"configs/multimodal/mplug_owl/mplug_owl-7b-mmbench.py" did not exist on "3f601f420b7561d0f0c3d73653eff4c6a67e620d"
test_modeling_tf_wav2vec2.py 39.6 KB
Newer Older
Will Rice's avatar
Will Rice committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import copy
18
import glob
Will Rice's avatar
Will Rice committed
19
20
import inspect
import math
21
import multiprocessing
22
23
import os
import tempfile
24
import traceback
Will Rice's avatar
Will Rice committed
25
26
27
import unittest

import numpy as np
28
import pytest
29
from datasets import load_dataset
30
from huggingface_hub import snapshot_download
31

Will Rice's avatar
Will Rice committed
32
from transformers import Wav2Vec2Config, is_tf_available
33
34
35
from transformers.testing_utils import (
    CaptureLogger,
    is_flaky,
36
    is_pt_tf_cross_test,
37
38
39
40
41
42
    require_librosa,
    require_pyctcdecode,
    require_tf,
    run_test_in_subprocess,
    slow,
)
43
from transformers.utils import is_librosa_available, is_pyctcdecode_available
Will Rice's avatar
Will Rice committed
44

Yih-Dar's avatar
Yih-Dar committed
45
46
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor
47
from ...test_pipeline_mixin import PipelineTesterMixin
Will Rice's avatar
Will Rice committed
48
49
50
51
52


if is_tf_available():
    import tensorflow as tf

53
54
55
56
57
58
59
    from transformers import (
        AutoFeatureExtractor,
        TFWav2Vec2ForCTC,
        TFWav2Vec2ForSequenceClassification,
        TFWav2Vec2Model,
        Wav2Vec2Processor,
    )
Will Rice's avatar
Will Rice committed
60
61
62
    from transformers.models.wav2vec2.modeling_tf_wav2vec2 import _compute_mask_indices


63
if is_pyctcdecode_available():
64
    import pyctcdecode.decoder
65

66
    from transformers import Wav2Vec2ProcessorWithLM
67
    from transformers.models.wav2vec2_with_lm import processing_wav2vec2_with_lm
68
69
70
71
72
73


if is_librosa_available():
    import librosa


74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
def _test_wav2vec2_with_lm_invalid_pool(in_queue, out_queue, timeout):
    error = None
    try:
        _ = in_queue.get(timeout=timeout)

        downloaded_folder = snapshot_download("patrickvonplaten/common_voice_es_sample")
        file_path = glob.glob(downloaded_folder + "/*")[0]
        sample = librosa.load(file_path, sr=16_000)[0]

        model = TFWav2Vec2ForCTC.from_pretrained("patrickvonplaten/wav2vec2-large-xlsr-53-spanish-with-lm")
        processor = Wav2Vec2ProcessorWithLM.from_pretrained("patrickvonplaten/wav2vec2-large-xlsr-53-spanish-with-lm")

        input_values = processor(sample, return_tensors="tf").input_values

        logits = model(input_values).logits

        # use a spawn pool, which should trigger a warning if different than fork
        with CaptureLogger(pyctcdecode.decoder.logger) as cl, multiprocessing.get_context("spawn").Pool(1) as pool:
            transcription = processor.batch_decode(logits.numpy(), pool).text

        unittest.TestCase().assertIn("Falling back to sequential decoding.", cl.out)
        unittest.TestCase().assertEqual(transcription[0], "el libro ha sido escrito por cervantes")

        # force batch_decode to internally create a spawn pool, which should trigger a warning if different than fork
        multiprocessing.set_start_method("spawn", force=True)
        with CaptureLogger(processing_wav2vec2_with_lm.logger) as cl:
            transcription = processor.batch_decode(logits.numpy()).text

        unittest.TestCase().assertIn("Falling back to sequential decoding.", cl.out)
        unittest.TestCase().assertEqual(transcription[0], "el libro ha sido escrito por cervantes")
    except Exception:
        error = f"{traceback.format_exc()}"

    results = {"error": error}
    out_queue.put(results, timeout=timeout)
    out_queue.join()


Will Rice's avatar
Will Rice committed
112
113
114
115
116
@require_tf
class TFWav2Vec2ModelTester:
    def __init__(
        self,
        parent,
117
        batch_size=3,
Will Rice's avatar
Will Rice committed
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
        seq_length=1024,
        is_training=False,
        hidden_size=16,
        feat_extract_norm="group",
        feat_extract_dropout=0.0,
        feat_extract_activation="gelu",
        conv_dim=(32, 32, 32),
        conv_stride=(4, 4, 4),
        conv_kernel=(8, 8, 8),
        conv_bias=False,
        num_conv_pos_embeddings=16,
        num_conv_pos_embedding_groups=2,
        num_hidden_layers=4,
        num_attention_heads=2,
        hidden_dropout_prob=0.1,  # this is most likely not correctly set yet
        intermediate_size=20,
        layer_norm_eps=1e-5,
        hidden_act="gelu",
        initializer_range=0.02,
        vocab_size=32,
        do_stable_layer_norm=False,
        scope=None,
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.seq_length = seq_length
        self.is_training = is_training
        self.hidden_size = hidden_size
        self.feat_extract_norm = feat_extract_norm
        self.feat_extract_dropout = feat_extract_dropout
        self.feat_extract_activation = feat_extract_activation
        self.conv_dim = conv_dim
        self.conv_stride = conv_stride
        self.conv_kernel = conv_kernel
        self.conv_bias = conv_bias
        self.num_conv_pos_embeddings = num_conv_pos_embeddings
        self.num_conv_pos_embedding_groups = num_conv_pos_embedding_groups
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.hidden_dropout_prob = hidden_dropout_prob
        self.intermediate_size = intermediate_size
        self.layer_norm_eps = layer_norm_eps
        self.hidden_act = hidden_act
        self.initializer_range = initializer_range
        self.vocab_size = vocab_size
        self.do_stable_layer_norm = do_stable_layer_norm
        self.scope = scope

        output_seq_length = self.seq_length
        for kernel, stride in zip(self.conv_kernel, self.conv_stride):
            output_seq_length = (output_seq_length - (kernel - 1)) / stride
        self.output_seq_length = int(math.ceil(output_seq_length))
        self.encoder_seq_length = self.output_seq_length

    def prepare_config_and_inputs(self):
        input_values = tf.cast(ids_tensor([self.batch_size, self.seq_length], 32768), tf.float32) / 32768.0
        attention_mask = tf.ones_like(input_values)

        config = Wav2Vec2Config(
            hidden_size=self.hidden_size,
            feat_extract_norm=self.feat_extract_norm,
            feat_extract_dropout=self.feat_extract_dropout,
            feat_extract_activation=self.feat_extract_activation,
            conv_dim=self.conv_dim,
            conv_stride=self.conv_stride,
            conv_kernel=self.conv_kernel,
            conv_bias=self.conv_bias,
            num_conv_pos_embeddings=self.num_conv_pos_embeddings,
            num_conv_pos_embedding_groups=self.num_conv_pos_embedding_groups,
            num_hidden_layers=self.num_hidden_layers,
            num_attention_heads=self.num_attention_heads,
            hidden_dropout_prob=self.hidden_dropout_prob,
            intermediate_size=self.intermediate_size,
            layer_norm_eps=self.layer_norm_eps,
            hidden_act=self.hidden_act,
            initializer_range=self.initializer_range,
            vocab_size=self.vocab_size,
            do_stable_layer_norm=self.do_stable_layer_norm,
        )

        return config, input_values, attention_mask

    def create_and_check_model(self, config, input_values, attention_mask):
        model = TFWav2Vec2Model(config)
        result = model(input_values, attention_mask=attention_mask)
        self.parent.assertEqual(
            result.last_hidden_state.shape, (self.batch_size, self.output_seq_length, self.hidden_size)
        )

    def create_and_check_batch_inference(self, config, input_values, *args):
        # test does not pass for models making use of `group_norm`
        # check: https://github.com/pytorch/fairseq/issues/3227
        config.layerdrop = 0.0
        model = TFWav2Vec2Model(config)

        input_values = input_values[:3]
        attention_mask = tf.ones_like(input_values)

        input_lengths = tf.constant([input_values.shape[-1] // i for i in [4, 2, 1]])
        length_mask = tf.sequence_mask(input_lengths, dtype=tf.float32)

        # convert values that are over input_lengths to padding
        input_values = input_values * length_mask
        attention_mask = attention_mask * length_mask

        batch_outputs = model(input_values, attention_mask=attention_mask, training=False).last_hidden_state

        for i in range(input_values.shape[0]):
            input_slice = input_values[i : i + 1, : input_lengths[i]]
            output = model(input_slice, training=False).last_hidden_state

            batch_output = batch_outputs[i : i + 1, : output.shape[1]]
            self.parent.assertTrue(np.allclose(output, batch_output, atol=1e-3))

    def check_ctc_loss(self, config, input_values, *args):
        model = TFWav2Vec2ForCTC(config)

        input_values = input_values[:3]
        attention_mask = tf.ones_like(input_values)

        input_lengths = tf.constant([input_values.shape[-1] // i for i in [4, 2, 1]])
        max_length_labels = model.wav2vec2._get_feat_extract_output_lengths(input_lengths)
        labels = ids_tensor((input_values.shape[0], min(max_length_labels) - 1), model.config.vocab_size)

        length_mask = tf.sequence_mask(input_lengths, dtype=tf.float32)

        # convert values that are over input_lengths to padding
        input_values = input_values * length_mask
        attention_mask = attention_mask * length_mask

        model.config.ctc_loss_reduction = "sum"
        sum_loss = model(input_values, attention_mask=attention_mask, labels=labels).loss

        model.config.ctc_loss_reduction = "mean"
        mean_loss = model(input_values, attention_mask=attention_mask, labels=labels).loss

        self.parent.assertTrue(abs(labels.shape[0] * mean_loss - sum_loss) < 1e-2)

256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
    def check_seq_classifier_loss(self, loss, config, input_values, *args):
        model = TFWav2Vec2ForSequenceClassification(config)

        input_values = input_values[:3]
        attention_mask = tf.ones(input_values.shape, dtype=tf.int32)

        input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]]
        labels = tf.random.uniform((input_values.shape[0],), maxval=len(model.config.id2label), dtype=tf.int32)

        # pad input
        for i in range(len(input_lengths)):
            input_values[i, input_lengths[i] :] = 0.0
            attention_mask[i, input_lengths[i] :] = 0
        training = False
        masked_loss = (
            model(input_values, attention_mask=attention_mask, labels=labels, training=training).loss.numpy().item()
        )
        unmasked_loss = model(input_values, labels=labels, training=training).loss.numpy().item()

        assert isinstance(masked_loss, float)
        assert isinstance(unmasked_loss, float)
        assert masked_loss != unmasked_loss

Will Rice's avatar
Will Rice committed
279
280
281
282
    def check_training(self, config, input_values, *args):
        model = TFWav2Vec2ForCTC(config)

        # freeze feature encoder
283
        model.freeze_feature_encoder()
Will Rice's avatar
Will Rice committed
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301

        input_values = input_values[:3]

        input_lengths = tf.constant([input_values.shape[-1] // i for i in [4, 2, 1]])
        max_length_labels = model.wav2vec2._get_feat_extract_output_lengths(input_lengths)
        labels = ids_tensor((input_values.shape[0], max(max_length_labels) - 2), model.config.vocab_size)

        length_mask = tf.sequence_mask(input_lengths, dtype=tf.float32)

        input_values = input_values * length_mask

        pad_size = max(max_length_labels) - labels.shape[1]
        labels = tf.pad(labels, ((0, 0), (0, pad_size)), constant_values=-100)

        loss = model(input_values, labels=labels, training=True).loss

        self.parent.assertFalse(tf.math.is_inf(loss))

302
303
304
305
306
307
308
309
    def check_labels_out_of_vocab(self, config, input_values, *args):
        model = TFWav2Vec2ForCTC(config)
        input_lengths = tf.constant([input_values.shape[-1] // i for i in [4, 2, 1]])
        max_length_labels = model.wav2vec2._get_feat_extract_output_lengths(input_lengths)
        labels = ids_tensor((input_values.shape[0], min(max_length_labels) - 1), model.config.vocab_size + 100)
        with pytest.raises(ValueError):
            model(input_values, labels=labels)

Will Rice's avatar
Will Rice committed
310
311
312
313
314
315
316
    def prepare_config_and_inputs_for_common(self):
        config, input_values, attention_mask = self.prepare_config_and_inputs()
        inputs_dict = {"input_values": input_values, "attention_mask": attention_mask}
        return config, inputs_dict


@require_tf
317
class TFWav2Vec2ModelTest(TFModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
318
319
320
321
322
323
324
325
    all_model_classes = (
        (TFWav2Vec2Model, TFWav2Vec2ForCTC, TFWav2Vec2ForSequenceClassification) if is_tf_available() else ()
    )
    pipeline_model_mapping = (
        {"feature-extraction": TFWav2Vec2Model, "audio-classification": TFWav2Vec2ForSequenceClassification}
        if is_tf_available()
        else {}
    )
Will Rice's avatar
Will Rice committed
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
    test_resize_embeddings = False
    test_head_masking = False
    test_onnx = False

    def setUp(self):
        self.model_tester = TFWav2Vec2ModelTester(self)
        self.config_tester = ConfigTester(self, config_class=Wav2Vec2Config, hidden_size=37)

    def test_config(self):
        self.config_tester.run_common_tests()

    # overwrite because input_values != input_ids
    def test_forward_signature(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            signature = inspect.signature(model.call)
            # signature.parameters is an OrderedDict => so arg_names order is deterministic
            arg_names = [*signature.parameters.keys()]

            expected_arg_names = ["input_values"]
            self.assertListEqual(arg_names[:1], expected_arg_names)

    # overwrite because input_values != input_ids
    def test_keyword_and_dict_args(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            inputs = self._prepare_for_class(inputs_dict, model_class)

            outputs_dict = model(inputs)

            inputs_keywords = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class))
            input_values = inputs_keywords.pop("input_values", None)
            outputs_keywords = model(input_values, **inputs_keywords)
            output_dict = outputs_dict[0].numpy()
            output_keywords = outputs_keywords[0].numpy()

            self.assertLess(np.sum(np.abs(output_dict - output_keywords)), 1e-6)

    def test_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_model(*config_and_inputs)

    def test_hidden_states_output(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        def check_hidden_states_output(config, inputs_dict, model_class):
            model = model_class(config)
            outputs = model(self._prepare_for_class(inputs_dict, model_class))
            expected_num_layers = getattr(
                self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1
            )

            hidden_states = outputs.hidden_states
            self.assertEqual(config.output_attentions, False)
            self.assertEqual(len(hidden_states), expected_num_layers)
            self.assertListEqual(
                list(hidden_states[0].shape[-2:]),
                [self.model_tester.output_seq_length, self.model_tester.hidden_size],
            )

        for model_class in self.all_model_classes:
            inputs_dict["output_hidden_states"] = True
            check_hidden_states_output(config, inputs_dict, model_class)

            del inputs_dict["output_hidden_states"]
            config.output_hidden_states = True
            check_hidden_states_output(config, inputs_dict, model_class)

    def test_ctc_loss_inference(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.check_ctc_loss(*config_and_inputs)

402
    @is_flaky()
403
404
405
406
    def test_labels_out_of_vocab(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.check_labels_out_of_vocab(*config_and_inputs)

Will Rice's avatar
Will Rice committed
407
408
409
410
    def test_train(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.check_training(*config_and_inputs)

411
    @unittest.skip(reason="Wav2Vec2 has no input embeddings")
Will Rice's avatar
Will Rice committed
412
413
414
    def test_inputs_embeds(self):
        pass

415
    @unittest.skip(reason="Wav2Vec2 has no tokens embeddings")
Will Rice's avatar
Will Rice committed
416
417
418
    def test_resize_tokens_embeddings(self):
        pass

419
    @unittest.skip(reason="Wav2Vec2 has no input embeddings")
Will Rice's avatar
Will Rice committed
420
421
422
423
424
425
426
427
    def test_model_common_attributes(self):
        pass

    @slow
    def test_model_from_pretrained(self):
        model = TFWav2Vec2Model.from_pretrained("facebook/wav2vec2-base-960h")
        self.assertIsNotNone(model)

428
    @unittest.skip(reason="Fix me! Wav2Vec2 hits OOM errors when loss is computed on full batch")
429
    def test_dataset_conversion(self):
430
431
        # TODO: (Amy) - check whether skipping CTC model resolves this issue and possible resolutions for CTC
        pass
432

433
    @unittest.skip(reason="Fix me! Wav2Vec2 hits OOM errors when loss is computed on full batch")
434
    def test_keras_fit(self):
435
436
        # TODO: (Amy) - check whether skipping CTC model resolves this issue and possible resolutions for CTC
        pass
437

438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
    @is_pt_tf_cross_test
    def test_pt_tf_model_equivalence(self, allow_missing_keys=False):
        # We override the base test here to skip loss calculation for Wav2Vec2 models because the loss is massive with
        # the default labels and frequently overflows to inf or exceeds numerical tolerances between TF/PT
        import torch

        import transformers

        for model_class in self.all_model_classes:
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

            # Output all for aggressive testing
            config.output_hidden_states = True
            config.output_attentions = self.has_attentions

            # Make sure no sequence has all zeros as attention mask, otherwise some tests fail due to the inconsistency
            # of the usage `1e-4`, `1e-9`, `1e-30`, `-inf`.
            # TODO: Use a uniform value for all models, make sure all tests pass without this processing, and remove it.
            self._make_attention_mask_non_null(inputs_dict)

            pt_model_class_name = model_class.__name__[2:]  # Skip the "TF" at the beginning
            pt_model_class = getattr(transformers, pt_model_class_name)

            tf_model = model_class(config)
            pt_model = pt_model_class(config)

            tf_inputs_dict = self._prepare_for_class(inputs_dict, model_class)

            # Check we can load pt model in tf and vice-versa with model => model functions
            tf_model = transformers.load_pytorch_model_in_tf2_model(
                tf_model, pt_model, tf_inputs=tf_inputs_dict, allow_missing_keys=allow_missing_keys
            )
            pt_model = transformers.load_tf2_model_in_pytorch_model(
                pt_model, tf_model, allow_missing_keys=allow_missing_keys
            )

            # Original test: check without `labels`
            self.check_pt_tf_models(tf_model, pt_model, tf_inputs_dict)

            # Check we can load pt model in tf and vice-versa with checkpoint => model functions
            with tempfile.TemporaryDirectory() as tmpdirname:
                pt_checkpoint_path = os.path.join(tmpdirname, "pt_model.bin")
                torch.save(pt_model.state_dict(), pt_checkpoint_path)
                tf_model = transformers.load_pytorch_checkpoint_in_tf2_model(
                    tf_model, pt_checkpoint_path, allow_missing_keys=allow_missing_keys
                )

                tf_checkpoint_path = os.path.join(tmpdirname, "tf_model.h5")
                tf_model.save_weights(tf_checkpoint_path)
                pt_model = transformers.load_tf2_checkpoint_in_pytorch_model(
                    pt_model, tf_checkpoint_path, allow_missing_keys=allow_missing_keys
                )

            # Original test: check without `labels`
            self.check_pt_tf_models(tf_model, pt_model, tf_inputs_dict)

Will Rice's avatar
Will Rice committed
494
495
496

@require_tf
class TFWav2Vec2RobustModelTest(TFModelTesterMixin, unittest.TestCase):
497
498
499
    all_model_classes = (
        (TFWav2Vec2Model, TFWav2Vec2ForCTC, TFWav2Vec2ForSequenceClassification) if is_tf_available() else ()
    )
Will Rice's avatar
Will Rice committed
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
    test_resize_embeddings = False
    test_head_masking = False
    test_onnx = False

    def setUp(self):
        self.model_tester = TFWav2Vec2ModelTester(
            self,
            conv_stride=(3, 3, 3),
            feat_extract_norm="layer",
            do_stable_layer_norm=True,
            scope="robust",
        )
        self.config_tester = ConfigTester(self, config_class=Wav2Vec2Config, hidden_size=37)

    # overwrite because input_values != input_ids
    def test_forward_signature(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            signature = inspect.signature(model.call)
            # signature.parameters is an OrderedDict => so arg_names order is deterministic
            arg_names = [*signature.parameters.keys()]

            expected_arg_names = ["input_values"]
            self.assertListEqual(arg_names[:1], expected_arg_names)

    # overwrite because input_values != input_ids
    def test_keyword_and_dict_args(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            inputs = self._prepare_for_class(inputs_dict, model_class)

            outputs_dict = model(inputs)

            inputs_keywords = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class))
            input_values = inputs_keywords.pop("input_values", None)
            outputs_keywords = model(input_values, **inputs_keywords)
            output_dict = outputs_dict[0].numpy()
            output_keywords = outputs_keywords[0].numpy()

            self.assertLess(np.sum(np.abs(output_dict - output_keywords)), 1e-6)

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_model(*config_and_inputs)

    def test_hidden_states_output(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        def check_hidden_states_output(config, inputs_dict, model_class):
            model = model_class(config)
            outputs = model(self._prepare_for_class(inputs_dict, model_class))
            expected_num_layers = getattr(
                self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1
            )

            hidden_states = outputs.hidden_states
            self.assertEqual(config.output_attentions, False)
            self.assertEqual(len(hidden_states), expected_num_layers)
            self.assertListEqual(
                list(hidden_states[0].shape[-2:]),
                [self.model_tester.output_seq_length, self.model_tester.hidden_size],
            )

        for model_class in self.all_model_classes:
            inputs_dict["output_hidden_states"] = True
            check_hidden_states_output(config, inputs_dict, model_class)

            del inputs_dict["output_hidden_states"]
            config.output_hidden_states = True
            check_hidden_states_output(config, inputs_dict, model_class)

    def test_batched_inference(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_batch_inference(*config_and_inputs)

    def test_ctc_loss_inference(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.check_ctc_loss(*config_and_inputs)

586
587
    # TODO (Joao): fix me
    @unittest.skip("Broke with TF 2.10")
588
589
590
591
    def test_labels_out_of_vocab(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.check_labels_out_of_vocab(*config_and_inputs)

Will Rice's avatar
Will Rice committed
592
593
594
595
    def test_train(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.check_training(*config_and_inputs)

596
    @unittest.skip(reason="Wav2Vec2 has no input embeddings")
Will Rice's avatar
Will Rice committed
597
598
599
    def test_inputs_embeds(self):
        pass

600
    @unittest.skip(reason="Wav2Vec2 has no tokens embeddings")
Will Rice's avatar
Will Rice committed
601
602
603
    def test_resize_tokens_embeddings(self):
        pass

604
    @unittest.skip(reason="Wav2Vec2 has no input embeddings")
Will Rice's avatar
Will Rice committed
605
606
607
608
609
610
611
612
    def test_model_common_attributes(self):
        pass

    @slow
    def test_model_from_pretrained(self):
        model = TFWav2Vec2Model.from_pretrained("facebook/wav2vec2-base-960h")
        self.assertIsNotNone(model)

613
    @unittest.skip(reason="Fix me! Wav2Vec2 hits OOM errors when loss is computed on full batch")
614
    def test_dataset_conversion(self):
615
616
        # TODO: (Amy) - check whether skipping CTC model resolves this issue and possible resolutions for CTC
        pass
617

618
    @unittest.skip(reason="Fix me! Wav2Vec2 hits OOM errors when loss is computed on full batch")
619
    def test_keras_fit(self):
620
621
        # TODO: (Amy) - check whether skipping CTC model resolves this issue and possible resolutions for CTC
        pass
622

623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
    @is_pt_tf_cross_test
    def test_pt_tf_model_equivalence(self, allow_missing_keys=False):
        # We override the base test here to skip loss calculation for Wav2Vec2 models because the loss is massive with
        # the default labels and frequently overflows to inf or exceeds numerical tolerances between TF/PT
        import torch

        import transformers

        for model_class in self.all_model_classes:
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

            # Output all for aggressive testing
            config.output_hidden_states = True
            config.output_attentions = self.has_attentions

            # Make sure no sequence has all zeros as attention mask, otherwise some tests fail due to the inconsistency
            # of the usage `1e-4`, `1e-9`, `1e-30`, `-inf`.
            # TODO: Use a uniform value for all models, make sure all tests pass without this processing, and remove it.
            self._make_attention_mask_non_null(inputs_dict)

            pt_model_class_name = model_class.__name__[2:]  # Skip the "TF" at the beginning
            pt_model_class = getattr(transformers, pt_model_class_name)

            tf_model = model_class(config)
            pt_model = pt_model_class(config)

            tf_inputs_dict = self._prepare_for_class(inputs_dict, model_class)

            # Check we can load pt model in tf and vice-versa with model => model functions
            tf_model = transformers.load_pytorch_model_in_tf2_model(
                tf_model, pt_model, tf_inputs=tf_inputs_dict, allow_missing_keys=allow_missing_keys
            )
            pt_model = transformers.load_tf2_model_in_pytorch_model(
                pt_model, tf_model, allow_missing_keys=allow_missing_keys
            )

            # Original test: check without `labels`
            self.check_pt_tf_models(tf_model, pt_model, tf_inputs_dict)

            # Check we can load pt model in tf and vice-versa with checkpoint => model functions
            with tempfile.TemporaryDirectory() as tmpdirname:
                pt_checkpoint_path = os.path.join(tmpdirname, "pt_model.bin")
                torch.save(pt_model.state_dict(), pt_checkpoint_path)
                tf_model = transformers.load_pytorch_checkpoint_in_tf2_model(
                    tf_model, pt_checkpoint_path, allow_missing_keys=allow_missing_keys
                )

                tf_checkpoint_path = os.path.join(tmpdirname, "tf_model.h5")
                tf_model.save_weights(tf_checkpoint_path)
                pt_model = transformers.load_tf2_checkpoint_in_pytorch_model(
                    pt_model, tf_checkpoint_path, allow_missing_keys=allow_missing_keys
                )

            # Original test: check without `labels`
            self.check_pt_tf_models(tf_model, pt_model, tf_inputs_dict)

Will Rice's avatar
Will Rice committed
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710

@require_tf
class TFWav2Vec2UtilsTest(unittest.TestCase):
    def test_compute_mask_indices(self):
        batch_size = 4
        sequence_length = 60
        mask_prob = 0.5
        mask_length = 1

        mask = _compute_mask_indices((batch_size, sequence_length), mask_prob, mask_length)

        self.assertListEqual(
            tf.reduce_sum(mask, -1).numpy().tolist(), [mask_prob * sequence_length for _ in range(batch_size)]
        )

    def test_compute_mask_indices_overlap(self):
        batch_size = 4
        sequence_length = 80
        mask_prob = 0.5
        mask_length = 4

        mask = _compute_mask_indices((batch_size, sequence_length), mask_prob, mask_length)

        # because of overlap mask don't have to add up exactly to `mask_prob * sequence_length`, but have to be smaller or equal
        for batch_sum in tf.reduce_sum(mask, -1):
            self.assertTrue(int(batch_sum) <= mask_prob * sequence_length)


@require_tf
@slow
class TFWav2Vec2ModelIntegrationTest(unittest.TestCase):
    def _load_datasamples(self, num_samples):
Patrick von Platen's avatar
Patrick von Platen committed
711
        ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
712
713
714
715
        # automatic decoding with librispeech
        speech_samples = ds.sort("id").filter(
            lambda x: x["id"] in [f"1272-141231-000{i}" for i in range(num_samples)]
        )[:num_samples]["audio"]
Will Rice's avatar
Will Rice committed
716

717
        return [x["array"] for x in speech_samples]
Will Rice's avatar
Will Rice committed
718

719
720
721
722
723
    def _load_superb(self, task, num_samples):
        ds = load_dataset("anton-l/superb_dummy", task, split="test")

        return ds[:num_samples]

Will Rice's avatar
Will Rice committed
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
    def test_inference_ctc_normal(self):
        model = TFWav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-960h")
        processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-base-960h", do_lower_case=True)
        input_speech = self._load_datasamples(1)

        input_values = processor(input_speech, return_tensors="tf", sampling_rate=16000).input_values

        logits = model(input_values).logits

        predicted_ids = tf.argmax(logits, axis=-1)
        predicted_trans = processor.batch_decode(predicted_ids)

        EXPECTED_TRANSCRIPTIONS = ["a man said to the universe sir i exist"]
        self.assertListEqual(predicted_trans, EXPECTED_TRANSCRIPTIONS)

    def test_inference_ctc_normal_batched(self):
        model = TFWav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-960h")
        processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-base-960h", do_lower_case=True)

        input_speech = self._load_datasamples(2)

745
        input_values = processor(input_speech, return_tensors="tf", padding=True, sampling_rate=16000).input_values
Will Rice's avatar
Will Rice committed
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763

        logits = model(input_values).logits

        predicted_ids = tf.argmax(logits, axis=-1)
        predicted_trans = processor.batch_decode(predicted_ids)

        EXPECTED_TRANSCRIPTIONS = [
            "a man said to the universe sir i exist",
            "sweat covered brion's body trickling into the tight lowing cloth that was the only garment he wore",
        ]
        self.assertListEqual(predicted_trans, EXPECTED_TRANSCRIPTIONS)

    def test_inference_ctc_robust_batched(self):
        model = TFWav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-large-960h-lv60-self")
        processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-large-960h-lv60-self", do_lower_case=True)

        input_speech = self._load_datasamples(4)

764
        inputs = processor(input_speech, return_tensors="tf", padding=True, sampling_rate=16000)
Will Rice's avatar
Will Rice committed
765
766
767
768
769
770

        input_values = inputs.input_values
        attention_mask = inputs.attention_mask

        logits = model(input_values, attention_mask=attention_mask).logits

771
        predicted_ids = tf.argmax(logits, axis=-1)
Will Rice's avatar
Will Rice committed
772
773
774
775
776
        predicted_trans = processor.batch_decode(predicted_ids)

        EXPECTED_TRANSCRIPTIONS = [
            "a man said to the universe sir i exist",
            "sweat covered brion's body trickling into the tight loin cloth that was the only garment he wore",
Sylvain Gugger's avatar
Sylvain Gugger committed
777
778
            "the cut on his chest still dripping blood the ache of his overstrained eyes even the soaring arena around"
            " him with the thousands of spectators were trivialities not worth thinking about",
Will Rice's avatar
Will Rice committed
779
780
781
            "his instant panic was followed by a small sharp blow high on his chest",
        ]
        self.assertListEqual(predicted_trans, EXPECTED_TRANSCRIPTIONS)
782
783
784
785

    @require_pyctcdecode
    @require_librosa
    def test_wav2vec2_with_lm(self):
786
787
788
        downloaded_folder = snapshot_download("patrickvonplaten/common_voice_es_sample")
        file_path = glob.glob(downloaded_folder + "/*")[0]
        sample = librosa.load(file_path, sr=16_000)[0]
789
790
791
792

        model = TFWav2Vec2ForCTC.from_pretrained("patrickvonplaten/wav2vec2-large-xlsr-53-spanish-with-lm")
        processor = Wav2Vec2ProcessorWithLM.from_pretrained("patrickvonplaten/wav2vec2-large-xlsr-53-spanish-with-lm")

793
        input_values = processor(sample, return_tensors="tf").input_values
794
795
796
797
798

        logits = model(input_values).logits

        transcription = processor.batch_decode(logits.numpy()).text

799
        self.assertEqual(transcription[0], "el libro ha sido escrito por cervantes")
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834

    @require_pyctcdecode
    @require_librosa
    def test_wav2vec2_with_lm_pool(self):
        downloaded_folder = snapshot_download("patrickvonplaten/common_voice_es_sample")
        file_path = glob.glob(downloaded_folder + "/*")[0]
        sample = librosa.load(file_path, sr=16_000)[0]

        model = TFWav2Vec2ForCTC.from_pretrained("patrickvonplaten/wav2vec2-large-xlsr-53-spanish-with-lm")
        processor = Wav2Vec2ProcessorWithLM.from_pretrained("patrickvonplaten/wav2vec2-large-xlsr-53-spanish-with-lm")

        input_values = processor(sample, return_tensors="tf").input_values

        logits = model(input_values).logits

        # test user-managed pool
        with multiprocessing.get_context("fork").Pool(2) as pool:
            transcription = processor.batch_decode(logits.numpy(), pool).text

        self.assertEqual(transcription[0], "el libro ha sido escrito por cervantes")

        # user-managed pool + num_processes should trigger a warning
        with CaptureLogger(processing_wav2vec2_with_lm.logger) as cl, multiprocessing.get_context("fork").Pool(
            2
        ) as pool:
            transcription = processor.batch_decode(logits.numpy(), pool, num_processes=2).text

        self.assertIn("num_process", cl.out)
        self.assertIn("it will be ignored", cl.out)

        self.assertEqual(transcription[0], "el libro ha sido escrito por cervantes")

    @require_pyctcdecode
    @require_librosa
    def test_wav2vec2_with_lm_invalid_pool(self):
835
        run_test_in_subprocess(test_case=self, target_func=_test_wav2vec2_with_lm_invalid_pool, inputs=None)
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919

    def test_inference_keyword_spotting(self):
        model = TFWav2Vec2ForSequenceClassification.from_pretrained("superb/wav2vec2-base-superb-ks", from_pt=True)
        processor = AutoFeatureExtractor.from_pretrained("superb/wav2vec2-base-superb-ks")
        input_data = self._load_superb("ks", 4)
        inputs = processor(input_data["speech"], return_tensors="tf", padding=True)
        input_values = inputs.input_values
        attention_mask = inputs.attention_mask
        outputs = model(input_values, attention_mask)
        predicted_logits, predicted_ids = tf.math.reduce_max(outputs.logits, axis=-1), tf.argmax(
            outputs.logits, axis=-1
        )
        expected_labels = [7, 6, 10, 9]
        expected_logits = tf.convert_to_tensor([6.1186, 11.8961, 10.2931, 6.0898])
        self.assertListEqual(predicted_ids.numpy().tolist(), expected_labels)
        self.assertTrue(np.allclose(predicted_logits, expected_logits, atol=1e-2))

    def test_inference_intent_classification(self):
        model = TFWav2Vec2ForSequenceClassification.from_pretrained("superb/wav2vec2-base-superb-ic", from_pt=True)
        processor = AutoFeatureExtractor.from_pretrained("superb/wav2vec2-base-superb-ic")
        input_data = self._load_superb("ic", 4)
        inputs = processor(input_data["speech"], return_tensors="tf", padding=True)
        input_values = inputs.input_values
        attention_mask = inputs.attention_mask
        outputs = model(input_values, attention_mask=attention_mask)
        predicted_logits_action, predicted_ids_action = tf.math.reduce_max(outputs.logits[:, :6], axis=-1), tf.argmax(
            outputs.logits[:, :6], axis=-1
        )
        predicted_logits_object, predicted_ids_object = tf.math.reduce_max(
            outputs.logits[:, 6:20], axis=-1
        ), tf.argmax(outputs.logits[:, 6:20], axis=-1)
        predicted_logits_location, predicted_ids_location = tf.math.reduce_max(
            outputs.logits[:, 20:24], axis=-1
        ), tf.argmax(outputs.logits[:, 20:24], axis=-1)
        expected_labels_action = [0, 0, 2, 3]
        expected_logits_action = tf.convert_to_tensor([0.4568, 11.0848, 1.6621, 9.3841])
        expected_labels_object = [3, 10, 3, 4]
        expected_logits_object = tf.convert_to_tensor([1.5322, 10.7094, 5.2469, 22.1318])
        expected_labels_location = [0, 0, 0, 1]
        expected_logits_location = tf.convert_to_tensor([1.5335, 6.5096, 10.5704, 11.0569])

        self.assertListEqual(predicted_ids_action.numpy().tolist(), expected_labels_action)
        self.assertListEqual(predicted_ids_object.numpy().tolist(), expected_labels_object)
        self.assertListEqual(predicted_ids_location.numpy().tolist(), expected_labels_location)

        self.assertTrue(np.allclose(predicted_logits_action, expected_logits_action, atol=1e-2))
        self.assertTrue(np.allclose(predicted_logits_object, expected_logits_object, atol=1e-2))
        self.assertTrue(np.allclose(predicted_logits_location, expected_logits_location, atol=1e-2))

    def test_inference_speaker_identification(self):
        model = TFWav2Vec2ForSequenceClassification.from_pretrained("superb/wav2vec2-base-superb-sid", from_pt=True)
        processor = AutoFeatureExtractor.from_pretrained("superb/wav2vec2-base-superb-sid")
        input_data = self._load_superb("si", 4)
        output_logits = []
        for example in input_data["speech"]:
            input = processor(example, return_tensors="tf", padding=True)
            output = model(input.input_values, attention_mask=None)
            output_logits.append(output.logits[0])
        output_logits = tf.stack(output_logits)
        predicted_logits, predicted_ids = tf.math.reduce_max(output_logits, axis=-1), tf.argmax(output_logits, axis=-1)
        expected_labels = [251, 1, 1, 3]
        expected_logits = tf.convert_to_tensor([37.5627, 71.6362, 64.2419, 31.7778])
        self.assertListEqual(predicted_ids.numpy().tolist(), expected_labels)
        self.assertTrue(np.allclose(predicted_logits, expected_logits, atol=1e-2))

    def test_inference_emotion_recognition(self):
        model = TFWav2Vec2ForSequenceClassification.from_pretrained("superb/wav2vec2-base-superb-er", from_pt=True)
        processor = AutoFeatureExtractor.from_pretrained("superb/wav2vec2-base-superb-er")
        input_data = self._load_superb("er", 4)
        inputs = processor(input_data["speech"], return_tensors="tf", padding=True)

        input_values = inputs.input_values
        attention_mask = inputs.attention_mask
        outputs = model(input_values, attention_mask=attention_mask)
        predicted_logits, predicted_ids = tf.math.reduce_max(outputs.logits, axis=-1), tf.argmax(
            outputs.logits, axis=-1
        )

        expected_labels = [1, 1, 2, 2]
        # s3prl logits for the same batch
        expected_logits = tf.convert_to_tensor([2.1722, 3.0779, 8.0287, 6.6797])

        self.assertListEqual(predicted_ids.numpy().tolist(), expected_labels)
        self.assertTrue(np.allclose(predicted_logits, expected_logits, atol=1e-2))