test_image_processing_dpt.py 4.69 KB
Newer Older
NielsRogge's avatar
NielsRogge committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import unittest

19
20
import numpy as np

21
from transformers.file_utils import is_vision_available
NielsRogge's avatar
NielsRogge committed
22
23
from transformers.testing_utils import require_torch, require_vision

24
from ...test_image_processing_common import ImageProcessingTestMixin, prepare_image_inputs
NielsRogge's avatar
NielsRogge committed
25
26
27


if is_vision_available():
28
    from transformers import DPTImageProcessor
NielsRogge's avatar
NielsRogge committed
29
30


31
class DPTImageProcessingTester(unittest.TestCase):
NielsRogge's avatar
NielsRogge committed
32
33
34
35
36
37
38
39
40
    def __init__(
        self,
        parent,
        batch_size=7,
        num_channels=3,
        image_size=18,
        min_resolution=30,
        max_resolution=400,
        do_resize=True,
amyeroberts's avatar
amyeroberts committed
41
        size=None,
NielsRogge's avatar
NielsRogge committed
42
43
44
45
        do_normalize=True,
        image_mean=[0.5, 0.5, 0.5],
        image_std=[0.5, 0.5, 0.5],
    ):
amyeroberts's avatar
amyeroberts committed
46
        size = size if size is not None else {"height": 18, "width": 18}
NielsRogge's avatar
NielsRogge committed
47
48
49
50
51
52
53
54
55
56
57
58
        self.parent = parent
        self.batch_size = batch_size
        self.num_channels = num_channels
        self.image_size = image_size
        self.min_resolution = min_resolution
        self.max_resolution = max_resolution
        self.do_resize = do_resize
        self.size = size
        self.do_normalize = do_normalize
        self.image_mean = image_mean
        self.image_std = image_std

59
    def prepare_image_processor_dict(self):
NielsRogge's avatar
NielsRogge committed
60
61
62
63
64
65
66
67
        return {
            "image_mean": self.image_mean,
            "image_std": self.image_std,
            "do_normalize": self.do_normalize,
            "do_resize": self.do_resize,
            "size": self.size,
        }

68
69
70
71
72
73
74
75
76
77
78
79
80
81
    def expected_output_image_shape(self, images):
        return self.num_channels, self.size["height"], self.size["width"]

    def prepare_image_inputs(self, equal_resolution=False, numpify=False, torchify=False):
        return prepare_image_inputs(
            batch_size=self.batch_size,
            num_channels=self.num_channels,
            min_resolution=self.min_resolution,
            max_resolution=self.max_resolution,
            equal_resolution=equal_resolution,
            numpify=numpify,
            torchify=torchify,
        )

NielsRogge's avatar
NielsRogge committed
82
83
84

@require_torch
@require_vision
85
class DPTImageProcessingTest(ImageProcessingTestMixin, unittest.TestCase):
86
    image_processing_class = DPTImageProcessor if is_vision_available() else None
NielsRogge's avatar
NielsRogge committed
87
88

    def setUp(self):
89
        self.image_processor_tester = DPTImageProcessingTester(self)
NielsRogge's avatar
NielsRogge committed
90
91

    @property
92
93
    def image_processor_dict(self):
        return self.image_processor_tester.prepare_image_processor_dict()
NielsRogge's avatar
NielsRogge committed
94

95
96
97
98
99
100
101
    def test_image_processor_properties(self):
        image_processing = self.image_processing_class(**self.image_processor_dict)
        self.assertTrue(hasattr(image_processing, "image_mean"))
        self.assertTrue(hasattr(image_processing, "image_std"))
        self.assertTrue(hasattr(image_processing, "do_normalize"))
        self.assertTrue(hasattr(image_processing, "do_resize"))
        self.assertTrue(hasattr(image_processing, "size"))
102
103
104
105
        self.assertTrue(hasattr(image_processing, "do_rescale"))
        self.assertTrue(hasattr(image_processing, "rescale_factor"))
        self.assertTrue(hasattr(image_processing, "do_pad"))
        self.assertTrue(hasattr(image_processing, "size_divisor"))
NielsRogge's avatar
NielsRogge committed
106

107
108
109
    def test_image_processor_from_dict_with_kwargs(self):
        image_processor = self.image_processing_class.from_dict(self.image_processor_dict)
        self.assertEqual(image_processor.size, {"height": 18, "width": 18})
110

111
112
        image_processor = self.image_processing_class.from_dict(self.image_processor_dict, size=42)
        self.assertEqual(image_processor.size, {"height": 42, "width": 42})
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128

    def test_padding(self):
        image_processing = self.image_processing_class(**self.image_processor_dict)
        image = np.random.randn(3, 249, 491)

        # test individual method
        image = image_processing.pad_image(image, size_divisor=4)
        self.assertTrue(image.shape[1] % 4 == 0)
        self.assertTrue(image.shape[2] % 4 == 0)

        # test by calling
        pixel_values = image_processing.preprocess(
            image, do_rescale=False, do_resize=False, do_pad=True, size_divisor=4, return_tensors="pt"
        ).pixel_values
        self.assertTrue(pixel_values.shape[2] % 4 == 0)
        self.assertTrue(pixel_values.shape[3] % 4 == 0)