test_modeling_tf_wav2vec2.py 27.6 KB
Newer Older
Will Rice's avatar
Will Rice committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import copy
18
import glob
Will Rice's avatar
Will Rice committed
19
20
import inspect
import math
21
import multiprocessing
22
import traceback
Will Rice's avatar
Will Rice committed
23
24
25
import unittest

import numpy as np
26
import pytest
27
from datasets import load_dataset
28
from huggingface_hub import snapshot_download
29

Will Rice's avatar
Will Rice committed
30
from transformers import Wav2Vec2Config, is_tf_available
31
32
33
34
35
36
37
38
39
from transformers.testing_utils import (
    CaptureLogger,
    is_flaky,
    require_librosa,
    require_pyctcdecode,
    require_tf,
    run_test_in_subprocess,
    slow,
)
40
from transformers.utils import is_librosa_available, is_pyctcdecode_available
Will Rice's avatar
Will Rice committed
41

Yih-Dar's avatar
Yih-Dar committed
42
43
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor
Will Rice's avatar
Will Rice committed
44
45
46
47
48
49
50
51
52


if is_tf_available():
    import tensorflow as tf

    from transformers import TFWav2Vec2ForCTC, TFWav2Vec2Model, Wav2Vec2Processor
    from transformers.models.wav2vec2.modeling_tf_wav2vec2 import _compute_mask_indices


53
if is_pyctcdecode_available():
54
    import pyctcdecode.decoder
55

56
    from transformers import Wav2Vec2ProcessorWithLM
57
    from transformers.models.wav2vec2_with_lm import processing_wav2vec2_with_lm
58
59
60
61
62
63


if is_librosa_available():
    import librosa


64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
def _test_wav2vec2_with_lm_invalid_pool(in_queue, out_queue, timeout):
    error = None
    try:
        _ = in_queue.get(timeout=timeout)

        downloaded_folder = snapshot_download("patrickvonplaten/common_voice_es_sample")
        file_path = glob.glob(downloaded_folder + "/*")[0]
        sample = librosa.load(file_path, sr=16_000)[0]

        model = TFWav2Vec2ForCTC.from_pretrained("patrickvonplaten/wav2vec2-large-xlsr-53-spanish-with-lm")
        processor = Wav2Vec2ProcessorWithLM.from_pretrained("patrickvonplaten/wav2vec2-large-xlsr-53-spanish-with-lm")

        input_values = processor(sample, return_tensors="tf").input_values

        logits = model(input_values).logits

        # use a spawn pool, which should trigger a warning if different than fork
        with CaptureLogger(pyctcdecode.decoder.logger) as cl, multiprocessing.get_context("spawn").Pool(1) as pool:
            transcription = processor.batch_decode(logits.numpy(), pool).text

        unittest.TestCase().assertIn("Falling back to sequential decoding.", cl.out)
        unittest.TestCase().assertEqual(transcription[0], "el libro ha sido escrito por cervantes")

        # force batch_decode to internally create a spawn pool, which should trigger a warning if different than fork
        multiprocessing.set_start_method("spawn", force=True)
        with CaptureLogger(processing_wav2vec2_with_lm.logger) as cl:
            transcription = processor.batch_decode(logits.numpy()).text

        unittest.TestCase().assertIn("Falling back to sequential decoding.", cl.out)
        unittest.TestCase().assertEqual(transcription[0], "el libro ha sido escrito por cervantes")
    except Exception:
        error = f"{traceback.format_exc()}"

    results = {"error": error}
    out_queue.put(results, timeout=timeout)
    out_queue.join()


Will Rice's avatar
Will Rice committed
102
103
104
105
106
@require_tf
class TFWav2Vec2ModelTester:
    def __init__(
        self,
        parent,
107
        batch_size=3,
Will Rice's avatar
Will Rice committed
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
        seq_length=1024,
        is_training=False,
        hidden_size=16,
        feat_extract_norm="group",
        feat_extract_dropout=0.0,
        feat_extract_activation="gelu",
        conv_dim=(32, 32, 32),
        conv_stride=(4, 4, 4),
        conv_kernel=(8, 8, 8),
        conv_bias=False,
        num_conv_pos_embeddings=16,
        num_conv_pos_embedding_groups=2,
        num_hidden_layers=4,
        num_attention_heads=2,
        hidden_dropout_prob=0.1,  # this is most likely not correctly set yet
        intermediate_size=20,
        layer_norm_eps=1e-5,
        hidden_act="gelu",
        initializer_range=0.02,
        vocab_size=32,
        do_stable_layer_norm=False,
        scope=None,
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.seq_length = seq_length
        self.is_training = is_training
        self.hidden_size = hidden_size
        self.feat_extract_norm = feat_extract_norm
        self.feat_extract_dropout = feat_extract_dropout
        self.feat_extract_activation = feat_extract_activation
        self.conv_dim = conv_dim
        self.conv_stride = conv_stride
        self.conv_kernel = conv_kernel
        self.conv_bias = conv_bias
        self.num_conv_pos_embeddings = num_conv_pos_embeddings
        self.num_conv_pos_embedding_groups = num_conv_pos_embedding_groups
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.hidden_dropout_prob = hidden_dropout_prob
        self.intermediate_size = intermediate_size
        self.layer_norm_eps = layer_norm_eps
        self.hidden_act = hidden_act
        self.initializer_range = initializer_range
        self.vocab_size = vocab_size
        self.do_stable_layer_norm = do_stable_layer_norm
        self.scope = scope

        output_seq_length = self.seq_length
        for kernel, stride in zip(self.conv_kernel, self.conv_stride):
            output_seq_length = (output_seq_length - (kernel - 1)) / stride
        self.output_seq_length = int(math.ceil(output_seq_length))
        self.encoder_seq_length = self.output_seq_length

    def prepare_config_and_inputs(self):
        input_values = tf.cast(ids_tensor([self.batch_size, self.seq_length], 32768), tf.float32) / 32768.0
        attention_mask = tf.ones_like(input_values)

        config = Wav2Vec2Config(
            hidden_size=self.hidden_size,
            feat_extract_norm=self.feat_extract_norm,
            feat_extract_dropout=self.feat_extract_dropout,
            feat_extract_activation=self.feat_extract_activation,
            conv_dim=self.conv_dim,
            conv_stride=self.conv_stride,
            conv_kernel=self.conv_kernel,
            conv_bias=self.conv_bias,
            num_conv_pos_embeddings=self.num_conv_pos_embeddings,
            num_conv_pos_embedding_groups=self.num_conv_pos_embedding_groups,
            num_hidden_layers=self.num_hidden_layers,
            num_attention_heads=self.num_attention_heads,
            hidden_dropout_prob=self.hidden_dropout_prob,
            intermediate_size=self.intermediate_size,
            layer_norm_eps=self.layer_norm_eps,
            hidden_act=self.hidden_act,
            initializer_range=self.initializer_range,
            vocab_size=self.vocab_size,
            do_stable_layer_norm=self.do_stable_layer_norm,
        )

        return config, input_values, attention_mask

    def create_and_check_model(self, config, input_values, attention_mask):
        model = TFWav2Vec2Model(config)
        result = model(input_values, attention_mask=attention_mask)
        self.parent.assertEqual(
            result.last_hidden_state.shape, (self.batch_size, self.output_seq_length, self.hidden_size)
        )

    def create_and_check_batch_inference(self, config, input_values, *args):
        # test does not pass for models making use of `group_norm`
        # check: https://github.com/pytorch/fairseq/issues/3227
        config.layerdrop = 0.0
        model = TFWav2Vec2Model(config)

        input_values = input_values[:3]
        attention_mask = tf.ones_like(input_values)

        input_lengths = tf.constant([input_values.shape[-1] // i for i in [4, 2, 1]])
        length_mask = tf.sequence_mask(input_lengths, dtype=tf.float32)

        # convert values that are over input_lengths to padding
        input_values = input_values * length_mask
        attention_mask = attention_mask * length_mask

        batch_outputs = model(input_values, attention_mask=attention_mask, training=False).last_hidden_state

        for i in range(input_values.shape[0]):
            input_slice = input_values[i : i + 1, : input_lengths[i]]
            output = model(input_slice, training=False).last_hidden_state

            batch_output = batch_outputs[i : i + 1, : output.shape[1]]
            self.parent.assertTrue(np.allclose(output, batch_output, atol=1e-3))

    def check_ctc_loss(self, config, input_values, *args):
        model = TFWav2Vec2ForCTC(config)

        input_values = input_values[:3]
        attention_mask = tf.ones_like(input_values)

        input_lengths = tf.constant([input_values.shape[-1] // i for i in [4, 2, 1]])
        max_length_labels = model.wav2vec2._get_feat_extract_output_lengths(input_lengths)
        labels = ids_tensor((input_values.shape[0], min(max_length_labels) - 1), model.config.vocab_size)

        length_mask = tf.sequence_mask(input_lengths, dtype=tf.float32)

        # convert values that are over input_lengths to padding
        input_values = input_values * length_mask
        attention_mask = attention_mask * length_mask

        model.config.ctc_loss_reduction = "sum"
        sum_loss = model(input_values, attention_mask=attention_mask, labels=labels).loss

        model.config.ctc_loss_reduction = "mean"
        mean_loss = model(input_values, attention_mask=attention_mask, labels=labels).loss

        self.parent.assertTrue(abs(labels.shape[0] * mean_loss - sum_loss) < 1e-2)

    def check_training(self, config, input_values, *args):
        model = TFWav2Vec2ForCTC(config)

        # freeze feature encoder
250
        model.freeze_feature_encoder()
Will Rice's avatar
Will Rice committed
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268

        input_values = input_values[:3]

        input_lengths = tf.constant([input_values.shape[-1] // i for i in [4, 2, 1]])
        max_length_labels = model.wav2vec2._get_feat_extract_output_lengths(input_lengths)
        labels = ids_tensor((input_values.shape[0], max(max_length_labels) - 2), model.config.vocab_size)

        length_mask = tf.sequence_mask(input_lengths, dtype=tf.float32)

        input_values = input_values * length_mask

        pad_size = max(max_length_labels) - labels.shape[1]
        labels = tf.pad(labels, ((0, 0), (0, pad_size)), constant_values=-100)

        loss = model(input_values, labels=labels, training=True).loss

        self.parent.assertFalse(tf.math.is_inf(loss))

269
270
271
272
273
274
275
276
    def check_labels_out_of_vocab(self, config, input_values, *args):
        model = TFWav2Vec2ForCTC(config)
        input_lengths = tf.constant([input_values.shape[-1] // i for i in [4, 2, 1]])
        max_length_labels = model.wav2vec2._get_feat_extract_output_lengths(input_lengths)
        labels = ids_tensor((input_values.shape[0], min(max_length_labels) - 1), model.config.vocab_size + 100)
        with pytest.raises(ValueError):
            model(input_values, labels=labels)

Will Rice's avatar
Will Rice committed
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
    def prepare_config_and_inputs_for_common(self):
        config, input_values, attention_mask = self.prepare_config_and_inputs()
        inputs_dict = {"input_values": input_values, "attention_mask": attention_mask}
        return config, inputs_dict


@require_tf
class TFWav2Vec2ModelTest(TFModelTesterMixin, unittest.TestCase):
    all_model_classes = (TFWav2Vec2Model, TFWav2Vec2ForCTC) if is_tf_available() else ()
    test_resize_embeddings = False
    test_head_masking = False
    test_onnx = False

    def setUp(self):
        self.model_tester = TFWav2Vec2ModelTester(self)
        self.config_tester = ConfigTester(self, config_class=Wav2Vec2Config, hidden_size=37)

    def test_config(self):
        self.config_tester.run_common_tests()

    # overwrite because input_values != input_ids
    def test_forward_signature(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            signature = inspect.signature(model.call)
            # signature.parameters is an OrderedDict => so arg_names order is deterministic
            arg_names = [*signature.parameters.keys()]

            expected_arg_names = ["input_values"]
            self.assertListEqual(arg_names[:1], expected_arg_names)

    # overwrite because input_values != input_ids
    def test_keyword_and_dict_args(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            inputs = self._prepare_for_class(inputs_dict, model_class)

            outputs_dict = model(inputs)

            inputs_keywords = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class))
            input_values = inputs_keywords.pop("input_values", None)
            outputs_keywords = model(input_values, **inputs_keywords)
            output_dict = outputs_dict[0].numpy()
            output_keywords = outputs_keywords[0].numpy()

            self.assertLess(np.sum(np.abs(output_dict - output_keywords)), 1e-6)

    def test_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_model(*config_and_inputs)

    def test_hidden_states_output(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        def check_hidden_states_output(config, inputs_dict, model_class):
            model = model_class(config)
            outputs = model(self._prepare_for_class(inputs_dict, model_class))
            expected_num_layers = getattr(
                self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1
            )

            hidden_states = outputs.hidden_states
            self.assertEqual(config.output_attentions, False)
            self.assertEqual(len(hidden_states), expected_num_layers)
            self.assertListEqual(
                list(hidden_states[0].shape[-2:]),
                [self.model_tester.output_seq_length, self.model_tester.hidden_size],
            )

        for model_class in self.all_model_classes:
            inputs_dict["output_hidden_states"] = True
            check_hidden_states_output(config, inputs_dict, model_class)

            del inputs_dict["output_hidden_states"]
            config.output_hidden_states = True
            check_hidden_states_output(config, inputs_dict, model_class)

    def test_ctc_loss_inference(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.check_ctc_loss(*config_and_inputs)

362
    @is_flaky()
363
364
365
366
    def test_labels_out_of_vocab(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.check_labels_out_of_vocab(*config_and_inputs)

Will Rice's avatar
Will Rice committed
367
368
369
370
    def test_train(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.check_training(*config_and_inputs)

371
    @unittest.skip(reason="Wav2Vec2 has no input embeddings")
Will Rice's avatar
Will Rice committed
372
373
374
    def test_inputs_embeds(self):
        pass

375
    @unittest.skip(reason="Wav2Vec2 has no tokens embeddings")
Will Rice's avatar
Will Rice committed
376
377
378
    def test_resize_tokens_embeddings(self):
        pass

379
    @unittest.skip(reason="Wav2Vec2 has no input embeddings")
Will Rice's avatar
Will Rice committed
380
381
382
383
384
385
386
387
    def test_model_common_attributes(self):
        pass

    @slow
    def test_model_from_pretrained(self):
        model = TFWav2Vec2Model.from_pretrained("facebook/wav2vec2-base-960h")
        self.assertIsNotNone(model)

388
    @unittest.skip(reason="Fix me! Wav2Vec2 hits OOM errors when loss is computed on full batch")
389
    def test_dataset_conversion(self):
390
391
        # TODO: (Amy) - check whether skipping CTC model resolves this issue and possible resolutions for CTC
        pass
392

393
    @unittest.skip(reason="Fix me! Wav2Vec2 hits OOM errors when loss is computed on full batch")
394
    def test_keras_fit(self):
395
396
        # TODO: (Amy) - check whether skipping CTC model resolves this issue and possible resolutions for CTC
        pass
397

Will Rice's avatar
Will Rice committed
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487

@require_tf
class TFWav2Vec2RobustModelTest(TFModelTesterMixin, unittest.TestCase):
    all_model_classes = (TFWav2Vec2Model, TFWav2Vec2ForCTC) if is_tf_available() else ()
    test_resize_embeddings = False
    test_head_masking = False
    test_onnx = False

    def setUp(self):
        self.model_tester = TFWav2Vec2ModelTester(
            self,
            conv_stride=(3, 3, 3),
            feat_extract_norm="layer",
            do_stable_layer_norm=True,
            scope="robust",
        )
        self.config_tester = ConfigTester(self, config_class=Wav2Vec2Config, hidden_size=37)

    # overwrite because input_values != input_ids
    def test_forward_signature(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            signature = inspect.signature(model.call)
            # signature.parameters is an OrderedDict => so arg_names order is deterministic
            arg_names = [*signature.parameters.keys()]

            expected_arg_names = ["input_values"]
            self.assertListEqual(arg_names[:1], expected_arg_names)

    # overwrite because input_values != input_ids
    def test_keyword_and_dict_args(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            inputs = self._prepare_for_class(inputs_dict, model_class)

            outputs_dict = model(inputs)

            inputs_keywords = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class))
            input_values = inputs_keywords.pop("input_values", None)
            outputs_keywords = model(input_values, **inputs_keywords)
            output_dict = outputs_dict[0].numpy()
            output_keywords = outputs_keywords[0].numpy()

            self.assertLess(np.sum(np.abs(output_dict - output_keywords)), 1e-6)

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_model(*config_and_inputs)

    def test_hidden_states_output(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        def check_hidden_states_output(config, inputs_dict, model_class):
            model = model_class(config)
            outputs = model(self._prepare_for_class(inputs_dict, model_class))
            expected_num_layers = getattr(
                self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1
            )

            hidden_states = outputs.hidden_states
            self.assertEqual(config.output_attentions, False)
            self.assertEqual(len(hidden_states), expected_num_layers)
            self.assertListEqual(
                list(hidden_states[0].shape[-2:]),
                [self.model_tester.output_seq_length, self.model_tester.hidden_size],
            )

        for model_class in self.all_model_classes:
            inputs_dict["output_hidden_states"] = True
            check_hidden_states_output(config, inputs_dict, model_class)

            del inputs_dict["output_hidden_states"]
            config.output_hidden_states = True
            check_hidden_states_output(config, inputs_dict, model_class)

    def test_batched_inference(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_batch_inference(*config_and_inputs)

    def test_ctc_loss_inference(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.check_ctc_loss(*config_and_inputs)

488
489
    # TODO (Joao): fix me
    @unittest.skip("Broke with TF 2.10")
490
491
492
493
    def test_labels_out_of_vocab(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.check_labels_out_of_vocab(*config_and_inputs)

Will Rice's avatar
Will Rice committed
494
495
496
497
    def test_train(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.check_training(*config_and_inputs)

498
    @unittest.skip(reason="Wav2Vec2 has no input embeddings")
Will Rice's avatar
Will Rice committed
499
500
501
    def test_inputs_embeds(self):
        pass

502
    @unittest.skip(reason="Wav2Vec2 has no tokens embeddings")
Will Rice's avatar
Will Rice committed
503
504
505
    def test_resize_tokens_embeddings(self):
        pass

506
    @unittest.skip(reason="Wav2Vec2 has no input embeddings")
Will Rice's avatar
Will Rice committed
507
508
509
510
511
512
513
514
    def test_model_common_attributes(self):
        pass

    @slow
    def test_model_from_pretrained(self):
        model = TFWav2Vec2Model.from_pretrained("facebook/wav2vec2-base-960h")
        self.assertIsNotNone(model)

515
    # We override here as passing a full batch of 13 samples results in OOM errors for CTC
Sylvain Gugger's avatar
Sylvain Gugger committed
516
    @unittest.skip("Fix me!")
517
    def test_dataset_conversion(self):
518
519
520
521
        default_batch_size = self.model_tester.batch_size
        self.model_tester.batch_size = 2
        super().test_dataset_conversion()
        self.model_tester.batch_size = default_batch_size
522

523
    # We override here as passing a full batch of 13 samples results in OOM errors for CTC
524
    def test_keras_fit(self):
525
526
        default_batch_size = self.model_tester.batch_size
        self.model_tester.batch_size = 2
Joao Gante's avatar
Joao Gante committed
527
        super().test_keras_fit()
528
        self.model_tester.batch_size = default_batch_size
529

Will Rice's avatar
Will Rice committed
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561

@require_tf
class TFWav2Vec2UtilsTest(unittest.TestCase):
    def test_compute_mask_indices(self):
        batch_size = 4
        sequence_length = 60
        mask_prob = 0.5
        mask_length = 1

        mask = _compute_mask_indices((batch_size, sequence_length), mask_prob, mask_length)

        self.assertListEqual(
            tf.reduce_sum(mask, -1).numpy().tolist(), [mask_prob * sequence_length for _ in range(batch_size)]
        )

    def test_compute_mask_indices_overlap(self):
        batch_size = 4
        sequence_length = 80
        mask_prob = 0.5
        mask_length = 4

        mask = _compute_mask_indices((batch_size, sequence_length), mask_prob, mask_length)

        # because of overlap mask don't have to add up exactly to `mask_prob * sequence_length`, but have to be smaller or equal
        for batch_sum in tf.reduce_sum(mask, -1):
            self.assertTrue(int(batch_sum) <= mask_prob * sequence_length)


@require_tf
@slow
class TFWav2Vec2ModelIntegrationTest(unittest.TestCase):
    def _load_datasamples(self, num_samples):
Patrick von Platen's avatar
Patrick von Platen committed
562
        ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
563
564
565
566
        # automatic decoding with librispeech
        speech_samples = ds.sort("id").filter(
            lambda x: x["id"] in [f"1272-141231-000{i}" for i in range(num_samples)]
        )[:num_samples]["audio"]
Will Rice's avatar
Will Rice committed
567

568
        return [x["array"] for x in speech_samples]
Will Rice's avatar
Will Rice committed
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590

    def test_inference_ctc_normal(self):
        model = TFWav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-960h")
        processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-base-960h", do_lower_case=True)
        input_speech = self._load_datasamples(1)

        input_values = processor(input_speech, return_tensors="tf", sampling_rate=16000).input_values

        logits = model(input_values).logits

        predicted_ids = tf.argmax(logits, axis=-1)
        predicted_trans = processor.batch_decode(predicted_ids)

        EXPECTED_TRANSCRIPTIONS = ["a man said to the universe sir i exist"]
        self.assertListEqual(predicted_trans, EXPECTED_TRANSCRIPTIONS)

    def test_inference_ctc_normal_batched(self):
        model = TFWav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-960h")
        processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-base-960h", do_lower_case=True)

        input_speech = self._load_datasamples(2)

591
        input_values = processor(input_speech, return_tensors="tf", padding=True, sampling_rate=16000).input_values
Will Rice's avatar
Will Rice committed
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609

        logits = model(input_values).logits

        predicted_ids = tf.argmax(logits, axis=-1)
        predicted_trans = processor.batch_decode(predicted_ids)

        EXPECTED_TRANSCRIPTIONS = [
            "a man said to the universe sir i exist",
            "sweat covered brion's body trickling into the tight lowing cloth that was the only garment he wore",
        ]
        self.assertListEqual(predicted_trans, EXPECTED_TRANSCRIPTIONS)

    def test_inference_ctc_robust_batched(self):
        model = TFWav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-large-960h-lv60-self")
        processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-large-960h-lv60-self", do_lower_case=True)

        input_speech = self._load_datasamples(4)

610
        inputs = processor(input_speech, return_tensors="tf", padding=True, sampling_rate=16000)
Will Rice's avatar
Will Rice committed
611
612
613
614
615
616

        input_values = inputs.input_values
        attention_mask = inputs.attention_mask

        logits = model(input_values, attention_mask=attention_mask).logits

617
        predicted_ids = tf.argmax(logits, axis=-1)
Will Rice's avatar
Will Rice committed
618
619
620
621
622
        predicted_trans = processor.batch_decode(predicted_ids)

        EXPECTED_TRANSCRIPTIONS = [
            "a man said to the universe sir i exist",
            "sweat covered brion's body trickling into the tight loin cloth that was the only garment he wore",
Sylvain Gugger's avatar
Sylvain Gugger committed
623
624
            "the cut on his chest still dripping blood the ache of his overstrained eyes even the soaring arena around"
            " him with the thousands of spectators were trivialities not worth thinking about",
Will Rice's avatar
Will Rice committed
625
626
627
            "his instant panic was followed by a small sharp blow high on his chest",
        ]
        self.assertListEqual(predicted_trans, EXPECTED_TRANSCRIPTIONS)
628
629
630
631

    @require_pyctcdecode
    @require_librosa
    def test_wav2vec2_with_lm(self):
632
633
634
        downloaded_folder = snapshot_download("patrickvonplaten/common_voice_es_sample")
        file_path = glob.glob(downloaded_folder + "/*")[0]
        sample = librosa.load(file_path, sr=16_000)[0]
635
636
637
638

        model = TFWav2Vec2ForCTC.from_pretrained("patrickvonplaten/wav2vec2-large-xlsr-53-spanish-with-lm")
        processor = Wav2Vec2ProcessorWithLM.from_pretrained("patrickvonplaten/wav2vec2-large-xlsr-53-spanish-with-lm")

639
        input_values = processor(sample, return_tensors="tf").input_values
640
641
642
643
644

        logits = model(input_values).logits

        transcription = processor.batch_decode(logits.numpy()).text

645
        self.assertEqual(transcription[0], "el libro ha sido escrito por cervantes")
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680

    @require_pyctcdecode
    @require_librosa
    def test_wav2vec2_with_lm_pool(self):
        downloaded_folder = snapshot_download("patrickvonplaten/common_voice_es_sample")
        file_path = glob.glob(downloaded_folder + "/*")[0]
        sample = librosa.load(file_path, sr=16_000)[0]

        model = TFWav2Vec2ForCTC.from_pretrained("patrickvonplaten/wav2vec2-large-xlsr-53-spanish-with-lm")
        processor = Wav2Vec2ProcessorWithLM.from_pretrained("patrickvonplaten/wav2vec2-large-xlsr-53-spanish-with-lm")

        input_values = processor(sample, return_tensors="tf").input_values

        logits = model(input_values).logits

        # test user-managed pool
        with multiprocessing.get_context("fork").Pool(2) as pool:
            transcription = processor.batch_decode(logits.numpy(), pool).text

        self.assertEqual(transcription[0], "el libro ha sido escrito por cervantes")

        # user-managed pool + num_processes should trigger a warning
        with CaptureLogger(processing_wav2vec2_with_lm.logger) as cl, multiprocessing.get_context("fork").Pool(
            2
        ) as pool:
            transcription = processor.batch_decode(logits.numpy(), pool, num_processes=2).text

        self.assertIn("num_process", cl.out)
        self.assertIn("it will be ignored", cl.out)

        self.assertEqual(transcription[0], "el libro ha sido escrito por cervantes")

    @require_pyctcdecode
    @require_librosa
    def test_wav2vec2_with_lm_invalid_pool(self):
681
        run_test_in_subprocess(test_case=self, target_func=_test_wav2vec2_with_lm_invalid_pool, inputs=None)