test_image_processing_dpt.py 7.01 KB
Newer Older
NielsRogge's avatar
NielsRogge committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import unittest

import numpy as np

from transformers.file_utils import is_torch_available, is_vision_available
from transformers.testing_utils import require_torch, require_vision

24
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
NielsRogge's avatar
NielsRogge committed
25
26
27
28
29
30
31
32


if is_torch_available():
    import torch

if is_vision_available():
    from PIL import Image

33
    from transformers import DPTImageProcessor
NielsRogge's avatar
NielsRogge committed
34
35


36
class DPTImageProcessingTester(unittest.TestCase):
NielsRogge's avatar
NielsRogge committed
37
38
39
40
41
42
43
44
45
    def __init__(
        self,
        parent,
        batch_size=7,
        num_channels=3,
        image_size=18,
        min_resolution=30,
        max_resolution=400,
        do_resize=True,
amyeroberts's avatar
amyeroberts committed
46
        size=None,
NielsRogge's avatar
NielsRogge committed
47
48
49
50
        do_normalize=True,
        image_mean=[0.5, 0.5, 0.5],
        image_std=[0.5, 0.5, 0.5],
    ):
amyeroberts's avatar
amyeroberts committed
51
        size = size if size is not None else {"height": 18, "width": 18}
NielsRogge's avatar
NielsRogge committed
52
53
54
55
56
57
58
59
60
61
62
63
        self.parent = parent
        self.batch_size = batch_size
        self.num_channels = num_channels
        self.image_size = image_size
        self.min_resolution = min_resolution
        self.max_resolution = max_resolution
        self.do_resize = do_resize
        self.size = size
        self.do_normalize = do_normalize
        self.image_mean = image_mean
        self.image_std = image_std

64
    def prepare_image_processor_dict(self):
NielsRogge's avatar
NielsRogge committed
65
66
67
68
69
70
71
72
73
74
75
        return {
            "image_mean": self.image_mean,
            "image_std": self.image_std,
            "do_normalize": self.do_normalize,
            "do_resize": self.do_resize,
            "size": self.size,
        }


@require_torch
@require_vision
76
77
class DPTImageProcessingTest(ImageProcessingSavingTestMixin, unittest.TestCase):
    image_processing_class = DPTImageProcessor if is_vision_available() else None
NielsRogge's avatar
NielsRogge committed
78
79

    def setUp(self):
80
        self.image_processor_tester = DPTImageProcessingTester(self)
NielsRogge's avatar
NielsRogge committed
81
82

    @property
83
84
    def image_processor_dict(self):
        return self.image_processor_tester.prepare_image_processor_dict()
NielsRogge's avatar
NielsRogge committed
85

86
87
88
89
90
91
92
    def test_image_processor_properties(self):
        image_processing = self.image_processing_class(**self.image_processor_dict)
        self.assertTrue(hasattr(image_processing, "image_mean"))
        self.assertTrue(hasattr(image_processing, "image_std"))
        self.assertTrue(hasattr(image_processing, "do_normalize"))
        self.assertTrue(hasattr(image_processing, "do_resize"))
        self.assertTrue(hasattr(image_processing, "size"))
NielsRogge's avatar
NielsRogge committed
93

94
95
96
    def test_image_processor_from_dict_with_kwargs(self):
        image_processor = self.image_processing_class.from_dict(self.image_processor_dict)
        self.assertEqual(image_processor.size, {"height": 18, "width": 18})
97

98
99
        image_processor = self.image_processing_class.from_dict(self.image_processor_dict, size=42)
        self.assertEqual(image_processor.size, {"height": 42, "width": 42})
100

NielsRogge's avatar
NielsRogge committed
101
    def test_call_pil(self):
102
103
        # Initialize image_processing
        image_processing = self.image_processing_class(**self.image_processor_dict)
NielsRogge's avatar
NielsRogge committed
104
        # create random PIL images
105
        image_inputs = prepare_image_inputs(self.image_processor_tester, equal_resolution=False)
NielsRogge's avatar
NielsRogge committed
106
107
108
109
        for image in image_inputs:
            self.assertIsInstance(image, Image.Image)

        # Test not batched input
110
        encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
NielsRogge's avatar
NielsRogge committed
111
112
113
114
        self.assertEqual(
            encoded_images.shape,
            (
                1,
115
116
117
                self.image_processor_tester.num_channels,
                self.image_processor_tester.size["height"],
                self.image_processor_tester.size["width"],
NielsRogge's avatar
NielsRogge committed
118
119
120
121
            ),
        )

        # Test batched
122
        encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values
NielsRogge's avatar
NielsRogge committed
123
124
125
        self.assertEqual(
            encoded_images.shape,
            (
126
127
128
129
                self.image_processor_tester.batch_size,
                self.image_processor_tester.num_channels,
                self.image_processor_tester.size["height"],
                self.image_processor_tester.size["width"],
NielsRogge's avatar
NielsRogge committed
130
131
132
133
            ),
        )

    def test_call_numpy(self):
134
135
        # Initialize image_processing
        image_processing = self.image_processing_class(**self.image_processor_dict)
NielsRogge's avatar
NielsRogge committed
136
        # create random numpy tensors
137
        image_inputs = prepare_image_inputs(self.image_processor_tester, equal_resolution=False, numpify=True)
NielsRogge's avatar
NielsRogge committed
138
139
140
141
        for image in image_inputs:
            self.assertIsInstance(image, np.ndarray)

        # Test not batched input
142
        encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
NielsRogge's avatar
NielsRogge committed
143
144
145
146
        self.assertEqual(
            encoded_images.shape,
            (
                1,
147
148
149
                self.image_processor_tester.num_channels,
                self.image_processor_tester.size["height"],
                self.image_processor_tester.size["width"],
NielsRogge's avatar
NielsRogge committed
150
151
152
153
            ),
        )

        # Test batched
154
        encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values
NielsRogge's avatar
NielsRogge committed
155
156
157
        self.assertEqual(
            encoded_images.shape,
            (
158
159
160
161
                self.image_processor_tester.batch_size,
                self.image_processor_tester.num_channels,
                self.image_processor_tester.size["height"],
                self.image_processor_tester.size["width"],
NielsRogge's avatar
NielsRogge committed
162
163
164
165
            ),
        )

    def test_call_pytorch(self):
166
167
        # Initialize image_processing
        image_processing = self.image_processing_class(**self.image_processor_dict)
NielsRogge's avatar
NielsRogge committed
168
        # create random PyTorch tensors
169
        image_inputs = prepare_image_inputs(self.image_processor_tester, equal_resolution=False, torchify=True)
NielsRogge's avatar
NielsRogge committed
170
171
172
173
        for image in image_inputs:
            self.assertIsInstance(image, torch.Tensor)

        # Test not batched input
174
        encoded_images = image_processing(image_inputs[0], return_tensors="pt").pixel_values
NielsRogge's avatar
NielsRogge committed
175
176
177
178
        self.assertEqual(
            encoded_images.shape,
            (
                1,
179
180
181
                self.image_processor_tester.num_channels,
                self.image_processor_tester.size["height"],
                self.image_processor_tester.size["width"],
NielsRogge's avatar
NielsRogge committed
182
183
184
185
            ),
        )

        # Test batched
186
        encoded_images = image_processing(image_inputs, return_tensors="pt").pixel_values
NielsRogge's avatar
NielsRogge committed
187
188
189
        self.assertEqual(
            encoded_images.shape,
            (
190
191
192
193
                self.image_processor_tester.batch_size,
                self.image_processor_tester.num_channels,
                self.image_processor_tester.size["height"],
                self.image_processor_tester.size["width"],
NielsRogge's avatar
NielsRogge committed
194
195
            ),
        )