translation.mdx 14.2 KB
Newer Older
Steven Liu's avatar
Steven Liu committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
<!--Copyright 2022 The HuggingFace Team. All rights reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->

# Translation

<Youtube id="1JvfrvZgi6c"/>

17
Translation converts a sequence of text from one language to another. It is one of several tasks you can formulate as a sequence-to-sequence problem, a powerful framework for returning some output from an input, like translation or summarization. Translation systems are commonly used for translation between different language texts, but it can also be used for speech or some combination in between like text-to-speech or speech-to-text.
Steven Liu's avatar
Steven Liu committed
18

19
20
21
22
This guide will show you how to:

1. Finetune [T5](https://huggingface.co/t5-small) on the English-French subset of the [OPUS Books](https://huggingface.co/datasets/opus_books) dataset to translate English text to French.
2. Use your finetuned model for inference.
Steven Liu's avatar
Steven Liu committed
23
24
25
26
27
28
29

<Tip>

See the translation [task page](https://huggingface.co/tasks/translation) for more information about its associated models, datasets, and metrics.

</Tip>

30
31
32
Before you begin, make sure you have all the necessary libraries installed:

```bash
33
pip install transformers datasets evaluate sacrebleu
34
35
36
37
38
39
40
41
42
43
```

We encourage you to login to your Hugging Face account so you can upload and share your model with the community. When prompted, enter your token to login:

```py
>>> from huggingface_hub import notebook_login

>>> notebook_login()
```

Steven Liu's avatar
Steven Liu committed
44
45
## Load OPUS Books dataset

46
Start by loading the English-French subset of the [OPUS Books](https://huggingface.co/datasets/opus_books) dataset from the 馃 Datasets library:
Steven Liu's avatar
Steven Liu committed
47
48
49
50
51
52
53

```py
>>> from datasets import load_dataset

>>> books = load_dataset("opus_books", "en-fr")
```

54
Split the dataset into a train and test set with the [`~datasets.Dataset.train_test_split`] method:
Steven Liu's avatar
Steven Liu committed
55
56

```py
57
>>> books = books["train"].train_test_split(test_size=0.2)
Steven Liu's avatar
Steven Liu committed
58
59
60
61
62
63
64
65
66
67
68
```

Then take a look at an example:

```py
>>> books["train"][0]
{'id': '90560',
 'translation': {'en': 'But this lofty plateau measured only a few fathoms, and soon we reentered Our Element.',
  'fr': 'Mais ce plateau 茅lev茅 ne mesurait que quelques toises, et bient么t nous f没mes rentr茅s dans notre 茅l茅ment.'}}
```

69
`translation`: an English and French translation of the text.
Steven Liu's avatar
Steven Liu committed
70
71
72
73
74

## Preprocess

<Youtube id="XAR8jnZZuUs"/>

75
The next step is to load a T5 tokenizer to process the English-French language pairs:
Steven Liu's avatar
Steven Liu committed
76
77
78
79

```py
>>> from transformers import AutoTokenizer

80
81
>>> checkpoint = "t5-small"
>>> tokenizer = AutoTokenizer.from_pretrained(checkpoint)
Steven Liu's avatar
Steven Liu committed
82
83
```

84
The preprocessing function you want to create needs to:
Steven Liu's avatar
Steven Liu committed
85
86

1. Prefix the input with a prompt so T5 knows this is a translation task. Some models capable of multiple NLP tasks require prompting for specific tasks.
87
2. Tokenize the input (English) and target (French) separately because you can't tokenize French text with a tokenizer pretrained on an English vocabulary.
Steven Liu's avatar
Steven Liu committed
88
89
90
91
92
93
94
95
96
97
98
3. Truncate sequences to be no longer than the maximum length set by the `max_length` parameter.

```py
>>> source_lang = "en"
>>> target_lang = "fr"
>>> prefix = "translate English to French: "


>>> def preprocess_function(examples):
...     inputs = [prefix + example[source_lang] for example in examples["translation"]]
...     targets = [example[target_lang] for example in examples["translation"]]
99
...     model_inputs = tokenizer(inputs, text_target=targets, max_length=128, truncation=True)
Steven Liu's avatar
Steven Liu committed
100
101
102
...     return model_inputs
```

103
To apply the preprocessing function over the entire dataset, use 馃 Datasets [`~datasets.Dataset.map`] method. You can speed up the `map` function by setting `batched=True` to process multiple elements of the dataset at once:
Steven Liu's avatar
Steven Liu committed
104
105
106
107
108

```py
>>> tokenized_books = books.map(preprocess_function, batched=True)
```

109
110
Now create a batch of examples using [`DataCollatorForSeq2Seq`]. It's more efficient to *dynamically pad* the sentences to the longest length in a batch during collation, instead of padding the whole dataset to the maximium length.

111
112
113
<frameworkcontent>
<pt>
```py
114
>>> from transformers import DataCollatorForSeq2Seq
115

116
>>> data_collator = DataCollatorForSeq2Seq(tokenizer=tokenizer, model=checkpoint)
117
118
119
120
121
```
</pt>
<tf>

```py
122
>>> from transformers import DataCollatorForSeq2Seq
123

124
>>> data_collator = DataCollatorForSeq2Seq(tokenizer=tokenizer, model=checkpoint, return_tensors="tf")
125
126
127
128
```
</tf>
</frameworkcontent>

129
## Evaluate
Steven Liu's avatar
Steven Liu committed
130

131
Including a metric during training is often helpful for evaluating your model's performance. You can quickly load a evaluation method with the 馃 [Evaluate](https://huggingface.co/docs/evaluate/index) library. For this task, load the [SacreBLEU](https://huggingface.co/spaces/evaluate-metric/sacrebleu) metric (see the 馃 Evaluate [quick tour](https://huggingface.co/docs/evaluate/a_quick_tour) to learn more about how to load and compute a metric):
132

Steven Liu's avatar
Steven Liu committed
133
```py
134
>>> import evaluate
Steven Liu's avatar
Steven Liu committed
135

136
>>> metric = evaluate.load("sacrebleu")
Sylvain Gugger's avatar
Sylvain Gugger committed
137
```
138
139

Then create a function that passes your predictions and labels to [`~evaluate.EvaluationModule.compute`] to calculate the SacreBLEU score:
140

Sylvain Gugger's avatar
Sylvain Gugger committed
141
```py
142
>>> import numpy as np
Steven Liu's avatar
Steven Liu committed
143

144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169

>>> def postprocess_text(preds, labels):
...     preds = [pred.strip() for pred in preds]
...     labels = [[label.strip()] for label in labels]

...     return preds, labels


>>> def compute_metrics(eval_preds):
...     preds, labels = eval_preds
...     if isinstance(preds, tuple):
...         preds = preds[0]
...     decoded_preds = tokenizer.batch_decode(preds, skip_special_tokens=True)

...     labels = np.where(labels != -100, labels, tokenizer.pad_token_id)
...     decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True)

...     decoded_preds, decoded_labels = postprocess_text(decoded_preds, decoded_labels)

...     result = metric.compute(predictions=decoded_preds, references=decoded_labels)
...     result = {"bleu": result["score"]}

...     prediction_lens = [np.count_nonzero(pred != tokenizer.pad_token_id) for pred in preds]
...     result["gen_len"] = np.mean(prediction_lens)
...     result = {k: round(v, 4) for k, v in result.items()}
...     return result
Steven Liu's avatar
Steven Liu committed
170
```
171
172

Your `compute_metrics` function is ready to go now, and you'll return to it when you setup your training.
Steven Liu's avatar
Steven Liu committed
173

174
## Train
Steven Liu's avatar
Steven Liu committed
175

176
177
<frameworkcontent>
<pt>
Steven Liu's avatar
Steven Liu committed
178
179
<Tip>

180
If you aren't familiar with finetuning a model with the [`Trainer`], take a look at the basic tutorial [here](../training#train-with-pytorch-trainer)!
Steven Liu's avatar
Steven Liu committed
181
182

</Tip>
183
184
185
186
187
You're ready to start training your model now! Load T5 with [`AutoModelForSeq2SeqLM`]:

```py
>>> from transformers import AutoModelForSeq2SeqLM, Seq2SeqTrainingArguments, Seq2SeqTrainer

188
>>> model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint)
189
```
Steven Liu's avatar
Steven Liu committed
190
191
192

At this point, only three steps remain:

193
194
195
1. Define your training hyperparameters in [`Seq2SeqTrainingArguments`]. The only required parameter is `output_dir` which specifies where to save your model. You'll push this model to the Hub by setting `push_to_hub=True` (you need to be signed in to Hugging Face to upload your model). At the end of each epoch, the [`Trainer`] will evaluate the SacreBLEU metric and save the training checkpoint.
2. Pass the training arguments to [`Seq2SeqTrainer`] along with the model, dataset, tokenizer, data collator, and `compute_metrics` function.
3. Call [`~Trainer.train`] to finetune your model.
Steven Liu's avatar
Steven Liu committed
196
197
198

```py
>>> training_args = Seq2SeqTrainingArguments(
199
...     output_dir="my_awesome_opus_books_model",
Steven Liu's avatar
Steven Liu committed
200
201
202
203
204
205
...     evaluation_strategy="epoch",
...     learning_rate=2e-5,
...     per_device_train_batch_size=16,
...     per_device_eval_batch_size=16,
...     weight_decay=0.01,
...     save_total_limit=3,
206
207
...     num_train_epochs=2,
...     predict_with_generate=True,
Steven Liu's avatar
Steven Liu committed
208
...     fp16=True,
209
...     push_to_hub=True,
Steven Liu's avatar
Steven Liu committed
210
211
212
213
214
215
216
217
218
... )

>>> trainer = Seq2SeqTrainer(
...     model=model,
...     args=training_args,
...     train_dataset=tokenized_books["train"],
...     eval_dataset=tokenized_books["test"],
...     tokenizer=tokenizer,
...     data_collator=data_collator,
219
...     compute_metrics=compute_metrics,
Steven Liu's avatar
Steven Liu committed
220
221
222
... )

>>> trainer.train()
223
224
225
226
227
228
````

Once training is completed, share your model to the Hub with the [`~transformers.Trainer.push_to_hub`] method so everyone can use your model:

```py
>>> trainer.push_to_hub()
Steven Liu's avatar
Steven Liu committed
229
```
230
231
</pt>
<tf>
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
<Tip>

If you aren't familiar with finetuning a model with Keras, take a look at the basic tutorial [here](../training#train-a-tensorflow-model-with-keras)!

</Tip>
To finetune a model in TensorFlow, start by setting up an optimizer function, learning rate schedule, and some training hyperparameters:

```py
>>> from transformers import AdamWeightDecay

>>> optimizer = AdamWeightDecay(learning_rate=2e-5, weight_decay_rate=0.01)
```

Then you can load T5 with [`TFAutoModelForSeq2SeqLM`]:

```py
>>> from transformers import TFAutoModelForSeq2SeqLM

250
>>> model = TFAutoModelForSeq2SeqLM.from_pretrained(checkpoint)
251
252
253
```

Convert your datasets to the `tf.data.Dataset` format with [`~transformers.TFPreTrainedModel.prepare_tf_dataset`]:
Steven Liu's avatar
Steven Liu committed
254
255

```py
Matt's avatar
Matt committed
256
257
>>> tf_train_set = model.prepare_tf_dataset(
...     tokenized_books["train"],
Steven Liu's avatar
Steven Liu committed
258
259
260
261
262
...     shuffle=True,
...     batch_size=16,
...     collate_fn=data_collator,
... )

Matt's avatar
Matt committed
263
264
>>> tf_test_set = model.prepare_tf_dataset(
...     tokenized_books["test"],
Steven Liu's avatar
Steven Liu committed
265
266
267
268
269
270
...     shuffle=False,
...     batch_size=16,
...     collate_fn=data_collator,
... )
```

271
Configure the model for training with [`compile`](https://keras.io/api/models/model_training_apis/#compile-method):
272

273
274
```py
>>> import tensorflow as tf
275

276
277
278
279
>>> model.compile(optimizer=optimizer)
```

The last two things to setup before you start training is to compute the SacreBLEU metric from the predictions, and provide a way to push your model to the Hub. Both are done by using [Keras callbacks](./main_classes/keras_callbacks).
280

281
Pass your `compute_metrics` function to [`~transformers.KerasMetricCallback`]:
Steven Liu's avatar
Steven Liu committed
282
283

```py
284
>>> from transformers.keras_callbacks import KerasMetricCallback
Steven Liu's avatar
Steven Liu committed
285

286
>>> metric_callback = KerasMetricCallback(metric_fn=compute_metrics, eval_dataset=tf_validation_set)
Steven Liu's avatar
Steven Liu committed
287
288
```

289
Specify where to push your model and tokenizer in the [`~transformers.PushToHubCallback`]:
Steven Liu's avatar
Steven Liu committed
290
291

```py
292
293
294
295
296
297
298
299
300
301
302
303
>>> from transformers.keras_callbacks import PushToHubCallback

>>> push_to_hub_callback = PushToHubCallback(
...     output_dir="my_awesome_opus_books_model",
...     tokenizer=tokenizer,
... )
```

Then bundle your callbacks together:

```py
>>> callbacks = [metric_callback, push_to_hub_callback]
Steven Liu's avatar
Steven Liu committed
304
305
```

306
Finally, you're ready to start training your model! Call [`fit`](https://keras.io/api/models/model_training_apis/#fit-method) with your training and validation datasets, the number of epochs, and your callbacks to finetune the model:
Steven Liu's avatar
Steven Liu committed
307
308

```py
309
>>> model.fit(x=tf_train_set, validation_data=tf_test_set, epochs=3, callbacks=callbacks)
Steven Liu's avatar
Steven Liu committed
310
```
311
312

Once training is completed, your model is automatically uploaded to the Hub so everyone can use it!
313
314
</tf>
</frameworkcontent>
Steven Liu's avatar
Steven Liu committed
315
316
317

<Tip>

318
For a more in-depth example of how to finetune a model for translation, take a look at the corresponding
319
320
[PyTorch notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/translation.ipynb)
or [TensorFlow notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/translation-tf.ipynb).
Steven Liu's avatar
Steven Liu committed
321

322
</Tip>
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399

## Inference

Great, now that you've finetuned a model, you can use it for inference!

Come up with some text you'd like to translate to another language. For T5, you need to prefix your input depending on the task you're working on. For translation from English to French, you should prefix your input as shown below:

```py
>>> text = "translate English to French: Legumes share resources with nitrogen-fixing bacteria."
```

The simplest way to try out your finetuned model for inference is to use it in a [`pipeline`]. Instantiate a `pipeline` for translation with your model, and pass your text to it:

```py
>>> from transformers import pipeline

>>> translator = pipeline("translation", model="my_awesome_opus_books_model")
>>> translator(text)
[{'translation_text': 'Legumes partagent des ressources avec des bact茅ries azotantes.'}]
```

You can also manually replicate the results of the `pipeline` if you'd like:

<frameworkcontent>
<pt>
Tokenize the text and return the `input_ids` as PyTorch tensors:

```py
>>> from transformers import AutoTokenizer

>>> tokenizer = AutoTokenizer.from_pretrained("my_awesome_opus_books_model")
>>> inputs = tokenizer(text, return_tensors="pt").input_ids
```

Use the [`~transformers.generation_utils.GenerationMixin.generate`] method to create the translation. For more details about the different text generation strategies and parameters for controlling generation, check out the [Text Generation](./main_classes/text_generation) API.

```py
>>> from transformers import AutoModelForSeq2SeqLM

>>> model = AutoModelForSeq2SeqLM.from_pretrained("my_awesome_opus_books_model")
>>> outputs = model.generate(inputs, max_new_tokens=40, do_sample=True, top_k=30, top_p=0.95)
```

Decode the generated token ids back into text:

```py
>>> tokenizer.decode(outputs[0], skip_special_tokens=True)
'Les lign茅es partagent des ressources avec des bact茅ries enfixant l'azote.'
```
</pt>
<tf>
Tokenize the text and return the `input_ids` as TensorFlow tensors:

```py
>>> from transformers import AutoTokenizer

>>> tokenizer = AutoTokenizer.from_pretrained("my_awesome_opus_books_model")
>>> inputs = tokenizer(text, return_tensors="tf").input_ids
```

Use the [`~transformers.generation_tf_utils.TFGenerationMixin.generate`] method to create the translation. For more details about the different text generation strategies and parameters for controlling generation, check out the [Text Generation](./main_classes/text_generation) API.

```py
>>> from transformers import TFAutoModelForSeq2SeqLM

>>> model = TFAutoModelForSeq2SeqLM.from_pretrained("my_awesome_opus_books_model")
>>> outputs = model.generate(inputs, max_new_tokens=40, do_sample=True, top_k=30, top_p=0.95)
```

Decode the generated token ids back into text:

```py
>>> tokenizer.decode(outputs[0], skip_special_tokens=True)
'Les lugumes partagent les ressources avec des bact茅ries fixatrices d'azote.'
```
</tf>
</frameworkcontent>