test_image_processing_imagegpt.py 11.6 KB
Newer Older
NielsRogge's avatar
NielsRogge committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
# coding=utf-8
# Copyright 2021 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import json
import os
import tempfile
import unittest

import numpy as np
from datasets import load_dataset

amyeroberts's avatar
amyeroberts committed
25
26
from transformers import AutoImageProcessor
from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_vision, slow
27
from transformers.utils import is_torch_available, is_vision_available
NielsRogge's avatar
NielsRogge committed
28

29
from ...test_image_processing_common import ImageProcessingTestMixin, prepare_image_inputs
NielsRogge's avatar
NielsRogge committed
30
31
32
33
34
35
36
37


if is_torch_available():
    import torch

if is_vision_available():
    from PIL import Image

38
    from transformers import ImageGPTImageProcessor
NielsRogge's avatar
NielsRogge committed
39
40


41
class ImageGPTImageProcessingTester(unittest.TestCase):
NielsRogge's avatar
NielsRogge committed
42
43
44
45
46
47
48
49
50
    def __init__(
        self,
        parent,
        batch_size=7,
        num_channels=3,
        image_size=18,
        min_resolution=30,
        max_resolution=400,
        do_resize=True,
amyeroberts's avatar
amyeroberts committed
51
        size=None,
NielsRogge's avatar
NielsRogge committed
52
53
        do_normalize=True,
    ):
amyeroberts's avatar
amyeroberts committed
54
        size = size if size is not None else {"height": 18, "width": 18}
NielsRogge's avatar
NielsRogge committed
55
56
57
58
59
60
61
62
63
64
        self.parent = parent
        self.batch_size = batch_size
        self.num_channels = num_channels
        self.image_size = image_size
        self.min_resolution = min_resolution
        self.max_resolution = max_resolution
        self.do_resize = do_resize
        self.size = size
        self.do_normalize = do_normalize

65
    def prepare_image_processor_dict(self):
NielsRogge's avatar
NielsRogge committed
66
67
68
69
70
71
72
73
74
75
76
77
78
        return {
            # here we create 2 clusters for the sake of simplicity
            "clusters": np.asarray(
                [
                    [0.8866443634033203, 0.6618829369544983, 0.3891746401786804],
                    [-0.6042559146881104, -0.02295008860528469, 0.5423797369003296],
                ]
            ),
            "do_resize": self.do_resize,
            "size": self.size,
            "do_normalize": self.do_normalize,
        }

79
80
81
82
83
84
85
86
87
88
89
90
91
92
    def expected_output_image_shape(self, images):
        return (self.size["height"] * self.size["width"],)

    def prepare_image_inputs(self, equal_resolution=False, numpify=False, torchify=False):
        return prepare_image_inputs(
            batch_size=self.batch_size,
            num_channels=self.num_channels,
            min_resolution=self.min_resolution,
            max_resolution=self.max_resolution,
            equal_resolution=equal_resolution,
            numpify=numpify,
            torchify=torchify,
        )

NielsRogge's avatar
NielsRogge committed
93
94
95

@require_torch
@require_vision
96
class ImageGPTImageProcessingTest(ImageProcessingTestMixin, unittest.TestCase):
97
    image_processing_class = ImageGPTImageProcessor if is_vision_available() else None
NielsRogge's avatar
NielsRogge committed
98
99

    def setUp(self):
amyeroberts's avatar
amyeroberts committed
100
        super().setUp()
101
        self.image_processor_tester = ImageGPTImageProcessingTester(self)
NielsRogge's avatar
NielsRogge committed
102
103

    @property
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
    def image_processor_dict(self):
        return self.image_processor_tester.prepare_image_processor_dict()

    def test_image_processor_properties(self):
        image_processing = self.image_processing_class(**self.image_processor_dict)
        self.assertTrue(hasattr(image_processing, "clusters"))
        self.assertTrue(hasattr(image_processing, "do_resize"))
        self.assertTrue(hasattr(image_processing, "size"))
        self.assertTrue(hasattr(image_processing, "do_normalize"))

    def test_image_processor_from_dict_with_kwargs(self):
        image_processor = self.image_processing_class.from_dict(self.image_processor_dict)
        self.assertEqual(image_processor.size, {"height": 18, "width": 18})

        image_processor = self.image_processing_class.from_dict(self.image_processor_dict, size=42)
        self.assertEqual(image_processor.size, {"height": 42, "width": 42})

    def test_image_processor_to_json_string(self):
        image_processor = self.image_processing_class(**self.image_processor_dict)
        obj = json.loads(image_processor.to_json_string())
        for key, value in self.image_processor_dict.items():
NielsRogge's avatar
NielsRogge committed
125
126
127
128
129
            if key == "clusters":
                self.assertTrue(np.array_equal(value, obj[key]))
            else:
                self.assertEqual(obj[key], value)

130
131
    def test_image_processor_to_json_file(self):
        image_processor_first = self.image_processing_class(**self.image_processor_dict)
NielsRogge's avatar
NielsRogge committed
132
133

        with tempfile.TemporaryDirectory() as tmpdirname:
134
135
136
            json_file_path = os.path.join(tmpdirname, "image_processor.json")
            image_processor_first.to_json_file(json_file_path)
            image_processor_second = self.image_processing_class.from_json_file(json_file_path).to_dict()
NielsRogge's avatar
NielsRogge committed
137

138
139
        image_processor_first = image_processor_first.to_dict()
        for key, value in image_processor_first.items():
NielsRogge's avatar
NielsRogge committed
140
            if key == "clusters":
141
                self.assertTrue(np.array_equal(value, image_processor_second[key]))
NielsRogge's avatar
NielsRogge committed
142
            else:
143
                self.assertEqual(image_processor_first[key], value)
NielsRogge's avatar
NielsRogge committed
144

145
    def test_image_processor_from_and_save_pretrained(self):
amyeroberts's avatar
amyeroberts committed
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
        for image_processing_class in self.image_processor_list:
            image_processor_first = self.image_processing_class(**self.image_processor_dict)

            with tempfile.TemporaryDirectory() as tmpdirname:
                image_processor_first.save_pretrained(tmpdirname)
                image_processor_second = self.image_processing_class.from_pretrained(tmpdirname).to_dict()

            image_processor_first = image_processor_first.to_dict()
            for key, value in image_processor_first.items():
                if key == "clusters":
                    self.assertTrue(np.array_equal(value, image_processor_second[key]))
                else:
                    self.assertEqual(image_processor_first[key], value)

    def test_image_processor_save_load_with_autoimageprocessor(self):
        for image_processing_class in self.image_processor_list:
            image_processor_first = image_processing_class(**self.image_processor_dict)

            with tempfile.TemporaryDirectory() as tmpdirname:
                saved_file = image_processor_first.save_pretrained(tmpdirname)[0]
                check_json_file_has_correct_format(saved_file)

                image_processor_second = AutoImageProcessor.from_pretrained(tmpdirname)

            image_processor_first = image_processor_first.to_dict()
            image_processor_second = image_processor_second.to_dict()

            for key, value in image_processor_first.items():
                if key == "clusters":
                    self.assertTrue(np.array_equal(value, image_processor_second[key]))
                else:
                    self.assertEqual(image_processor_first[key], value)
NielsRogge's avatar
NielsRogge committed
178
179
180
181
182

    @unittest.skip("ImageGPT requires clusters at initialization")
    def test_init_without_params(self):
        pass

183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
    # Override the test from ImageProcessingTestMixin as ImageGPT model takes input_ids as input
    def test_call_pil(self):
        # Initialize image_processing
        image_processing = self.image_processing_class(**self.image_processor_dict)
        # create random PIL images
        image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False)
        for image in image_inputs:
            self.assertIsInstance(image, Image.Image)

        # Test not batched input
        encoded_images = image_processing(image_inputs[0], return_tensors="pt").input_ids
        expected_output_image_shape = self.image_processor_tester.expected_output_image_shape(encoded_images)
        self.assertEqual(tuple(encoded_images.shape), (1, *expected_output_image_shape))

        # Test batched
        encoded_images = image_processing(image_inputs, return_tensors="pt").input_ids
        self.assertEqual(
            tuple(encoded_images.shape), (self.image_processor_tester.batch_size, *expected_output_image_shape)
        )

    # Override the test from ImageProcessingTestMixin as ImageGPT model takes input_ids as input
    def test_call_numpy(self):
        # Initialize image_processing
        image_processing = self.image_processing_class(**self.image_processor_dict)
        # create random numpy tensors
        image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False, numpify=True)
        for image in image_inputs:
            self.assertIsInstance(image, np.ndarray)

        # Test not batched input
        encoded_images = image_processing(image_inputs[0], return_tensors="pt").input_ids
        expected_output_image_shape = self.image_processor_tester.expected_output_image_shape(encoded_images)
        self.assertEqual(tuple(encoded_images.shape), (1, *expected_output_image_shape))

        # Test batched
        encoded_images = image_processing(image_inputs, return_tensors="pt").input_ids
        self.assertEqual(
            tuple(encoded_images.shape), (self.image_processor_tester.batch_size, *expected_output_image_shape)
        )

amyeroberts's avatar
amyeroberts committed
223
224
225
226
    @unittest.skip("ImageGPT assumes clusters for 3 channels")
    def test_call_numpy_4_channels(self):
        pass

227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
    # Override the test from ImageProcessingTestMixin as ImageGPT model takes input_ids as input
    def test_call_pytorch(self):
        # Initialize image_processing
        image_processing = self.image_processing_class(**self.image_processor_dict)
        # create random PyTorch tensors
        image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=False, torchify=True)
        expected_output_image_shape = self.image_processor_tester.expected_output_image_shape(image_inputs)

        for image in image_inputs:
            self.assertIsInstance(image, torch.Tensor)

        # Test not batched input
        encoded_images = image_processing(image_inputs[0], return_tensors="pt").input_ids
        self.assertEqual(tuple(encoded_images.shape), (1, *expected_output_image_shape))

        # Test batched
        encoded_images = image_processing(image_inputs, return_tensors="pt").input_ids
        self.assertEqual(
            tuple(encoded_images.shape),
            (self.image_processor_tester.batch_size, *expected_output_image_shape),
        )

NielsRogge's avatar
NielsRogge committed
249
250

def prepare_images():
251
252
253
    # we use revision="refs/pr/1" until the PR is merged
    # https://hf.co/datasets/hf-internal-testing/fixtures_image_utils/discussions/1
    dataset = load_dataset("hf-internal-testing/fixtures_image_utils", split="test", revision="refs/pr/1")
NielsRogge's avatar
NielsRogge committed
254

255
256
    image1 = dataset[4]["image"]
    image2 = dataset[5]["image"]
NielsRogge's avatar
NielsRogge committed
257
258
259
260
261
262
263
264

    images = [image1, image2]

    return images


@require_vision
@require_torch
265
class ImageGPTImageProcessorIntegrationTest(unittest.TestCase):
NielsRogge's avatar
NielsRogge committed
266
267
    @slow
    def test_image(self):
268
        image_processing = ImageGPTImageProcessor.from_pretrained("openai/imagegpt-small")
NielsRogge's avatar
NielsRogge committed
269
270
271
272

        images = prepare_images()

        # test non-batched
273
        encoding = image_processing(images[0], return_tensors="pt")
NielsRogge's avatar
NielsRogge committed
274

275
276
        self.assertIsInstance(encoding.input_ids, torch.LongTensor)
        self.assertEqual(encoding.input_ids.shape, (1, 1024))
NielsRogge's avatar
NielsRogge committed
277
278

        expected_slice = [306, 191, 191]
279
        self.assertEqual(encoding.input_ids[0, :3].tolist(), expected_slice)
NielsRogge's avatar
NielsRogge committed
280
281

        # test batched
282
        encoding = image_processing(images, return_tensors="pt")
NielsRogge's avatar
NielsRogge committed
283

284
285
        self.assertIsInstance(encoding.input_ids, torch.LongTensor)
        self.assertEqual(encoding.input_ids.shape, (2, 1024))
NielsRogge's avatar
NielsRogge committed
286
287

        expected_slice = [303, 13, 13]
288
        self.assertEqual(encoding.input_ids[1, -3:].tolist(), expected_slice)