test_modeling_tf_longformer.py 23.7 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import unittest

from transformers import is_tf_available
20
from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow
Patrick von Platen's avatar
Patrick von Platen committed
21
22
23
24
25
26
27

from .test_configuration_common import ConfigTester
from .test_modeling_tf_common import TFModelTesterMixin, ids_tensor


if is_tf_available():
    import tensorflow as tf
28

Patrick von Platen's avatar
Patrick von Platen committed
29
30
31
32
    from transformers import (
        LongformerConfig,
        TFLongformerForMaskedLM,
        TFLongformerForQuestionAnswering,
33
        TFLongformerModel,
Patrick von Platen's avatar
Patrick von Platen committed
34
35
36
37
38
        TFLongformerSelfAttention,
    )

    def shape_list(x):
        """
Lysandre's avatar
Lysandre committed
39
        copied from transformers.modeling_tf_utils
Patrick von Platen's avatar
Patrick von Platen committed
40
41
42
43
44
45
46
47
        """
        static = x.shape.as_list()
        dynamic = tf.shape(x)
        return [dynamic[i] if s is None else s for i, s in enumerate(static)]


class TFLongformerModelTester:
    def __init__(
Lysandre's avatar
Lysandre committed
48
49
        self,
        parent,
Patrick von Platen's avatar
Patrick von Platen committed
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
    ):
        self.parent = parent
        self.batch_size = 13
        self.seq_length = 7
        self.is_training = True
        self.use_input_mask = True
        self.use_token_type_ids = True
        self.use_labels = True
        self.vocab_size = 99
        self.hidden_size = 32
        self.num_hidden_layers = 5
        self.num_attention_heads = 4
        self.intermediate_size = 37
        self.hidden_act = "gelu"
        self.hidden_dropout_prob = 0.1
        self.attention_probs_dropout_prob = 0.1
        self.max_position_embeddings = 512
        self.type_vocab_size = 16
        self.type_sequence_label_size = 2
        self.initializer_range = 0.02
        self.num_labels = 3
        self.num_choices = 4
        self.scope = None
        self.attention_window = 4

        # `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size
        # [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention
        # returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1]
        # because its local attention only attends to `self.attention_window` and one before and one after
        self.key_length = self.attention_window + 2

        # because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for
        # the `test_attention_outputs` and `test_hidden_states_output` tests
        self.encoder_seq_length = (
            self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window
        )

    def prepare_config_and_inputs(self):
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

        input_mask = None
        if self.use_input_mask:
            input_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)

        token_type_ids = None
        if self.use_token_type_ids:
            token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)

        sequence_labels = None
        token_labels = None
        choice_labels = None
        if self.use_labels:
            sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
            token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
            choice_labels = ids_tensor([self.batch_size], self.num_choices)

        config = LongformerConfig(
            vocab_size=self.vocab_size,
            hidden_size=self.hidden_size,
            num_hidden_layers=self.num_hidden_layers,
            num_attention_heads=self.num_attention_heads,
            intermediate_size=self.intermediate_size,
            hidden_act=self.hidden_act,
            hidden_dropout_prob=self.hidden_dropout_prob,
            attention_probs_dropout_prob=self.attention_probs_dropout_prob,
            max_position_embeddings=self.max_position_embeddings,
            type_vocab_size=self.type_vocab_size,
            initializer_range=self.initializer_range,
            attention_window=self.attention_window,
        )

        return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels

    def create_and_check_attention_mask_determinism(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = TFLongformerModel(config=config)

        attention_mask = tf.ones(input_ids.shape, dtype=tf.dtypes.int32)
        output_with_mask = model(input_ids, attention_mask=attention_mask)[0]
        output_without_mask = model(input_ids)[0]
        tf.debugging.assert_near(output_with_mask[0, 0, :5], output_without_mask[0, 0, :5], rtol=1e-4)

    def create_and_check_longformer_model(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = TFLongformerModel(config=config)
        sequence_output, pooled_output = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids)
        sequence_output, pooled_output = model(input_ids, token_type_ids=token_type_ids)
        sequence_output, pooled_output = model(input_ids)

        result = {
            "sequence_output": sequence_output,
            "pooled_output": pooled_output,
        }
        self.parent.assertListEqual(
            shape_list(result["sequence_output"]), [self.batch_size, self.seq_length, self.hidden_size]
        )
        self.parent.assertListEqual(shape_list(result["pooled_output"]), [self.batch_size, self.hidden_size])

    def create_and_check_longformer_model_with_global_attention_mask(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = TFLongformerModel(config=config)
        half_input_mask_length = shape_list(input_mask)[-1] // 2
        global_attention_mask = tf.concat(
            [
                tf.zeros_like(input_mask)[:, :half_input_mask_length],
                tf.ones_like(input_mask)[:, half_input_mask_length:],
            ],
            axis=-1,
        )

        sequence_output, pooled_output = model(
            input_ids,
            attention_mask=input_mask,
            global_attention_mask=global_attention_mask,
            token_type_ids=token_type_ids,
        )
        sequence_output, pooled_output = model(
            input_ids, token_type_ids=token_type_ids, global_attention_mask=global_attention_mask
        )
        sequence_output, pooled_output = model(input_ids, global_attention_mask=global_attention_mask)

        result = {
            "sequence_output": sequence_output,
            "pooled_output": pooled_output,
        }
        self.parent.assertListEqual(
            shape_list(result["sequence_output"]), [self.batch_size, self.seq_length, self.hidden_size]
        )
        self.parent.assertListEqual(shape_list(result["pooled_output"]), [self.batch_size, self.hidden_size])

    def create_and_check_longformer_for_masked_lm(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = TFLongformerForMaskedLM(config=config)
        loss, prediction_scores = model(
            input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels
        )
        result = {
            "loss": loss,
            "prediction_scores": prediction_scores,
        }
        self.parent.assertListEqual(
            shape_list(result["prediction_scores"]), [self.batch_size, self.seq_length, self.vocab_size]
        )

    def create_and_check_longformer_for_question_answering(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = TFLongformerForQuestionAnswering(config=config)
        loss, start_logits, end_logits = model(
            input_ids,
            attention_mask=input_mask,
            token_type_ids=token_type_ids,
            start_positions=sequence_labels,
            end_positions=sequence_labels,
        )
        result = {
            "loss": loss,
            "start_logits": start_logits,
            "end_logits": end_logits,
        }
        self.parent.assertListEqual(shape_list(result["start_logits"]), [self.batch_size, self.seq_length])
        self.parent.assertListEqual(shape_list(result["end_logits"]), [self.batch_size, self.seq_length])

    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        (
            config,
            input_ids,
            token_type_ids,
            input_mask,
            sequence_labels,
            token_labels,
            choice_labels,
        ) = config_and_inputs

        # global attention mask has to be partly defined
        # to trace all weights
        global_attention_mask = tf.concat(
Lysandre's avatar
Lysandre committed
232
233
            [tf.zeros_like(input_ids)[:, :-1], tf.ones_like(input_ids)[:, -1:]],
            axis=-1,
Patrick von Platen's avatar
Patrick von Platen committed
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
        )

        inputs_dict = {
            "input_ids": input_ids,
            "token_type_ids": token_type_ids,
            "attention_mask": input_mask,
            "global_attention_mask": global_attention_mask,
        }
        return config, inputs_dict

    def prepare_config_and_inputs_for_question_answering(self):
        config_and_inputs = self.prepare_config_and_inputs()
        (
            config,
            input_ids,
            token_type_ids,
            input_mask,
            sequence_labels,
            token_labels,
            choice_labels,
        ) = config_and_inputs

        # Replace sep_token_id by some random id
        input_ids = tf.where(input_ids == config.sep_token_id, 0, input_ids)
        # Make sure there are exactly three sep_token_id
        input_ids = tf.concat([input_ids[:, :-3], tf.ones_like(input_ids)[:, -3:] * config.sep_token_id], axis=-1)
        input_mask = tf.ones_like(input_ids)

        return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels


@require_tf
class TFLongformerModelTest(TFModelTesterMixin, unittest.TestCase):

    all_model_classes = (
Lysandre's avatar
Lysandre committed
269
270
271
272
273
274
275
        (
            TFLongformerModel,
            TFLongformerForMaskedLM,
            TFLongformerForQuestionAnswering,
        )
        if is_tf_available()
        else ()
Patrick von Platen's avatar
Patrick von Platen committed
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
    )

    def setUp(self):
        self.model_tester = TFLongformerModelTester(self)
        self.config_tester = ConfigTester(self, config_class=LongformerConfig, hidden_size=37)

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_longformer_model_attention_mask_determinism(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_attention_mask_determinism(*config_and_inputs)

    def test_longformer_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_longformer_model(*config_and_inputs)

    def test_longformer_model_global_attention_mask(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_longformer_model_with_global_attention_mask(*config_and_inputs)

    def test_longformer_for_masked_lm(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_longformer_for_masked_lm(*config_and_inputs)

    def test_longformer_for_question_answering(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs_for_question_answering()
        self.model_tester.create_and_check_longformer_for_question_answering(*config_and_inputs)


@require_tf
307
308
@require_sentencepiece
@require_tokenizers
Patrick von Platen's avatar
Patrick von Platen committed
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
class TFLongformerModelIntegrationTest(unittest.TestCase):
    def _get_hidden_states(self):
        return tf.convert_to_tensor(
            [
                [
                    [
                        4.98332758e-01,
                        2.69175139e00,
                        -7.08081422e-03,
                        1.04915401e00,
                        -1.83476661e00,
                        7.67220476e-01,
                        2.98580543e-01,
                        2.84803992e-02,
                    ],
                    [
                        -7.58357372e-01,
                        4.20635998e-01,
                        -4.04739919e-02,
                        1.59924145e-01,
                        2.05135748e00,
                        -1.15997978e00,
                        5.37166397e-01,
                        2.62873606e-01,
                    ],
                    [
                        -1.69438001e00,
                        4.17574660e-01,
                        -1.49196962e00,
                        -1.76483717e00,
                        -1.94566312e-01,
                        -1.71183858e00,
                        7.72903565e-01,
                        -1.11557056e00,
                    ],
                    [
                        5.44028163e-01,
                        2.05466114e-01,
                        -3.63045868e-01,
                        2.41865062e-01,
                        3.20348382e-01,
                        -9.05611176e-01,
                        -1.92690727e-01,
                        -1.19917547e00,
                    ],
                ]
            ],
            dtype=tf.float32,
        )

    def test_diagonalize(self):
        hidden_states = self._get_hidden_states()
        hidden_states = tf.reshape(hidden_states, (1, 8, 4))  # set seq length = 8, hidden dim = 4
        chunked_hidden_states = TFLongformerSelfAttention._chunk(hidden_states, window_overlap=2)
        window_overlap_size = shape_list(chunked_hidden_states)[2]
        self.assertTrue(window_overlap_size == 4)

        padded_hidden_states = TFLongformerSelfAttention._pad_and_diagonalize(chunked_hidden_states)

        self.assertTrue(
            shape_list(padded_hidden_states)[-1] == shape_list(chunked_hidden_states)[-1] + window_overlap_size - 1
        )

        # first row => [0.4983,  2.6918, -0.0071,  1.0492, 0.0000,  0.0000,  0.0000]
        tf.debugging.assert_near(padded_hidden_states[0, 0, 0, :4], chunked_hidden_states[0, 0, 0], rtol=1e-3)
        tf.debugging.assert_near(padded_hidden_states[0, 0, 0, 4:], tf.zeros((3,), dtype=tf.dtypes.float32), rtol=1e-3)

        # last row => [0.0000,  0.0000,  0.0000, 2.0514, -1.1600,  0.5372,  0.2629]
        tf.debugging.assert_near(padded_hidden_states[0, 0, -1, 3:], chunked_hidden_states[0, 0, -1], rtol=1e-3)
        tf.debugging.assert_near(
            padded_hidden_states[0, 0, -1, :3], tf.zeros((3,), dtype=tf.dtypes.float32), rtol=1e-3
        )

    def test_pad_and_transpose_last_two_dims(self):
        hidden_states = self._get_hidden_states()
        self.assertTrue(shape_list(hidden_states), [1, 8, 4])

        # pad along seq length dim
387
        paddings = tf.constant([[0, 0], [0, 0], [0, 1], [0, 0]], dtype=tf.dtypes.int32)
Patrick von Platen's avatar
Patrick von Platen committed
388

389
        hidden_states = TFLongformerSelfAttention._chunk(hidden_states, window_overlap=2)
Patrick von Platen's avatar
Patrick von Platen committed
390
        padded_hidden_states = TFLongformerSelfAttention._pad_and_transpose_last_two_dims(hidden_states, paddings)
391
        self.assertTrue(shape_list(padded_hidden_states) == [1, 1, 8, 5])
Patrick von Platen's avatar
Patrick von Platen committed
392
393

        expected_added_dim = tf.zeros((5,), dtype=tf.dtypes.float32)
394
        tf.debugging.assert_near(expected_added_dim, padded_hidden_states[0, 0, -1, :], rtol=1e-6)
Patrick von Platen's avatar
Patrick von Platen committed
395
        tf.debugging.assert_near(
396
            hidden_states[0, 0, -1, :], tf.reshape(padded_hidden_states, (1, -1))[0, 24:32], rtol=1e-6
Patrick von Platen's avatar
Patrick von Platen committed
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
        )

    def test_mask_invalid_locations(self):
        hidden_states = self._get_hidden_states()
        batch_size = 1
        seq_length = 8
        hidden_size = 4
        hidden_states = tf.reshape(hidden_states, (batch_size, seq_length, hidden_size))
        hidden_states = TFLongformerSelfAttention._chunk(hidden_states, window_overlap=2)

        hid_states_1 = TFLongformerSelfAttention._mask_invalid_locations(hidden_states, 1)
        hid_states_2 = TFLongformerSelfAttention._mask_invalid_locations(hidden_states, 2)
        hid_states_3 = TFLongformerSelfAttention._mask_invalid_locations(hidden_states[:, :, :, :3], 2)
        hid_states_4 = TFLongformerSelfAttention._mask_invalid_locations(hidden_states[:, :, 2:, :], 2)

        self.assertTrue(tf.math.reduce_sum(tf.cast(tf.math.is_inf(hid_states_1), tf.dtypes.int32)) == 8)
        self.assertTrue(tf.math.reduce_sum(tf.cast(tf.math.is_inf(hid_states_2), tf.dtypes.int32)) == 24)
        self.assertTrue(tf.math.reduce_sum(tf.cast(tf.math.is_inf(hid_states_3), tf.dtypes.int32)) == 24)
        self.assertTrue(tf.math.reduce_sum(tf.cast(tf.math.is_inf(hid_states_4), tf.dtypes.int32)) == 12)

    def test_chunk(self):
        hidden_states = self._get_hidden_states()
        batch_size = 1
        seq_length = 8
        hidden_size = 4
        hidden_states = tf.reshape(hidden_states, (batch_size, seq_length, hidden_size))

        chunked_hidden_states = TFLongformerSelfAttention._chunk(hidden_states, window_overlap=2)

        # expected slices across chunk and seq length dim
        expected_slice_along_seq_length = tf.convert_to_tensor([0.4983, -0.7584, -1.6944], dtype=tf.dtypes.float32)
        expected_slice_along_chunk = tf.convert_to_tensor([0.4983, -1.8348, -0.7584, 2.0514], dtype=tf.dtypes.float32)

        self.assertTrue(shape_list(chunked_hidden_states) == [1, 3, 4, 4])
        tf.debugging.assert_near(chunked_hidden_states[0, :, 0, 0], expected_slice_along_seq_length, rtol=1e-3)
        tf.debugging.assert_near(chunked_hidden_states[0, 0, :, 0], expected_slice_along_chunk, rtol=1e-3)

    def test_layer_local_attn(self):
        model = TFLongformerModel.from_pretrained("patrickvonplaten/longformer-random-tiny", use_cdn=False)
        layer = model.longformer.encoder.layer[0].attention.self_attention
        hidden_states = self._get_hidden_states()
        batch_size, seq_length, hidden_size = hidden_states.shape

440
441
442
443
444
445
        attention_mask = tf.zeros((batch_size, seq_length), dtype=tf.dtypes.float32)
        is_index_global_attn = tf.math.greater(attention_mask, 1)
        is_global_attn = tf.math.reduce_any(is_index_global_attn)

        attention_mask = tf.where(tf.range(4)[None, :, None, None] > 1, -10000.0, attention_mask[:, :, None, None])
        is_index_masked = tf.math.less(attention_mask[:, :, 0, 0], 0)
Patrick von Platen's avatar
Patrick von Platen committed
446

447
448
449
        output_hidden_states = layer(
            [hidden_states, attention_mask, is_index_masked, is_index_global_attn, is_global_attn, None]
        )[0]
Patrick von Platen's avatar
Patrick von Platen committed
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469

        expected_slice = tf.convert_to_tensor(
            [0.00188, 0.012196, -0.017051, -0.025571, -0.02996, 0.017297, -0.011521, 0.004848], dtype=tf.dtypes.float32
        )

        self.assertTrue(output_hidden_states.shape, (1, 4, 8))
        tf.debugging.assert_near(output_hidden_states[0, 1], expected_slice, rtol=1e-3)

    def test_layer_global_attn(self):
        model = TFLongformerModel.from_pretrained("patrickvonplaten/longformer-random-tiny", use_cdn=False)
        layer = model.longformer.encoder.layer[0].attention.self_attention
        hidden_states = self._get_hidden_states()

        hidden_states = tf.concat([self._get_hidden_states(), self._get_hidden_states() - 0.5], axis=0)
        batch_size, seq_length, hidden_size = hidden_states.shape

        # create attn mask
        attention_mask_1 = tf.zeros((1, 1, 1, seq_length), dtype=tf.dtypes.float32)
        attention_mask_2 = tf.zeros((1, 1, 1, seq_length), dtype=tf.dtypes.float32)

470
471
472
        attention_mask_1 = tf.where(tf.range(4)[None, :, None, None] > 1, 10000.0, attention_mask_1)
        attention_mask_1 = tf.where(tf.range(4)[None, :, None, None] > 2, -10000.0, attention_mask_1)
        attention_mask_2 = tf.where(tf.range(4)[None, :, None, None] > 0, 10000.0, attention_mask_2)
Patrick von Platen's avatar
Patrick von Platen committed
473
474
        attention_mask = tf.concat([attention_mask_1, attention_mask_2], axis=0)

475
476
477
478
479
480
481
        is_index_masked = tf.math.less(attention_mask[:, :, 0, 0], 0)
        is_index_global_attn = tf.math.greater(attention_mask[:, :, 0, 0], 0)
        is_global_attn = tf.math.reduce_any(is_index_global_attn)

        output_hidden_states = layer(
            [hidden_states, -tf.math.abs(attention_mask), is_index_masked, is_index_global_attn, is_global_attn, None]
        )[0]
Patrick von Platen's avatar
Patrick von Platen committed
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552

        self.assertTrue(output_hidden_states.shape, (2, 4, 8))
        expected_slice_0 = tf.convert_to_tensor(
            [-0.06508, -0.039306, 0.030934, -0.03417, -0.00656, -0.01553, -0.02088, -0.04938], dtype=tf.dtypes.float32
        )

        expected_slice_1 = tf.convert_to_tensor(
            [-0.04055, -0.038399, 0.0396, -0.03735, -0.03415, 0.01357, 0.00145, -0.05709], dtype=tf.dtypes.float32
        )

        tf.debugging.assert_near(output_hidden_states[0, 2], expected_slice_0, rtol=1e-3)
        tf.debugging.assert_near(output_hidden_states[1, -2], expected_slice_1, rtol=1e-3)

    @slow
    def test_inference_no_head(self):
        model = TFLongformerModel.from_pretrained("allenai/longformer-base-4096")

        # 'Hello world!'
        input_ids = tf.convert_to_tensor([[0, 20920, 232, 328, 1437, 2]], dtype=tf.dtypes.int32)
        attention_mask = tf.ones(shape_list(input_ids), dtype=tf.dtypes.int32)

        output = model(input_ids, attention_mask=attention_mask)[0]
        output_without_mask = model(input_ids)[0]

        expected_output_slice = tf.convert_to_tensor(
            [0.0549, 0.1087, -0.1119, -0.0368, 0.0250], dtype=tf.dtypes.float32
        )

        tf.debugging.assert_near(output[0, 0, -5:], expected_output_slice, rtol=1e-3)
        tf.debugging.assert_near(output_without_mask[0, 0, -5:], expected_output_slice, rtol=1e-3)

    @slow
    def test_inference_no_head_long(self):
        model = TFLongformerModel.from_pretrained("allenai/longformer-base-4096")

        # 'Hello world! ' repeated 1000 times
        input_ids = tf.convert_to_tensor([[0] + [20920, 232, 328, 1437] * 1000 + [2]], dtype=tf.dtypes.int32)

        attention_mask = tf.ones(shape_list(input_ids), dtype=tf.dtypes.int32)
        global_attention_mask = tf.zeros(shape_list(input_ids), dtype=tf.dtypes.int32)
        # Set global attention on a few random positions
        global_attention_mask = tf.tensor_scatter_nd_update(
            global_attention_mask, tf.constant([[0, 1], [0, 4], [0, 21]]), tf.constant([1, 1, 1])
        )

        output = model(input_ids, attention_mask=attention_mask, global_attention_mask=global_attention_mask)[0]

        expected_output_sum = tf.constant(74585.875)
        expected_output_mean = tf.constant(0.024267)

        # assert close
        tf.debugging.assert_near(tf.reduce_sum(output), expected_output_sum, rtol=1e-4)
        tf.debugging.assert_near(tf.reduce_mean(output), expected_output_mean, rtol=1e-4)

    @slow
    def test_inference_masked_lm_long(self):
        model = TFLongformerForMaskedLM.from_pretrained("allenai/longformer-base-4096")

        # 'Hello world! ' repeated 1000 times
        input_ids = tf.convert_to_tensor([[0] + [20920, 232, 328, 1437] * 1000 + [2]], dtype=tf.dtypes.int32)

        loss, prediction_scores = model(input_ids, labels=input_ids)

        expected_loss = tf.constant(0.0073798)
        expected_prediction_scores_sum = tf.constant(-610476600.0)
        expected_prediction_scores_mean = tf.constant(-3.03477)

        # assert close
        tf.debugging.assert_near(tf.reduce_mean(loss), expected_loss, rtol=1e-4)
        tf.debugging.assert_near(tf.reduce_sum(prediction_scores), expected_prediction_scores_sum, rtol=1e-4)
        tf.debugging.assert_near(tf.reduce_mean(prediction_scores), expected_prediction_scores_mean, rtol=1e-4)