test_modeling_tf_longformer.py 26.9 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import unittest

from transformers import is_tf_available
20
from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow
Patrick von Platen's avatar
Patrick von Platen committed
21
22
23
24
25
26
27

from .test_configuration_common import ConfigTester
from .test_modeling_tf_common import TFModelTesterMixin, ids_tensor


if is_tf_available():
    import tensorflow as tf
28

Patrick von Platen's avatar
Patrick von Platen committed
29
30
31
32
    from transformers import (
        LongformerConfig,
        TFLongformerForMaskedLM,
        TFLongformerForQuestionAnswering,
33
        TFLongformerModel,
Patrick von Platen's avatar
Patrick von Platen committed
34
35
36
37
38
        TFLongformerSelfAttention,
    )

    def shape_list(x):
        """
Lysandre's avatar
Lysandre committed
39
        copied from transformers.modeling_tf_utils
Patrick von Platen's avatar
Patrick von Platen committed
40
41
42
43
44
45
46
47
        """
        static = x.shape.as_list()
        dynamic = tf.shape(x)
        return [dynamic[i] if s is None else s for i, s in enumerate(static)]


class TFLongformerModelTester:
    def __init__(
Lysandre's avatar
Lysandre committed
48
49
        self,
        parent,
Patrick von Platen's avatar
Patrick von Platen committed
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
    ):
        self.parent = parent
        self.batch_size = 13
        self.seq_length = 7
        self.is_training = True
        self.use_input_mask = True
        self.use_token_type_ids = True
        self.use_labels = True
        self.vocab_size = 99
        self.hidden_size = 32
        self.num_hidden_layers = 5
        self.num_attention_heads = 4
        self.intermediate_size = 37
        self.hidden_act = "gelu"
        self.hidden_dropout_prob = 0.1
        self.attention_probs_dropout_prob = 0.1
        self.max_position_embeddings = 512
        self.type_vocab_size = 16
        self.type_sequence_label_size = 2
        self.initializer_range = 0.02
        self.num_labels = 3
        self.num_choices = 4
        self.scope = None
        self.attention_window = 4

        # `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size
        # [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention
        # returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1]
        # because its local attention only attends to `self.attention_window` and one before and one after
        self.key_length = self.attention_window + 2

        # because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for
        # the `test_attention_outputs` and `test_hidden_states_output` tests
        self.encoder_seq_length = (
            self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window
        )

    def prepare_config_and_inputs(self):
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

        input_mask = None
        if self.use_input_mask:
            input_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)

        token_type_ids = None
        if self.use_token_type_ids:
            token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)

        sequence_labels = None
        token_labels = None
        choice_labels = None
        if self.use_labels:
            sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
            token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
            choice_labels = ids_tensor([self.batch_size], self.num_choices)

        config = LongformerConfig(
            vocab_size=self.vocab_size,
            hidden_size=self.hidden_size,
            num_hidden_layers=self.num_hidden_layers,
            num_attention_heads=self.num_attention_heads,
            intermediate_size=self.intermediate_size,
            hidden_act=self.hidden_act,
            hidden_dropout_prob=self.hidden_dropout_prob,
            attention_probs_dropout_prob=self.attention_probs_dropout_prob,
            max_position_embeddings=self.max_position_embeddings,
            type_vocab_size=self.type_vocab_size,
            initializer_range=self.initializer_range,
            attention_window=self.attention_window,
        )

        return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels

    def create_and_check_attention_mask_determinism(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = TFLongformerModel(config=config)

        attention_mask = tf.ones(input_ids.shape, dtype=tf.dtypes.int32)
        output_with_mask = model(input_ids, attention_mask=attention_mask)[0]
        output_without_mask = model(input_ids)[0]
        tf.debugging.assert_near(output_with_mask[0, 0, :5], output_without_mask[0, 0, :5], rtol=1e-4)

    def create_and_check_longformer_model(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
Julien Plu's avatar
Julien Plu committed
136
        config.return_dict = True
Patrick von Platen's avatar
Patrick von Platen committed
137
        model = TFLongformerModel(config=config)
Julien Plu's avatar
Julien Plu committed
138
139
140
        result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids)
        result = model(input_ids, token_type_ids=token_type_ids)
        result = model(input_ids)
Patrick von Platen's avatar
Patrick von Platen committed
141
142

        self.parent.assertListEqual(
Julien Plu's avatar
Julien Plu committed
143
            shape_list(result.last_hidden_state), [self.batch_size, self.seq_length, self.hidden_size]
Patrick von Platen's avatar
Patrick von Platen committed
144
        )
Julien Plu's avatar
Julien Plu committed
145
        self.parent.assertListEqual(shape_list(result.pooler_output), [self.batch_size, self.hidden_size])
Patrick von Platen's avatar
Patrick von Platen committed
146
147
148
149

    def create_and_check_longformer_model_with_global_attention_mask(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
Julien Plu's avatar
Julien Plu committed
150
        config.return_dict = True
Patrick von Platen's avatar
Patrick von Platen committed
151
152
153
154
155
156
157
158
159
160
        model = TFLongformerModel(config=config)
        half_input_mask_length = shape_list(input_mask)[-1] // 2
        global_attention_mask = tf.concat(
            [
                tf.zeros_like(input_mask)[:, :half_input_mask_length],
                tf.ones_like(input_mask)[:, half_input_mask_length:],
            ],
            axis=-1,
        )

Julien Plu's avatar
Julien Plu committed
161
        result = model(
Patrick von Platen's avatar
Patrick von Platen committed
162
163
164
165
166
            input_ids,
            attention_mask=input_mask,
            global_attention_mask=global_attention_mask,
            token_type_ids=token_type_ids,
        )
Julien Plu's avatar
Julien Plu committed
167
168
        result = model(input_ids, token_type_ids=token_type_ids, global_attention_mask=global_attention_mask)
        result = model(input_ids, global_attention_mask=global_attention_mask)
Patrick von Platen's avatar
Patrick von Platen committed
169
170

        self.parent.assertListEqual(
Julien Plu's avatar
Julien Plu committed
171
            shape_list(result.last_hidden_state), [self.batch_size, self.seq_length, self.hidden_size]
Patrick von Platen's avatar
Patrick von Platen committed
172
        )
Julien Plu's avatar
Julien Plu committed
173
        self.parent.assertListEqual(shape_list(result.pooler_output), [self.batch_size, self.hidden_size])
Patrick von Platen's avatar
Patrick von Platen committed
174
175
176
177

    def create_and_check_longformer_for_masked_lm(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
Julien Plu's avatar
Julien Plu committed
178
        config.return_dict = True
Patrick von Platen's avatar
Patrick von Platen committed
179
        model = TFLongformerForMaskedLM(config=config)
Julien Plu's avatar
Julien Plu committed
180
181
        result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels)
        self.parent.assertListEqual(shape_list(result.logits), [self.batch_size, self.seq_length, self.vocab_size])
Patrick von Platen's avatar
Patrick von Platen committed
182
183
184
185

    def create_and_check_longformer_for_question_answering(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
Julien Plu's avatar
Julien Plu committed
186
        config.return_dict = True
Patrick von Platen's avatar
Patrick von Platen committed
187
        model = TFLongformerForQuestionAnswering(config=config)
Julien Plu's avatar
Julien Plu committed
188
        result = model(
Patrick von Platen's avatar
Patrick von Platen committed
189
190
191
192
193
194
            input_ids,
            attention_mask=input_mask,
            token_type_ids=token_type_ids,
            start_positions=sequence_labels,
            end_positions=sequence_labels,
        )
Julien Plu's avatar
Julien Plu committed
195
196
197

        self.parent.assertListEqual(shape_list(result.start_logits), [self.batch_size, self.seq_length])
        self.parent.assertListEqual(shape_list(result.end_logits), [self.batch_size, self.seq_length])
Patrick von Platen's avatar
Patrick von Platen committed
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213

    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        (
            config,
            input_ids,
            token_type_ids,
            input_mask,
            sequence_labels,
            token_labels,
            choice_labels,
        ) = config_and_inputs

        # global attention mask has to be partly defined
        # to trace all weights
        global_attention_mask = tf.concat(
Lysandre's avatar
Lysandre committed
214
215
            [tf.zeros_like(input_ids)[:, :-1], tf.ones_like(input_ids)[:, -1:]],
            axis=-1,
Patrick von Platen's avatar
Patrick von Platen committed
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
        )

        inputs_dict = {
            "input_ids": input_ids,
            "token_type_ids": token_type_ids,
            "attention_mask": input_mask,
            "global_attention_mask": global_attention_mask,
        }
        return config, inputs_dict

    def prepare_config_and_inputs_for_question_answering(self):
        config_and_inputs = self.prepare_config_and_inputs()
        (
            config,
            input_ids,
            token_type_ids,
            input_mask,
            sequence_labels,
            token_labels,
            choice_labels,
        ) = config_and_inputs

        # Replace sep_token_id by some random id
        input_ids = tf.where(input_ids == config.sep_token_id, 0, input_ids)
        # Make sure there are exactly three sep_token_id
        input_ids = tf.concat([input_ids[:, :-3], tf.ones_like(input_ids)[:, -3:] * config.sep_token_id], axis=-1)
        input_mask = tf.ones_like(input_ids)

        return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels


@require_tf
class TFLongformerModelTest(TFModelTesterMixin, unittest.TestCase):

    all_model_classes = (
Lysandre's avatar
Lysandre committed
251
252
253
254
255
256
257
        (
            TFLongformerModel,
            TFLongformerForMaskedLM,
            TFLongformerForQuestionAnswering,
        )
        if is_tf_available()
        else ()
Patrick von Platen's avatar
Patrick von Platen committed
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
    )

    def setUp(self):
        self.model_tester = TFLongformerModelTester(self)
        self.config_tester = ConfigTester(self, config_class=LongformerConfig, hidden_size=37)

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_longformer_model_attention_mask_determinism(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_attention_mask_determinism(*config_and_inputs)

    def test_longformer_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_longformer_model(*config_and_inputs)

    def test_longformer_model_global_attention_mask(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_longformer_model_with_global_attention_mask(*config_and_inputs)

    def test_longformer_for_masked_lm(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_longformer_for_masked_lm(*config_and_inputs)

    def test_longformer_for_question_answering(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs_for_question_answering()
        self.model_tester.create_and_check_longformer_for_question_answering(*config_and_inputs)

Lysandre Debut's avatar
Lysandre Debut committed
287
288
289
290
    @slow
    def test_saved_model_with_attentions_output(self):
        pass

Patrick von Platen's avatar
Patrick von Platen committed
291
292

@require_tf
293
294
@require_sentencepiece
@require_tokenizers
Patrick von Platen's avatar
Patrick von Platen committed
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
class TFLongformerModelIntegrationTest(unittest.TestCase):
    def _get_hidden_states(self):
        return tf.convert_to_tensor(
            [
                [
                    [
                        4.98332758e-01,
                        2.69175139e00,
                        -7.08081422e-03,
                        1.04915401e00,
                        -1.83476661e00,
                        7.67220476e-01,
                        2.98580543e-01,
                        2.84803992e-02,
                    ],
                    [
                        -7.58357372e-01,
                        4.20635998e-01,
                        -4.04739919e-02,
                        1.59924145e-01,
                        2.05135748e00,
                        -1.15997978e00,
                        5.37166397e-01,
                        2.62873606e-01,
                    ],
                    [
                        -1.69438001e00,
                        4.17574660e-01,
                        -1.49196962e00,
                        -1.76483717e00,
                        -1.94566312e-01,
                        -1.71183858e00,
                        7.72903565e-01,
                        -1.11557056e00,
                    ],
                    [
                        5.44028163e-01,
                        2.05466114e-01,
                        -3.63045868e-01,
                        2.41865062e-01,
                        3.20348382e-01,
                        -9.05611176e-01,
                        -1.92690727e-01,
                        -1.19917547e00,
                    ],
                ]
            ],
            dtype=tf.float32,
        )

    def test_diagonalize(self):
        hidden_states = self._get_hidden_states()
        hidden_states = tf.reshape(hidden_states, (1, 8, 4))  # set seq length = 8, hidden dim = 4
        chunked_hidden_states = TFLongformerSelfAttention._chunk(hidden_states, window_overlap=2)
        window_overlap_size = shape_list(chunked_hidden_states)[2]
        self.assertTrue(window_overlap_size == 4)

        padded_hidden_states = TFLongformerSelfAttention._pad_and_diagonalize(chunked_hidden_states)

        self.assertTrue(
            shape_list(padded_hidden_states)[-1] == shape_list(chunked_hidden_states)[-1] + window_overlap_size - 1
        )

        # first row => [0.4983,  2.6918, -0.0071,  1.0492, 0.0000,  0.0000,  0.0000]
        tf.debugging.assert_near(padded_hidden_states[0, 0, 0, :4], chunked_hidden_states[0, 0, 0], rtol=1e-3)
        tf.debugging.assert_near(padded_hidden_states[0, 0, 0, 4:], tf.zeros((3,), dtype=tf.dtypes.float32), rtol=1e-3)

        # last row => [0.0000,  0.0000,  0.0000, 2.0514, -1.1600,  0.5372,  0.2629]
        tf.debugging.assert_near(padded_hidden_states[0, 0, -1, 3:], chunked_hidden_states[0, 0, -1], rtol=1e-3)
        tf.debugging.assert_near(
            padded_hidden_states[0, 0, -1, :3], tf.zeros((3,), dtype=tf.dtypes.float32), rtol=1e-3
        )

    def test_pad_and_transpose_last_two_dims(self):
        hidden_states = self._get_hidden_states()
        self.assertTrue(shape_list(hidden_states), [1, 8, 4])

        # pad along seq length dim
373
        paddings = tf.constant([[0, 0], [0, 0], [0, 1], [0, 0]], dtype=tf.dtypes.int32)
Patrick von Platen's avatar
Patrick von Platen committed
374

375
        hidden_states = TFLongformerSelfAttention._chunk(hidden_states, window_overlap=2)
Patrick von Platen's avatar
Patrick von Platen committed
376
        padded_hidden_states = TFLongformerSelfAttention._pad_and_transpose_last_two_dims(hidden_states, paddings)
377
        self.assertTrue(shape_list(padded_hidden_states) == [1, 1, 8, 5])
Patrick von Platen's avatar
Patrick von Platen committed
378
379

        expected_added_dim = tf.zeros((5,), dtype=tf.dtypes.float32)
380
        tf.debugging.assert_near(expected_added_dim, padded_hidden_states[0, 0, -1, :], rtol=1e-6)
Patrick von Platen's avatar
Patrick von Platen committed
381
        tf.debugging.assert_near(
382
            hidden_states[0, 0, -1, :], tf.reshape(padded_hidden_states, (1, -1))[0, 24:32], rtol=1e-6
Patrick von Platen's avatar
Patrick von Platen committed
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
        )

    def test_mask_invalid_locations(self):
        hidden_states = self._get_hidden_states()
        batch_size = 1
        seq_length = 8
        hidden_size = 4
        hidden_states = tf.reshape(hidden_states, (batch_size, seq_length, hidden_size))
        hidden_states = TFLongformerSelfAttention._chunk(hidden_states, window_overlap=2)

        hid_states_1 = TFLongformerSelfAttention._mask_invalid_locations(hidden_states, 1)
        hid_states_2 = TFLongformerSelfAttention._mask_invalid_locations(hidden_states, 2)
        hid_states_3 = TFLongformerSelfAttention._mask_invalid_locations(hidden_states[:, :, :, :3], 2)
        hid_states_4 = TFLongformerSelfAttention._mask_invalid_locations(hidden_states[:, :, 2:, :], 2)

        self.assertTrue(tf.math.reduce_sum(tf.cast(tf.math.is_inf(hid_states_1), tf.dtypes.int32)) == 8)
        self.assertTrue(tf.math.reduce_sum(tf.cast(tf.math.is_inf(hid_states_2), tf.dtypes.int32)) == 24)
        self.assertTrue(tf.math.reduce_sum(tf.cast(tf.math.is_inf(hid_states_3), tf.dtypes.int32)) == 24)
        self.assertTrue(tf.math.reduce_sum(tf.cast(tf.math.is_inf(hid_states_4), tf.dtypes.int32)) == 12)

    def test_chunk(self):
        hidden_states = self._get_hidden_states()
        batch_size = 1
        seq_length = 8
        hidden_size = 4
        hidden_states = tf.reshape(hidden_states, (batch_size, seq_length, hidden_size))

        chunked_hidden_states = TFLongformerSelfAttention._chunk(hidden_states, window_overlap=2)

        # expected slices across chunk and seq length dim
        expected_slice_along_seq_length = tf.convert_to_tensor([0.4983, -0.7584, -1.6944], dtype=tf.dtypes.float32)
        expected_slice_along_chunk = tf.convert_to_tensor([0.4983, -1.8348, -0.7584, 2.0514], dtype=tf.dtypes.float32)

        self.assertTrue(shape_list(chunked_hidden_states) == [1, 3, 4, 4])
        tf.debugging.assert_near(chunked_hidden_states[0, :, 0, 0], expected_slice_along_seq_length, rtol=1e-3)
        tf.debugging.assert_near(chunked_hidden_states[0, 0, :, 0], expected_slice_along_chunk, rtol=1e-3)

    def test_layer_local_attn(self):
421
        model = TFLongformerModel.from_pretrained("patrickvonplaten/longformer-random-tiny")
Patrick von Platen's avatar
Patrick von Platen committed
422
423
424
425
        layer = model.longformer.encoder.layer[0].attention.self_attention
        hidden_states = self._get_hidden_states()
        batch_size, seq_length, hidden_size = hidden_states.shape

426
427
428
429
430
431
        attention_mask = tf.zeros((batch_size, seq_length), dtype=tf.dtypes.float32)
        is_index_global_attn = tf.math.greater(attention_mask, 1)
        is_global_attn = tf.math.reduce_any(is_index_global_attn)

        attention_mask = tf.where(tf.range(4)[None, :, None, None] > 1, -10000.0, attention_mask[:, :, None, None])
        is_index_masked = tf.math.less(attention_mask[:, :, 0, 0], 0)
Patrick von Platen's avatar
Patrick von Platen committed
432

433
        output_hidden_states = layer(
434
            [hidden_states, attention_mask, is_index_masked, is_index_global_attn, is_global_attn]
435
        )[0]
Patrick von Platen's avatar
Patrick von Platen committed
436
437
438
439
440
441
442
443
444

        expected_slice = tf.convert_to_tensor(
            [0.00188, 0.012196, -0.017051, -0.025571, -0.02996, 0.017297, -0.011521, 0.004848], dtype=tf.dtypes.float32
        )

        self.assertTrue(output_hidden_states.shape, (1, 4, 8))
        tf.debugging.assert_near(output_hidden_states[0, 1], expected_slice, rtol=1e-3)

    def test_layer_global_attn(self):
445
        model = TFLongformerModel.from_pretrained("patrickvonplaten/longformer-random-tiny")
Patrick von Platen's avatar
Patrick von Platen committed
446
447
448
449
450
451
452
453
454
455
        layer = model.longformer.encoder.layer[0].attention.self_attention
        hidden_states = self._get_hidden_states()

        hidden_states = tf.concat([self._get_hidden_states(), self._get_hidden_states() - 0.5], axis=0)
        batch_size, seq_length, hidden_size = hidden_states.shape

        # create attn mask
        attention_mask_1 = tf.zeros((1, 1, 1, seq_length), dtype=tf.dtypes.float32)
        attention_mask_2 = tf.zeros((1, 1, 1, seq_length), dtype=tf.dtypes.float32)

456
457
458
        attention_mask_1 = tf.where(tf.range(4)[None, :, None, None] > 1, 10000.0, attention_mask_1)
        attention_mask_1 = tf.where(tf.range(4)[None, :, None, None] > 2, -10000.0, attention_mask_1)
        attention_mask_2 = tf.where(tf.range(4)[None, :, None, None] > 0, 10000.0, attention_mask_2)
Patrick von Platen's avatar
Patrick von Platen committed
459
460
        attention_mask = tf.concat([attention_mask_1, attention_mask_2], axis=0)

461
462
463
464
465
        is_index_masked = tf.math.less(attention_mask[:, :, 0, 0], 0)
        is_index_global_attn = tf.math.greater(attention_mask[:, :, 0, 0], 0)
        is_global_attn = tf.math.reduce_any(is_index_global_attn)

        output_hidden_states = layer(
466
            [hidden_states, -tf.math.abs(attention_mask), is_index_masked, is_index_global_attn, is_global_attn]
467
        )[0]
Patrick von Platen's avatar
Patrick von Platen committed
468
469
470
471
472
473
474
475
476
477
478
479
480

        self.assertTrue(output_hidden_states.shape, (2, 4, 8))
        expected_slice_0 = tf.convert_to_tensor(
            [-0.06508, -0.039306, 0.030934, -0.03417, -0.00656, -0.01553, -0.02088, -0.04938], dtype=tf.dtypes.float32
        )

        expected_slice_1 = tf.convert_to_tensor(
            [-0.04055, -0.038399, 0.0396, -0.03735, -0.03415, 0.01357, 0.00145, -0.05709], dtype=tf.dtypes.float32
        )

        tf.debugging.assert_near(output_hidden_states[0, 2], expected_slice_0, rtol=1e-3)
        tf.debugging.assert_near(output_hidden_states[1, -2], expected_slice_1, rtol=1e-3)

481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
    def test_layer_attn_probs(self):
        model = TFLongformerModel.from_pretrained("patrickvonplaten/longformer-random-tiny")
        layer = model.longformer.encoder.layer[0].attention.self_attention
        hidden_states = tf.concat([self._get_hidden_states(), self._get_hidden_states() - 0.5], axis=0)
        batch_size, seq_length, hidden_size = hidden_states.shape

        # create attn mask
        attention_mask_1 = tf.zeros((1, 1, 1, seq_length), dtype=tf.dtypes.float32)
        attention_mask_2 = tf.zeros((1, 1, 1, seq_length), dtype=tf.dtypes.float32)

        attention_mask_1 = tf.where(tf.range(4)[None, :, None, None] > 1, 10000.0, attention_mask_1)
        attention_mask_1 = tf.where(tf.range(4)[None, :, None, None] > 2, -10000.0, attention_mask_1)
        attention_mask_2 = tf.where(tf.range(4)[None, :, None, None] > 0, 10000.0, attention_mask_2)
        attention_mask = tf.concat([attention_mask_1, attention_mask_2], axis=0)

        is_index_masked = tf.math.less(attention_mask[:, :, 0, 0], 0)
        is_index_global_attn = tf.math.greater(attention_mask[:, :, 0, 0], 0)
        is_global_attn = tf.math.reduce_any(is_index_global_attn)

        output_hidden_states, local_attentions, global_attentions = layer(
            [hidden_states, -tf.math.abs(attention_mask), is_index_masked, is_index_global_attn, is_global_attn]
        )

        self.assertEqual(local_attentions.shape, (2, 4, 2, 8))
        self.assertEqual(global_attentions.shape, (2, 2, 3, 4))

        self.assertTrue((local_attentions[0, 2:4, :, :] == 0).numpy().tolist())
        self.assertTrue((local_attentions[1, 1:4, :, :] == 0).numpy().tolist())

        #
        # The weight of all tokens with local attention must sum to 1.
        self.assertTrue(
            (tf.math.abs(tf.math.reduce_sum(global_attentions[0, :, :2, :], axis=-1) - 1) < 1e-6).numpy().tolist()
        )
        self.assertTrue(
            (tf.math.abs(tf.math.reduce_sum(global_attentions[1, :, :1, :], axis=-1) - 1) < 1e-6).numpy().tolist()
        )

        tf.debugging.assert_near(
            local_attentions[0, 0, 0, :],
            tf.convert_to_tensor(
                [0.3328, 0.0000, 0.0000, 0.0000, 0.0000, 0.3355, 0.3318, 0.0000], dtype=tf.dtypes.float32
            ),
            rtol=1e-3,
        )

        tf.debugging.assert_near(
            local_attentions[1, 0, 0, :],
            tf.convert_to_tensor(
                [0.2492, 0.2502, 0.2502, 0.0000, 0.0000, 0.2505, 0.0000, 0.0000], dtype=tf.dtypes.float32
            ),
            rtol=1e-3,
        )

        # All the global attention weights must sum to 1.
        self.assertTrue((tf.math.abs(tf.math.reduce_sum(global_attentions, axis=-1) - 1) < 1e-6).numpy().tolist())

        tf.debugging.assert_near(
            global_attentions[0, 0, 1, :],
            tf.convert_to_tensor([0.2500, 0.2500, 0.2500, 0.2500], dtype=tf.dtypes.float32),
            rtol=1e-3,
        )
        tf.debugging.assert_near(
            global_attentions[1, 0, 0, :],
            tf.convert_to_tensor([0.2497, 0.2500, 0.2499, 0.2504], dtype=tf.dtypes.float32),
            rtol=1e-3,
        )

Patrick von Platen's avatar
Patrick von Platen committed
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
    @slow
    def test_inference_no_head(self):
        model = TFLongformerModel.from_pretrained("allenai/longformer-base-4096")

        # 'Hello world!'
        input_ids = tf.convert_to_tensor([[0, 20920, 232, 328, 1437, 2]], dtype=tf.dtypes.int32)
        attention_mask = tf.ones(shape_list(input_ids), dtype=tf.dtypes.int32)

        output = model(input_ids, attention_mask=attention_mask)[0]
        output_without_mask = model(input_ids)[0]

        expected_output_slice = tf.convert_to_tensor(
            [0.0549, 0.1087, -0.1119, -0.0368, 0.0250], dtype=tf.dtypes.float32
        )

        tf.debugging.assert_near(output[0, 0, -5:], expected_output_slice, rtol=1e-3)
        tf.debugging.assert_near(output_without_mask[0, 0, -5:], expected_output_slice, rtol=1e-3)

    @slow
    def test_inference_no_head_long(self):
        model = TFLongformerModel.from_pretrained("allenai/longformer-base-4096")

        # 'Hello world! ' repeated 1000 times
        input_ids = tf.convert_to_tensor([[0] + [20920, 232, 328, 1437] * 1000 + [2]], dtype=tf.dtypes.int32)

        attention_mask = tf.ones(shape_list(input_ids), dtype=tf.dtypes.int32)
        global_attention_mask = tf.zeros(shape_list(input_ids), dtype=tf.dtypes.int32)
        # Set global attention on a few random positions
        global_attention_mask = tf.tensor_scatter_nd_update(
            global_attention_mask, tf.constant([[0, 1], [0, 4], [0, 21]]), tf.constant([1, 1, 1])
        )

        output = model(input_ids, attention_mask=attention_mask, global_attention_mask=global_attention_mask)[0]

        expected_output_sum = tf.constant(74585.875)
        expected_output_mean = tf.constant(0.024267)

        # assert close
        tf.debugging.assert_near(tf.reduce_sum(output), expected_output_sum, rtol=1e-4)
        tf.debugging.assert_near(tf.reduce_mean(output), expected_output_mean, rtol=1e-4)

    @slow
    def test_inference_masked_lm_long(self):
        model = TFLongformerForMaskedLM.from_pretrained("allenai/longformer-base-4096")

        # 'Hello world! ' repeated 1000 times
        input_ids = tf.convert_to_tensor([[0] + [20920, 232, 328, 1437] * 1000 + [2]], dtype=tf.dtypes.int32)

        loss, prediction_scores = model(input_ids, labels=input_ids)

        expected_loss = tf.constant(0.0073798)
        expected_prediction_scores_sum = tf.constant(-610476600.0)
        expected_prediction_scores_mean = tf.constant(-3.03477)

        # assert close
        tf.debugging.assert_near(tf.reduce_mean(loss), expected_loss, rtol=1e-4)
        tf.debugging.assert_near(tf.reduce_sum(prediction_scores), expected_prediction_scores_sum, rtol=1e-4)
        tf.debugging.assert_near(tf.reduce_mean(prediction_scores), expected_prediction_scores_mean, rtol=1e-4)
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628

    @slow
    def test_inference_masked_lm(self):
        model = TFLongformerForMaskedLM.from_pretrained("lysandre/tiny-longformer-random")
        input_ids = tf.constant([[0, 1, 2, 3, 4, 5]])
        output = model(input_ids)[0]

        expected_shape = [1, 6, 10]
        self.assertEqual(output.shape, expected_shape)

        print(output[:, :3, :3])

        expected_slice = tf.constant(
            [
                [
                    [-0.04926379, 0.0367098, 0.02099686],
                    [0.03940692, 0.01547744, -0.01448723],
                    [0.03495252, -0.05900355, -0.01675752],
                ]
            ]
        )
        tf.debugging.assert_near(output[:, :3, :3], expected_slice, atol=1e-4)