling_jukebox.py 18.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
Arthur's avatar
Arthur committed
16
from unittest import skip
17
18

from transformers import is_torch_available
19
from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device
20
21
22
23
24
25
from transformers.trainer_utils import set_seed


if is_torch_available():
    import torch

26
    from transformers import JukeboxModel, JukeboxPrior, JukeboxTokenizer
27
28
29
30
31
32


@require_torch
class Jukebox1bModelTester(unittest.TestCase):
    all_model_classes = (JukeboxModel,) if is_torch_available() else ()
    model_id = "openai/jukebox-1b-lyrics"
33
34
35
36
    metas = {
        "artist": "Zac Brown Band",
        "genres": "Country",
        "lyrics": """I met a traveller from an antique land,
37
38
39
40
41
42
43
44
45
46
47
48
49
50
    Who said "Two vast and trunkless legs of stone
    Stand in the desert. . . . Near them, on the sand,
    Half sunk a shattered visage lies, whose frown,
    And wrinkled lip, and sneer of cold command,
    Tell that its sculptor well those passions read
    Which yet survive, stamped on these lifeless things,
    The hand that mocked them, and the heart that fed;
    And on the pedestal, these words appear:
    My name is Ozymandias, King of Kings;
    Look on my Works, ye Mighty, and despair!
    Nothing beside remains. Round the decay
    Of that colossal Wreck, boundless and bare
    The lone and level sands stretch far away
    """,
51
    }
52
53
54
55
56
57
58
59
    # fmt: off
    EXPECTED_OUTPUT_2 = [
        1864, 1536, 1213, 1870, 1357, 1536, 519, 880, 1323, 789, 1082, 534,
        1000, 1445, 1105, 1130, 967, 515, 1434, 1620, 534, 1495, 283, 1445,
        333, 1307, 539, 1631, 1528, 375, 1434, 673, 627, 710, 778, 1883,
        1405, 1276, 1455, 1228
    ]

Yih-Dar's avatar
Yih-Dar committed
60
61
62
63
64
65
66
    EXPECTED_OUTPUT_2_PT_2 = [
        1489, 653, 653, 653, 653, 653, 653, 653, 653, 653, 653, 653,
        653, 653, 653, 653, 653, 653, 653, 653, 653, 653, 653, 653,
        653, 653, 653, 653, 653, 653, 653, 653, 653, 653, 653, 653,
        653, 653, 653, 653
    ]

67
68
69
70
71
72
    EXPECTED_OUTPUT_1 = [
        1125, 1751, 697, 1776, 1141, 1476, 391, 697, 1125, 684, 867, 416,
        844, 1372, 1274, 717, 1274, 844, 1299, 1419, 697, 1370, 317, 1125,
        191, 1440, 1370, 1440, 1370, 282, 1621, 1370, 368, 349, 867, 1872,
        1262, 869, 1728, 747
    ]
Yih-Dar's avatar
Yih-Dar committed
73
74
75
76
77
78
    EXPECTED_OUTPUT_1_PT_2 = [
        416, 416, 1125, 1125, 416, 416, 416, 416, 416, 416, 416, 416,
        416, 416, 416, 416, 416, 416, 416, 416, 416, 416, 416, 416,
        416, 416, 416, 416, 416, 416, 416, 416, 416, 416, 416, 416,
        416, 416, 416, 416
    ]
79
80
81
82
83
84
85

    EXPECTED_OUTPUT_0 = [
        1755, 842, 307, 1843, 1022, 1395, 234, 1554, 806, 739, 1022, 442,
        616, 556, 268, 1499, 933, 457, 1440, 1837, 755, 985, 308, 902,
        293, 1443, 1671, 1141, 1533, 555, 1562, 1061, 287, 417, 1022, 2008,
        1186, 1015, 1777, 268
    ]
Yih-Dar's avatar
Yih-Dar committed
86
87
88
89
90
91
    EXPECTED_OUTPUT_0_PT_2 = [
        854, 842, 1353, 114, 1353, 842, 185, 842, 185, 114, 591, 842,
        185, 417, 185, 842, 307, 842, 591, 842, 185, 842, 307, 842,
        591, 842, 1353, 842, 185, 842, 591, 842, 591, 114, 591, 842,
        185, 842, 591, 89
    ]
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156

    EXPECTED_Y_COND = [1058304, 0, 786432, 7169, 507, 76, 27, 40, 30, 76]

    EXPECTED_PRIMED_0 = [
        390, 1160, 1002, 1907, 1788, 1788, 1788, 1907, 1002, 1002, 1854, 1002,
        1002, 1002, 1002, 1002, 1002, 1160, 1160, 1606, 596, 596, 1160, 1002,
        1516, 596, 1002, 1002, 1002, 1907, 1788, 1788, 1788, 1854, 1788, 1907,
        1907, 1788, 596, 1626
    ]
    EXPECTED_PRIMED_1 = [
        1236, 1668, 1484, 1920, 1848, 1409, 139, 864, 1828, 1272, 1599, 824,
        1672, 139, 555, 1484, 824, 1920, 555, 596, 1579, 1599, 1231, 1599,
        1637, 1407, 212, 824, 1599, 116, 1433, 824, 258, 1599, 1433, 1895,
        1063, 1433, 1433, 1599
    ]
    EXPECTED_PRIMED_2 = [
        1684, 1873, 1119, 1189, 395, 611, 1901, 972, 890, 1337, 1392, 1927,
        96, 972, 672, 780, 1119, 890, 158, 771, 1073, 1927, 353, 1331,
        1269, 1459, 1333, 1645, 812, 1577, 1337, 606, 353, 981, 1466, 619,
        197, 391, 302, 1930
    ]
    EXPECTED_VQVAE_ENCODE = [
        390, 1160, 1002, 1907, 1788, 1788, 1788, 1907, 1002, 1002, 1854, 1002,
        1002, 1002, 1002, 1002, 1002, 1160, 1160, 1606, 596, 596, 1160, 1002,
        1516, 596, 1002, 1002, 1002, 1907, 1788, 1788, 1788, 1854, 1788, 1907,
        1907, 1788, 596, 1626
    ]
    EXPECTED_VQVAE_DECODE = [
        -0.0492, -0.0524, -0.0565, -0.0640, -0.0686, -0.0684, -0.0677, -0.0664,
        -0.0605, -0.0490, -0.0330, -0.0168, -0.0083, -0.0075, -0.0051, 0.0025,
        0.0136, 0.0261, 0.0386, 0.0497, 0.0580, 0.0599, 0.0583, 0.0614,
        0.0740, 0.0889, 0.1023, 0.1162, 0.1211, 0.1212, 0.1251, 0.1336,
        0.1502, 0.1686, 0.1883, 0.2148, 0.2363, 0.2458, 0.2507, 0.2531
    ]
    EXPECTED_AUDIO_COND = [
        0.0256, -0.0544, 0.1600, -0.0032, 0.1066, 0.0825, -0.0013, 0.3440,
        0.0210, 0.0412, -0.1777, -0.0892, -0.0164, 0.0285, -0.0613, -0.0617,
        -0.0137, -0.0201, -0.0175, 0.0215, -0.0627, 0.0520, -0.0730, 0.0970,
        -0.0100, 0.0442, -0.0586, 0.0207, -0.0015, -0.0082
    ]
    EXPECTED_META_COND = [
        0.0415, 0.0877, 0.0022, -0.0055, 0.0751, 0.0334, 0.0324, -0.0068,
        0.0011, 0.0017, -0.0676, 0.0655, -0.0143, 0.0399, 0.0303, 0.0743,
        -0.0168, -0.0394, -0.1113, 0.0124, 0.0442, 0.0267, -0.0003, -0.1536,
        -0.0116, -0.1837, -0.0180, -0.1026, -0.0777, -0.0456
    ]
    EXPECTED_LYRIC_COND = [
        76, 27, 40, 30, 76, 46, 44, 47, 40, 37, 38, 31, 45, 45, 76, 38, 31, 33,
        45, 76, 41, 32, 76, 45, 46, 41, 40, 31, 78, 76
    ]
    # fmt: on

    def prepare_inputs(self):
        tokenizer = JukeboxTokenizer.from_pretrained(self.model_id)
        tokens = tokenizer(**self.metas)["input_ids"]
        return tokens

    @slow
    def test_sampling(self):
        model = JukeboxModel.from_pretrained(self.model_id, min_duration=0).eval()
        labels = self.prepare_inputs()

        set_seed(0)
        zs = [torch.zeros(1, 0, dtype=torch.long).cpu() for _ in range(3)]
        zs = model._sample(zs, labels, [0], sample_length=40 * model.priors[0].raw_to_tokens, save_results=False)
Yih-Dar's avatar
Yih-Dar committed
157
        self.assertIn(zs[0][0].detach().cpu().tolist(), [self.EXPECTED_OUTPUT_2, self.EXPECTED_OUTPUT_2_PT_2])
158
159
160

        set_seed(0)
        zs = model._sample(zs, labels, [1], sample_length=40 * model.priors[1].raw_to_tokens, save_results=False)
Yih-Dar's avatar
Yih-Dar committed
161
        self.assertIn(zs[1][0].detach().cpu().tolist(), [self.EXPECTED_OUTPUT_1, self.EXPECTED_OUTPUT_1_PT_2])
162
163
164

        set_seed(0)
        zs = model._sample(zs, labels, [2], sample_length=40 * model.priors[2].raw_to_tokens, save_results=False)
Yih-Dar's avatar
Yih-Dar committed
165
        self.assertIn(zs[2][0].detach().cpu().tolist(), [self.EXPECTED_OUTPUT_0, self.EXPECTED_OUTPUT_0_PT_2])
166
167
168
169

    @slow
    def test_conditioning(self):
        torch.backends.cuda.matmul.allow_tf32 = False
170
        torch.backends.cudnn.allow_tf32 = False
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
        model = JukeboxModel.from_pretrained(self.model_id, min_duration=0).eval()

        labels = self.prepare_inputs()
        set_seed(0)
        zs = [torch.zeros(1, 0, dtype=torch.long) for _ in range(3)]

        top_prior = model.priors[0]
        start = 0
        music_token_conds = top_prior.get_music_tokens_conds(zs, start=start, end=start + top_prior.n_ctx)
        metadata = top_prior.get_metadata(labels[0].clone(), start, 1058304, 0)

        self.assertIsNone(music_token_conds)
        self.assertListEqual(metadata.numpy()[0][:10].tolist(), self.EXPECTED_Y_COND)

        audio_conditioning, metadata_conditioning, lyric_tokens = top_prior.get_cond(music_token_conds, metadata)
        torch.testing.assert_allclose(
            audio_conditioning[0][0][:30].detach(), torch.tensor(self.EXPECTED_AUDIO_COND), atol=1e-4, rtol=1e-4
        )
        torch.testing.assert_allclose(
            metadata_conditioning[0][0][:30].detach(), torch.tensor(self.EXPECTED_META_COND), atol=1e-4, rtol=1e-4
        )
        torch.testing.assert_allclose(
            lyric_tokens[0, :30].detach(), torch.tensor(self.EXPECTED_LYRIC_COND), atol=1e-4, rtol=1e-4
        )

    @slow
    def test_primed_sampling(self):
        torch.backends.cuda.matmul.allow_tf32 = False
199
        torch.backends.cudnn.allow_tf32 = False
200
201
202
203

        model = JukeboxModel.from_pretrained(self.model_id, min_duration=0).eval()
        set_seed(0)
        waveform = torch.rand((1, 5120, 1))
204
        tokens = list(self.prepare_inputs())
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243

        zs = [model.vqvae.encode(waveform, start_level=2, bs_chunks=waveform.shape[0])[0], None, None]
        zs = model._sample(
            zs, tokens, sample_levels=[0], save_results=False, sample_length=40 * model.priors[0].raw_to_tokens
        )
        torch.testing.assert_allclose(zs[0][0][:40], torch.tensor(self.EXPECTED_PRIMED_0))

        upper_2 = torch.cat((zs[0], torch.zeros(1, 2048 - zs[0].shape[-1])), dim=-1).long()
        zs = [upper_2, model.vqvae.encode(waveform, start_level=1, bs_chunks=waveform.shape[0])[0], None]
        zs = model._sample(
            zs, tokens, sample_levels=[1], save_results=False, sample_length=40 * model.priors[1].raw_to_tokens
        )
        torch.testing.assert_allclose(zs[1][0][:40], torch.tensor(self.EXPECTED_PRIMED_1))

        upper_1 = torch.cat((zs[1], torch.zeros(1, 2048 - zs[1].shape[-1])), dim=-1).long()
        zs = [upper_2, upper_1, model.vqvae.encode(waveform, start_level=0, bs_chunks=waveform.shape[0])[0]]
        zs = model._sample(
            zs, tokens, sample_levels=[2], save_results=False, sample_length=40 * model.priors[2].raw_to_tokens
        )
        torch.testing.assert_allclose(zs[2][0][:40].cpu(), torch.tensor(self.EXPECTED_PRIMED_2))

    @slow
    def test_vqvae(self):
        model = JukeboxModel.from_pretrained(self.model_id, min_duration=0).eval()
        set_seed(0)
        x = torch.rand((1, 5120, 1))
        with torch.no_grad():
            zs = model.vqvae.encode(x, start_level=2, bs_chunks=x.shape[0])
        torch.testing.assert_allclose(zs[0][0], torch.tensor(self.EXPECTED_VQVAE_ENCODE))

        with torch.no_grad():
            x = model.vqvae.decode(zs, start_level=2, bs_chunks=x.shape[0])
        torch.testing.assert_allclose(x[0, :40, 0], torch.tensor(self.EXPECTED_VQVAE_DECODE), atol=1e-4, rtol=1e-4)


@require_torch
class Jukebox5bModelTester(unittest.TestCase):
    all_model_classes = (JukeboxModel,) if is_torch_available() else ()
    model_id = "openai/jukebox-5b-lyrics"
244
245
246
247
    metas = {
        "artist": "Zac Brown Band",
        "genres": "Country",
        "lyrics": """I met a traveller from an antique land,
248
249
250
251
252
253
254
255
256
257
258
259
260
261
    Who said "Two vast and trunkless legs of stone
    Stand in the desert. . . . Near them, on the sand,
    Half sunk a shattered visage lies, whose frown,
    And wrinkled lip, and sneer of cold command,
    Tell that its sculptor well those passions read
    Which yet survive, stamped on these lifeless things,
    The hand that mocked them, and the heart that fed;
    And on the pedestal, these words appear:
    My name is Ozymandias, King of Kings;
    Look on my Works, ye Mighty, and despair!
    Nothing beside remains. Round the decay
    Of that colossal Wreck, boundless and bare
    The lone and level sands stretch far away
    """,
262
    }
263
264
265
266
267
268
269
270
271

    # fmt: off
    EXPECTED_OUTPUT_2 = [
        1489, 653, 653, 653, 653, 653, 653, 653, 653, 653, 653, 653,
        653, 653, 653, 653, 653, 653, 653, 653, 653, 653, 653, 653,
        653, 653, 653, 653, 653, 653, 653, 653, 653, 653, 653, 653,
        653, 653, 653, 653, 653, 653, 653, 653, 653, 653, 653, 653,
        1489, 1489, 1489, 1489, 1150, 1853, 1509, 1150, 1357, 1509, 6, 1272
    ]
Yih-Dar's avatar
Yih-Dar committed
272
273
274
275
276
277
278
    EXPECTED_OUTPUT_2_PT_2 = [
        1489, 653, 653, 653, 653, 653, 653, 653, 653, 653, 653, 653,
        653, 653, 653, 653, 653, 653, 653, 653, 653, 653, 653, 653,
        653, 653, 653, 653, 653, 653, 653, 653, 653, 653, 653, 653,
        653, 653, 653, 653, 653, 653, 653, 653, 653, 653, 653, 653,
        653, 653, 653, 653, 653, 653, 653, 653, 653, 653, 653, 653
    ]
279
280
281
282
283
284
285
286

    EXPECTED_OUTPUT_1 = [
        1125, 416, 1125, 1125, 1125, 1125, 1125, 416, 416, 416, 416, 416,
        416, 416, 416, 416, 416, 416, 416, 416, 416, 416, 416, 416,
        416, 416, 416, 416, 416, 416, 416, 416, 416, 416, 416, 416,
        416, 416, 416, 416, 416, 416, 416, 416, 416, 416, 416, 416,
        416, 416, 416, 416, 416, 416, 416, 416, 416, 416, 416, 416
    ]
Yih-Dar's avatar
Yih-Dar committed
287
288
289
290
291
292
293
    EXPECTED_OUTPUT_1_PT_2 = [
        416, 416, 1125, 1125, 416, 416, 416, 416, 416, 416, 416, 416, 416,
        416, 416, 416, 416, 416, 416, 416, 416, 416, 416, 416, 416, 416,
        416, 416, 416, 416, 416, 416, 416, 416, 416, 416, 416, 416, 416,
        416, 416, 416, 416, 416, 416, 416, 416, 416, 416, 416, 416, 416,
        416, 416, 416, 416, 416, 416, 416, 416
    ]
294
295
296
297
298
299
300
301

    EXPECTED_OUTPUT_0 = [
        1755, 1061, 234, 1755, 1061, 1755, 185, 290, 307, 307, 616, 616,
        616, 616, 616, 616, 307, 290, 417, 1755, 234, 1755, 185, 290,
        290, 290, 307, 616, 616, 616, 616, 616, 290, 234, 234, 1755,
        234, 234, 1755, 234, 185, 185, 307, 616, 616, 616, 616, 290,
        1755, 1755, 1755, 234, 234, 1755, 1572, 290, 307, 616, 34, 616
    ]
Yih-Dar's avatar
Yih-Dar committed
302
303
304
305
306
307
308
    EXPECTED_OUTPUT_0_PT_2 = [
        854, 842, 1353, 114, 1353, 842, 185, 842, 185, 114, 591, 842, 185,
        417, 185, 842, 307, 842, 591, 842, 185, 842, 185, 842, 591, 842,
        1353, 842, 185, 842, 591, 842, 591, 114, 591, 842, 185, 842, 591,
        89, 591, 842, 591, 842, 591, 417, 1372, 842, 1372, 842, 34, 842,
        185, 89, 591, 842, 185, 842, 591, 632
    ]
309
310
311
312
313
314
315
316

    EXPECTED_GPU_OUTPUTS_2 = [
        1489, 653, 653, 653, 653, 653, 653, 653, 653, 653, 653, 653,
        653, 653, 653, 653, 653, 653, 653, 653, 653, 653, 653, 653,
        653, 653, 653, 653, 653, 653, 653, 653, 653, 653, 653, 653,
        653, 653, 653, 653, 653, 653, 653, 653, 653, 653, 653, 653,
        653, 653, 653, 653, 653, 653, 653, 653, 653, 653, 653, 653
    ]
Yih-Dar's avatar
Yih-Dar committed
317
318
319
320
321
322
323
324
325
    EXPECTED_GPU_OUTPUTS_2_PT_2 = [
        1489, 653, 653, 653, 653, 653, 653, 653, 653, 653, 653, 653,
        653, 653, 653, 653, 653, 653, 653, 653, 653, 653, 653, 653,
        653, 653, 653, 653, 653, 653, 653, 1853, 1177, 1536, 1228,
        710, 475, 1489, 1229, 1224, 231, 1224, 252, 1434, 653, 475,
        1106, 1877, 1599, 1228, 1600, 1683, 1182, 1853, 475, 1864,
        252, 1229, 1434, 2001
    ]

326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
    EXPECTED_GPU_OUTPUTS_1 = [
        1125, 1125, 416, 1125, 1125, 416, 1125, 1125, 416, 416, 1125, 416,
        416, 416, 416, 416, 416, 416, 416, 416, 416, 416, 416, 416,
        416, 416, 416, 416, 416, 416, 416, 416, 416, 416, 416, 416,
        416, 416, 416, 416, 416, 416, 416, 416, 416, 416, 416, 416,
        416, 416, 416, 416, 416, 416, 416, 416, 416, 416, 416, 416
    ]
    EXPECTED_GPU_OUTPUTS_0 = [
        491, 1755, 34, 1613, 1755, 417, 992, 1613, 222, 842, 1353, 1613,
        844, 632, 185, 1613, 844, 632, 185, 1613, 185, 842, 677, 1613,
        185, 114, 1353, 1613, 307, 89, 844, 1613, 307, 1332, 234, 1979,
        307, 89, 1353, 616, 34, 842, 185, 842, 34, 842, 185, 842,
        307, 114, 185, 89, 34, 1268, 185, 89, 34, 842, 185, 89
    ]
    # fmt: on

    def prepare_inputs(self, model_id):
        tokenizer = JukeboxTokenizer.from_pretrained(model_id)
        tokens = tokenizer(**self.metas)["input_ids"]
        return tokens

    @slow
    def test_sampling(self):
        model = JukeboxModel.from_pretrained(self.model_id, min_duration=0).eval()
        labels = self.prepare_inputs(self.model_id)

        set_seed(0)
        zs = [torch.zeros(1, 0, dtype=torch.long).cpu() for _ in range(3)]
        zs = model._sample(zs, labels, [0], sample_length=60 * model.priors[0].raw_to_tokens, save_results=False)
Yih-Dar's avatar
Yih-Dar committed
355
        self.assertIn(zs[0][0].detach().cpu().tolist(), [self.EXPECTED_OUTPUT_2, self.EXPECTED_OUTPUT_2_PT_2])
356
357
358

        set_seed(0)
        zs = model._sample(zs, labels, [1], sample_length=60 * model.priors[1].raw_to_tokens, save_results=False)
Yih-Dar's avatar
Yih-Dar committed
359
        self.assertIn(zs[1][0].detach().cpu().tolist(), [self.EXPECTED_OUTPUT_1, self.EXPECTED_OUTPUT_1_PT_2])
360
361
362

        set_seed(0)
        zs = model._sample(zs, labels, [2], sample_length=60 * model.priors[2].raw_to_tokens, save_results=False)
Yih-Dar's avatar
Yih-Dar committed
363
        self.assertIn(zs[2][0].detach().cpu().tolist(), [self.EXPECTED_OUTPUT_0, self.EXPECTED_OUTPUT_0_PT_2])
364
365

    @slow
366
    @require_torch_gpu
Arthur's avatar
Arthur committed
367
    @skip("Not enough GPU memory on CI runners")
368
    def test_slow_sampling(self):
369
        model = JukeboxModel.from_pretrained(self.model_id, min_duration=0).eval()
370
        labels = [i.to(torch_device) for i in self.prepare_inputs(self.model_id)]
371
372

        set_seed(0)
373
374
        model.priors[0].to(torch_device)
        zs = [torch.zeros(1, 0, dtype=torch.long).to(torch_device) for _ in range(3)]
375
376
377
378
379
        zs = model._sample(zs, labels, [0], sample_length=60 * model.priors[0].raw_to_tokens, save_results=False)
        torch.testing.assert_allclose(zs[0][0].cpu(), torch.tensor(self.EXPECTED_GPU_OUTPUTS_2))
        model.priors[0].cpu()

        set_seed(0)
380
        model.priors[1].to(torch_device)
381
382
383
384
385
        zs = model._sample(zs, labels, [1], sample_length=60 * model.priors[1].raw_to_tokens, save_results=False)
        torch.testing.assert_allclose(zs[1][0].cpu(), torch.tensor(self.EXPECTED_GPU_OUTPUTS_1))
        model.priors[1].cpu()

        set_seed(0)
386
        model.priors[2].to(torch_device)
387
388
389
390
        zs = model._sample(zs, labels, [2], sample_length=60 * model.priors[2].raw_to_tokens, save_results=False)
        torch.testing.assert_allclose(zs[2][0].cpu(), torch.tensor(self.EXPECTED_GPU_OUTPUTS_0))

    @slow
391
    @require_torch_gpu
392
    def test_fp16_slow_sampling(self):
393
        prior_id = "ArthurZ/jukebox_prior_0"
394
        model = JukeboxPrior.from_pretrained(prior_id, min_duration=0).eval().half().to(torch_device)
395

396
        labels = self.prepare_inputs(prior_id)[0].to(torch_device)
397
        metadata = model.get_metadata(labels, 0, 7680, 0)
398
        set_seed(0)
399
        outputs = model.sample(1, metadata=metadata, sample_tokens=60)
Yih-Dar's avatar
Yih-Dar committed
400
        self.assertIn(outputs[0].cpu().tolist(), [self.EXPECTED_GPU_OUTPUTS_2, self.EXPECTED_GPU_OUTPUTS_2_PT_2])