xlnet.mdx 5.1 KB
Newer Older
Sylvain Gugger's avatar
Sylvain Gugger committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
<!--Copyright 2020 The HuggingFace Team. All rights reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->

# XLNet

## Overview

The XLNet model was proposed in [XLNet: Generalized Autoregressive Pretraining for Language Understanding](https://arxiv.org/abs/1906.08237) by Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov,
Quoc V. Le. XLnet is an extension of the Transformer-XL model pre-trained using an autoregressive method to learn
bidirectional contexts by maximizing the expected likelihood over all permutations of the input sequence factorization
order.

The abstract from the paper is the following:

*With the capability of modeling bidirectional contexts, denoising autoencoding based pretraining like BERT achieves
better performance than pretraining approaches based on autoregressive language modeling. However, relying on
corrupting the input with masks, BERT neglects dependency between the masked positions and suffers from a
pretrain-finetune discrepancy. In light of these pros and cons, we propose XLNet, a generalized autoregressive
pretraining method that (1) enables learning bidirectional contexts by maximizing the expected likelihood over all
permutations of the factorization order and (2) overcomes the limitations of BERT thanks to its autoregressive
formulation. Furthermore, XLNet integrates ideas from Transformer-XL, the state-of-the-art autoregressive model, into
pretraining. Empirically, under comparable experiment settings, XLNet outperforms BERT on 20 tasks, often by a large
margin, including question answering, natural language inference, sentiment analysis, and document ranking.*

Tips:

- The specific attention pattern can be controlled at training and test time using the `perm_mask` input.
- Due to the difficulty of training a fully auto-regressive model over various factorization order, XLNet is pretrained
  using only a sub-set of the output tokens as target which are selected with the `target_mapping` input.
- To use XLNet for sequential decoding (i.e. not in fully bi-directional setting), use the `perm_mask` and
  `target_mapping` inputs to control the attention span and outputs (see examples in
  *examples/pytorch/text-generation/run_generation.py*)
- XLNet is one of the few models that has no sequence length limit.

This model was contributed by [thomwolf](https://huggingface.co/thomwolf). The original code can be found [here](https://github.com/zihangdai/xlnet/).


## XLNetConfig

[[autodoc]] XLNetConfig

## XLNetTokenizer

[[autodoc]] XLNetTokenizer
    - build_inputs_with_special_tokens
    - get_special_tokens_mask
    - create_token_type_ids_from_sequences
    - save_vocabulary

## XLNetTokenizerFast

[[autodoc]] XLNetTokenizerFast

## XLNet specific outputs

[[autodoc]] models.xlnet.modeling_xlnet.XLNetModelOutput

[[autodoc]] models.xlnet.modeling_xlnet.XLNetLMHeadModelOutput

[[autodoc]] models.xlnet.modeling_xlnet.XLNetForSequenceClassificationOutput

[[autodoc]] models.xlnet.modeling_xlnet.XLNetForMultipleChoiceOutput

[[autodoc]] models.xlnet.modeling_xlnet.XLNetForTokenClassificationOutput

[[autodoc]] models.xlnet.modeling_xlnet.XLNetForQuestionAnsweringSimpleOutput

[[autodoc]] models.xlnet.modeling_xlnet.XLNetForQuestionAnsweringOutput

[[autodoc]] models.xlnet.modeling_tf_xlnet.TFXLNetModelOutput

[[autodoc]] models.xlnet.modeling_tf_xlnet.TFXLNetLMHeadModelOutput

[[autodoc]] models.xlnet.modeling_tf_xlnet.TFXLNetForSequenceClassificationOutput

[[autodoc]] models.xlnet.modeling_tf_xlnet.TFXLNetForMultipleChoiceOutput

[[autodoc]] models.xlnet.modeling_tf_xlnet.TFXLNetForTokenClassificationOutput

[[autodoc]] models.xlnet.modeling_tf_xlnet.TFXLNetForQuestionAnsweringSimpleOutput

## XLNetModel

[[autodoc]] XLNetModel
    - forward

## XLNetLMHeadModel

[[autodoc]] XLNetLMHeadModel
    - forward

## XLNetForSequenceClassification

[[autodoc]] XLNetForSequenceClassification
    - forward

## XLNetForMultipleChoice

[[autodoc]] XLNetForMultipleChoice
    - forward

## XLNetForTokenClassification

[[autodoc]] XLNetForTokenClassification
    - forward

## XLNetForQuestionAnsweringSimple

[[autodoc]] XLNetForQuestionAnsweringSimple
    - forward

## XLNetForQuestionAnswering

[[autodoc]] XLNetForQuestionAnswering
    - forward

## TFXLNetModel

[[autodoc]] TFXLNetModel
    - call

## TFXLNetLMHeadModel

[[autodoc]] TFXLNetLMHeadModel
    - call

## TFXLNetForSequenceClassification

[[autodoc]] TFXLNetForSequenceClassification
    - call

## TFLNetForMultipleChoice

[[autodoc]] TFXLNetForMultipleChoice
    - call

## TFXLNetForTokenClassification

[[autodoc]] TFXLNetForTokenClassification
    - call

## TFXLNetForQuestionAnsweringSimple

[[autodoc]] TFXLNetForQuestionAnsweringSimple
    - call